异步起动永磁同步电机设计

异步起动永磁同步电机设计
异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹

本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教

其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了!

下面先给出电机结构示意图

电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。

运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数

定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计

以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题

就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

添加后磁化曲线示意

添加后的损耗曲线示意

关于磁钢的材料设置,可以在软件的Magnet选项中任意添加所需材料的参数,如下图所示

注意,这里我给出的是电机在75℃的工作温度下,磁钢的性能参数

下面给出绕组连接方法。本算例定子采用单层交叉绕组,因为现有给定无法满足所需条件,采用了软件自带的绕组编辑器,连接方式如下图所示:

在编辑器的列表中,可以任意改变绕组相序,匝数,线圈的两边所在槽号,从而得到所需要的任意形式的绕组排布

Ansoft RMxprt V5.0的设计结果输出

除了可以导入到Maxwell里进行电机的有限元分析,经过RMxprt V5.0的设计计算后,我们还得得到以下的结果

1.冲片效果图

2.绕组排布

3.电磁计算单

其中用来进行有限元瞬态分析的主要是以下数据

4.性能曲线

Power Factor VS Torque Angle

Input Line Current VS Torque Angle

Efficiency VS Torque Angle

Air Gap Power VS Torque Angle

Starting Torque VS Speed

One Conductor Induce V oltage at No Load

Air-Gap Flux Density at No Load

Induce Winding V oltages at No Load

关于异步启动永磁同步电机的有限元分析,和三相异步电机有很多相似之处,我这里我重点讲不同,和需要注意的地方,有些问题在其他类电机分析中同样涉及。欢迎大家拍砖!

首先说下电机静磁场分析的前处理工作,静磁场分析主要是为了求解电机在某一运行工况时刻的状态和参数。通常我们比较关心的是额定工况运行时对电机的分析。下面给出的算例为定子通入额定电流,转子无电流流通的静磁场分析:

下图为对RMxprt模型导入Maxwell 2D进行静磁场分析后的界面,

前处理工作中有几个需要注意的地方,这里提一下:

1.Define Model

RMxprt导入的模型可能存在分段过少的现象,对于定子轭磁密以及齿槽转矩的计算有直接的影响。如要提高计算精度,我们可以通过下图所示方法进行修正

分别选中定子外径和Band,对圆弧细化到1分度,下图为修正Band分度到1度

爪极永磁同步电机的设计特点

爪极永磁同步电机的设计特点 李开成张健梅(华中理工大学武汉430074) 【摘要】介绍爪极永磁同步电机转子的结构及设计特点,并说明了一些主要结构尺寸间的关系。 【叙词】永磁电机同步电机设计 1引言 爪极永磁同步电机的永久磁铁形状简单,极间漏磁大,磁铁过载能力强,机械强度高,普遍用于变流机和变频机,发电机的制造容量自数百瓦到数千瓦。当频率在1000Hz以内时,制造容量可达数十千伏安。这种电机由于转子采用爪极结构,而爪极的形状又可多种多样,因此,较普通永磁同步电机计算复杂。这种电机的分析和设计,在国内外文献中介绍较少。本文介绍爪极永磁同步电机的设计特点及爪极转子的设计。 2爪极式转子的结构及其特点

爪极式转子通常由两个带爪的法兰盘和一个圆环形永久磁铁组成,如图1所示。图la和c为左右两个带爪子的法兰盘,二者爪数相等,且等于极数的1/2。图lb为圆环形磁铁沿转子轴向充磁。图ld为装配图,左右为两个法兰盘对合,二者爪子互相错开,沿圆周均匀分布。圆环形永久磁铁夹在两个带爪法兰盘中间,使一个法兰盘上的爪子皆为N极性,另一个法兰盘上的爪子皆为S极性,形成如图le所示的多极转子结构。显然,法兰盘上的爪子起了极靴的作用。 爪极永磁同步电机中,电机的全部磁通(P对极)轴向穿过圆环形磁铁,进入爪极,经气隙进入定子,爪极中的磁路如图2所示。 爪极通常由10号钢制成,或由钢板冲成,也可由粉末冶金直接压制成形。由于磁通轴向通过爪子,爪子的每一截面通过的磁通不相等,爪尖最少,爪根最多。爪子的截面积沿电机轴向是变化的,爪尖部分的面积最小,爪根部分最大。爪极的形状多种多样,有等宽爪极、梯形爪极,还有正弦爪极。图3为梯形爪极形状。

异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹 本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教 其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了! 下面先给出电机结构示意图 电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。 运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数 定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计 以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题 就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

永磁同步异步电机的性能,你知道多少

永磁同步/异步电机的性能,你知道多少? 时间:2017-03-18 06:25:32 来源:空压机网性质:转载作者:空压机网【推荐给朋友】 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素

异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/Pn)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。

图为永磁同步电动机与异步电动机的效率和功率因数 a. 异步起动永磁同步电动机 b.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载 率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%。 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升

永磁同步电机与异步电机性能比较

永磁同步电机与异步电 机性能比较 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显着,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效 率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P 2/P n )<50% 时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济 区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子 电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无 感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.

从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网

永磁同步电机与异步电机的比较

永磁同步电机与异步电机的比较 随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电机与普通异步速电机相比,具有如下优势: 1、效率高 这里所说的效率高不仅仅指额定功率点的效率离于普通三相异步电机,而是指其在整个调速范围内的平均效率。永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。 2.启动转矩 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起倍1.8倍上升到2.5倍,甚至更大。 3.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。 4、体积小,重量轻 由于使用了高性能的永磁材料提供磁场,使得永磁电机的气隙磁场较感应电机大先增强,永磁电机的体积和重最较感应电机可以大大的缩小。例如11kW的异步电机重最为220kg,而永磁电机仅为92kg,相当于异步电机重量的45.8%。 5、故障率更低、使用普遍 由于使用了高性能的稀土永磁材料提供磁场,因此故障率更低,使用更加普遍为目前应用的主流电梯驱动电机,异步电机目前在客用电梯应用市场上已经完全淘汰,部分低端大载量货用电梯在使用! 基于以上对比优势,目前,永磁同步电机它比普通三相异步电机更高效,更节能!

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

maxwell软件- 三相同步电机设计

10 三相同步电机 本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。有关RMxprt 基本操作的详细介绍请参考第一部分的章节。 10.1 分析方法 三相凸极同步电机有发电机和电动机之分,两者的结构基本相同。三相同步发电机是工业、商业以及民用的主要电能来源,它将机械能转化为电能,其转子上装有由直流电励磁的多级绕组,定子上装有三相正弦分布绕组,转子旋转在气隙中产生旋转磁场。定子上感应出电压,频率为: 60pn f /= (10.1) 其中p 是极对数, n 是转子的机械转速,单位rpm ,又称为同步转速,电机可以根据负载需要来产生有功功率和无功功率。 通常采用频域矢量图来对电机进行分析,发电机和电动机的矢量图如图10.1所示。 a. 发电机 b. 电动机 图10.1 同步电机矢量图 图中R 1和X 1分别为电枢绕组电阻和漏电抗,X ad 和X aq 分别为d 轴电枢电抗和q 轴电枢电抗。相量图中X ad 是经过线性化处理的非线性参数。 以输入电压U 为参考相量,则电流相量为: ?-∠=I I (10.2) 设功率因数角为φ, 是电压相量U 与电流相量I 的夹角, 图中OM 所代表的相量可表示为 ???++-+++=motor for X X R generator for X X R OM aq 11aq 11)j j ()j j (I U I U (10.3) 设E 0与U 的夹角为θ,(对于发电机θ称为功率角,对于电动机θ,称为力矩角),则E 0与I 的夹角为 θ?ψ+= (10.4)

d 轴和q 轴电流可分别按下式求出 ??????=??????=ψψcos sin I I I q d I (10.5) 图中ON 相量代表由d 轴磁链所产生的d 轴反电势。由磁路空载特性曲线,可确定E 0,X ad 和励磁电流I f 1. 对于发电机: 输出电功率: ?cos UI 3P 2= (10.6) 输入功率(机械功率) : ex Cuf add Fe Cua fw 21P P P P P P P P ++++++= (10.7) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、励磁绕组铜损和励磁机损耗 输入机械转矩: ω1 1P T = (10.8) 式中ω为同步角速度,单位:rad/s 2. 对于电动机: 输入电功率: ?cos UI 3P 1= (10.9) 输出机械功率: ()ex Cuf add Fe Cua fw 12P P P P P P P P +++++-= (10.10) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、 励磁绕组铜损和励磁机损耗 输出机械转矩: ω22P T = (10.11) 电机效率: %100P P 12?=η (10.12) 10.2 主要特点 10.2.1 适用于同步电动机和同步发电机 凸极同步电动机和发电机结构基本相同,相量关系和计算方法有些差别,输出性能数据也有所不同。故RMxprt 将同步电机分为两个设计模块:同步电动机和同步发电机。 10.2.2 三相绕组的自动排布 几乎所有常用的三相和单相,单层和双层,整数槽和分数槽交流绕组都能自动设计。用户不需要一个接一个的自己定义线圈。

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录 1、基本情况及背景介绍 (2) 2、高效永磁同步电动机关键技术的研究 (3) 2.1优化转子磁路结构,提高电机的可靠性 (3) 2.2永磁电机防退磁技术研究 (5) 2.3漏磁系数准确计算的研究 (7) 2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10) 2.5稀土永磁材料的剩磁测试技术的研究 (14) 2.6电机的起动性能 (16) 2.7失步转矩倍数 (17) 2.8其它性能指标 (18)

1、基本情况及背景介绍 稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。 相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。 早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。 为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

Ansoft永磁同步电机 设计 报告

现代电机设计 利用Ansoft软件对异步起动永磁同步电动 机的分析计算 2013 年7 月

目录 第1章引言………… 第2章 RMxprt在永磁同步电机中的电机性能分析………… 2.1 Stator项设置过程………… 2.2 Rotor项设置过程………… 2.3 Line Start-Permanent Magnet Synchronous Machine的电机仿真………… 2.4 计算和结果的查看………… 第3章静态磁场分析………… 3.1 电机模型和网格剖分图………… 3.2 磁力线分布图…………………… 3.3 磁密曲线 3.3.1 气隙磁密分布………… 3.3.2 定子齿、轭部磁密大小………… 3.3.3 转子齿磁密大小………… 第4章瞬态场分析………… 4.1 额定稳态运行性能………… 4.1.1 电流与转矩大小………… 4.1.2 各部分磁密………… 4.2 额定负载启动………… 4.2.1 转矩-时间曲线………… 4.2.2 电流-时间曲线………… 4.2.3 转速-时间曲线………… 4.2.4 转矩-转速曲线…………

第1章引言 Ansoft Maxwell作为世界著名的商用低频电磁场有限元软件之一,在各个工程电磁场领域都得到了广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解。该软件包括二维求解器、三维求解器和RMxprt旋转电动机分析专家系统这3个主要模块,不仅可以进行静磁场、静电场、交直流传导电场、瞬态电场、涡流场、瞬态磁场等不同的基本电磁场的特性分析,还可以通过RMxprt电动机模块仿真多种电动机模型,为实际电动机设计提供帮助。利用Ansoft软件进行仿真可以帮助我们了解电动机的结构特性。 本文是一台4极、36槽绕组永磁同步电动机,利用RMxprt模块进行电机的建模、仿真以及导入到Maxwell2D的有限元模块的方法,然后再对Maxwell2D 中的永磁体模型进行修正,最后对该电机在静态磁场和瞬态磁场的情况下进行分析。

ANSOFT 永磁同步电动机设计

IPM ADJUSTABLE-SPEED SYNCHRONOUS MOTOR DESIGN File: Setup1.res GENERAL DATA Operation Type: Motor Source Type: AC Rated Output Power (kW): 20 Rated Power Factor: 0.95 Capacitive Power Factor: N o Frequency (Hz): 200 Rated V oltage (V): 254 Load Type: Const Power Rated Speed (rpm): 3000 Operating Temperature (C): 75 STATOR DATA Stator Core Type: SLOT_AC Stator Position: Outer Number of Poles: 8 Outer Diameter of Stator (mm): 180 Inner Diameter of Stator (mm): 110 Length of Stator Core (mm): 120 Stacking Factor of Stator Core: 0.95 Steel Type of Stator: M19_24G Number of Stator Slots: 48 Type of Stator Slot: 1 Stator Slot hs0 (mm): 0.5 hs2 (mm): 15 bs0 (mm): 2 bs1 (mm): 3.25 bs2 (mm): 6.5 Top Tooth Width (mm): 4.18306 Bottom Tooth Width (mm): 2.90211 Number of Sectors per Lamination: 1

永磁同步电机的设计与温度场分析解释

永磁同步电机的设计与温度场分析解释 摘要:21世纪,科学技术飞速发展,高新技术不断涌现,节电、环保意识日益 增强,使得永磁同步电机发展的前途一片光明,尤其是高性能钕铁硼永磁同步电 机及其伺服系统,随其技术的快速发展和日渐成熟,结构型式将日趋多样化,也 将会赢得更为广泛的发展空间,获得更加广泛的应用。 关键词:永磁;同步电机;设计;温度场;分析解释 1 引言 近年来,永磁同步电机逐渐在各个领域得到广泛应用,日益成为人们生产和生活不可或 缺的一部分。永磁同步电机在运行的过程中会产生损耗,这些损耗会通过热量的形式逸散出来,使电机内部温度升高。随着电力电子技术、微电子技术、新型电机控制理论和钕铁硼永 磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比, 永磁同步电机,特别是钕铁硼永磁同步电机具有高效率、高功率因数、高效区宽广、功率密度高、节电效果明显的优点。 2大功率高速永磁同步电机的设计 2.1 主要设计特点 永磁同步电机的定子一般与相应的异步电机的定子冲片相同,最主要的是对转子的设计。本文设计的大功率高速永磁同步电机的使用场合较为特殊,对于这样的大电机要求运行可靠、大功率、高转速、高效率、防爆要求较高。所以不仅要设计合理的电磁磁路,又要在相应的 技术参数基础上(机、电、热、材料、工艺、环境)对电机的性能进行改善。 所以在设计过程中要综合以下方面综合考虑: 2.1.1 高压变频 高压变频起动永磁同步电机无需起动绕组,这样需要大功率的变频器来与之相匹配,同 样还要加强电气强度,提高安全系数。 2.1.2 大容量 电机为4级,定子额定电流约为660A,额定电压约为10kV,额定功率约为10MW,定子 绕组采用Y型连接方式,相数为3相,额定频率为160Hz,额定转矩为20kN?m 。 2.1.3 高转速 电机额定转速约为4800rpm,功率大、效率高、转速高,调速宽而且能满足S1工作制。 结合实际大功率高速永磁电机技术水平,合理选择永磁体的励磁方式,以及结构设计。 2.1.4 防爆 天然气是极易发生燃烧爆炸的气体,所以对电机要进行防爆措施,选择合适的材料以及 防爆等级。 2.1.5 冷却 中小功率电机一般是利用空气进行通风冷却,但随着单机容量的增加,大功率高速电机 的散热面积和风路安排受到诸多限制,使通风冷却较为困难。所以,为了保证电机温升不超 过允许值,需要用不同的冷却方式和通风系统。一般采用水风混合冷却,即内循环冷却采用 水冷,外循环冷却采用风冷。 3 永磁同步电动机的控制策略 任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场 和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直, 互相影响。交流电动机的转矩控制性能较差。目前的永磁同步电动机的控制方式有矢量控制、直接转矩控制等方案。 3.1 矢量控制 高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的 当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案 就倍受青睐。 矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁

工业机器人用永磁同步电机设计

工业机器人用永磁同步电机设计 发表时间:2019-04-24T15:50:16.983Z 来源:《防护工程》2019年第1期作者:于帅涛 [导读] 实验结果和仿真数据基本一致,验证了方案的可行性。本文设计方案已经应用在某工业机器人用电机中。 摘要:伴随着我国现代化的飞速发展,国内的先进科学技术也随之逐渐增强。机器人用永磁同步电机要求具有高转矩倍数、高效率和低转矩脉动等特性。通过分析电机的技术要求,确定了该电机的基本尺寸参数。用有限元分析软件对电机进行分析和仿真。对常用的永磁电机的槽极配合进行分析,选择最佳的槽极配合。采用不等厚永磁体结构,对电机的齿槽转矩进行优化。设计了大小圈绕组结构,有效地提高了电机的效率。为工业机器人用永磁同步电机的设计和改进提供了一种设计的方法。 关键词:工业机器人;永磁同步电机;设计 引言 永磁同步电机采用永磁体为励磁,大大减轻了电机的体积和质量,在工业机器人上有很好的应用空间。而工业机器人同样也给永磁同步电机提出了更严苛的要求。本文针对的是面向机床自动化生产的机器人用电机,要求电机过载倍数要有3.3倍,电机效率也要求较高;同时电机的转矩脉动也要保持在较小的水平。 1永磁同步电机概述 1.1永磁同步电机 众所周知,电机是将电能转化为机械能的设备,但这种能量的转换需要建立磁场,异步电机建立磁场的能量需从电网吸取,需励磁电流、励磁绕组,而永磁电机由永磁材料产生磁场,无需励磁电流,这就是永磁电机。 1.2永磁同步电机优点 转速恒定。转速与电机频率保持恒定,为同步转速,可简化空载系统。功率因数高。通过合理设计能达到极限值1.0。效率高。正常运转时,转子无绕组铜耗;高功率因数,可使定子电流较小,定子绕组铜耗小。起动力矩大。温升低。 1.3永磁同步电机节电的机理 定子铜耗变化原因是定子电流减少,I2R减少;转子铜耗的变化原因是永磁电机同步运转,无滑差;定子铁耗的变化原因是永磁电机采用了低损耗矽钢片;转子铁耗的变化原因是永磁电机同步运转,无滑差;励磁铜耗的变化原因是励磁动率电磁钢提供;杂散损耗的变化原因是永磁电机单边气隙大;风摩损耗的变化原因是永磁电机温升低,可使用节能风扇。由于永磁同步电机各种损耗的明显减少,导致永磁同步电机效率的提高,因此永磁同步电机相对于异步电机实实在在地在节能。 1.4永磁同步电机与异步电机能效等级的对比 永磁同步电机可达到一级能耗,异步电机最多可达到二级能耗,一般为三级或四级能耗。 1.5异步电机和永磁同步电机可能达到的能效等级 异步电机能达到能效二级,欲达到能效一级就十分困难;而永磁同步电机能达到能效一级(IE4)。经过努力,采取必要的技术措施,永磁同步电机能效限定值达到IE5也是有可能的,所以永磁同步电机将成为我国电机行业节能减排、能效提升的龙头产品,应用将越来越广泛。 1.6永磁同步电机的上游技术业已成熟 我国稀土资源丰富,稀土矿的储量占世界储量的80%,居世界首位。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,实现了产业化充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种节能电机,将资源优势转化为经济优势,具备了前提性条件和基础。 2工业机器人用永磁同步电机的设计 2.1电机尺寸的选择 电机的主要尺寸可由所需要的最大转矩和动态响应指标确定。永磁同步电机的最大转矩、电磁负荷和主要尺寸满足下面的关系: 式中:Bδ1为气隙磁密基波幅值;Lef为电机的铁心长度;A为电机的电负荷。 由于面向机床自动化生产的机器人机械手臂关节的限制,电机的外径和长度只能在较小的范围内选择。参照相同功率永磁电机的外径,最终电机选择了定子外径为123mm,铁心长度为55mm。由上可知,随着电机气隙磁密的增大,只需要较小的电负荷就能满足电机最大转矩的要求,所以本文选用了高性能钕铁硼永磁体材料,其气隙磁密最高达0.85T,电负荷取180A/cm。 2.2槽极配合的选择 本文从市面上成熟的常用永磁电机的槽极配合入手,选择10种不同的槽极配合,即9/6,18/6,36/6,12/8,18/8,24/8,36/8,48/8,12/10,15/10,分析比较筛选出最合适的槽极配合。已有学者研究了不同的槽极配合的磁动势谐波不一样。而气隙磁密谐波含量的增加会使电机的性能变坏,直接影响电机的振动和电机的噪声。 永磁电机的特殊结构会引起电机固有的齿槽转矩,会使电机的转矩波动增大。但这是无法消除的,只能最大程度地削弱。齿槽转矩的变化是有规律的,在一个齿距的范围内,定子和转子相对位置的变化周期主要受电机的极数和槽数影响。合理地选择极数和槽数组合,能使电机在一个齿距内齿槽转矩的变化周期数增大,这样就可以明显地减小电机齿槽转矩。电机的一个齿距周期变化范围内的周期数越大,电机的齿槽转矩就越小。 2.3转子磁路结构的选择 永磁体在电机转子内部的称为内置式,永磁体在转子外部的称为表贴式。内置式的永磁体嵌在转子铁心中,加工难度较大;而且电机绕组端部的漏磁系数较大,需要特别的隔磁处理,但永磁体结构牢固,适合应用在转速较高的电机之中。表贴式的永磁体结构较为简单,易进行于对形状要求更高的加工,易于实现电机气隙磁场的优化设计。本文采用表贴式的永磁体转子结构。采用表面凸式的转子磁路,其

1.永磁同步电机设计课题背景及研究的目的和意义

课题背景及研究的目的和意义(环境问题—国家政府支持---课题的可实现必要性)伴随着汽车工业的迅猛发展,根据中国有关部门的统计数据,截至2012 年6 月底,全国机动车总保有量达2.33 亿辆,仅次于美国位居世界第二,在未来的10 年时间里,我国将成为世界上最大的汽车消费国。巨大的汽车保有量使我国无法依赖任何一种单一的能源,然而,汽车尾气的排放对环境造成的极大危害将极大地制约我国经济健康发展;在这种背景下,大力发展新能源汽车,使用电能代石油,是解决我国环境问题的必然要求,也是保证国家能源安全的重要战略措施。电动汽车是新能源汽车中的主力军,发展电动汽车是解决能源问题以及环境问题的必然要求,也是当下世界各国大力扶持的重点。 挪威电动车市场发端于2010年,走在奥斯陆的街头随处可见的电动车,他们都已经是寻常的代步工具。在挪威购买电动车免征登记税和增值税,也不征收过路税;在美国,政府对电动汽车产业的支撑早已形成了体系,奥巴马总统上任以后,积极推动新能源汽车的发展,拨款24亿美元用于电动汽车的研发,成为美国有史以来在电动汽车领域做出的最大投资;在法国,电力来源中核电占了将近80%。旅游行业是法国的一大经济支柱,发展电动汽车,用核电驱动汽车,既可以减少能源依赖,又可以保护环境,政府在电动汽车购买补贴方面的大力支持,另外充电桩的覆盖率在世界上数一数二。早在20世纪70年代日本政府就已将电动车的发展列入汽车工业的产业规划,并且为电动车发展制定了诸如建设和改造充电站、研 能与高性能的电机驱动技术可以最大限度地展现电动汽车的节能优势。目前,一次充电的续驶里程问题和制造运行成本问题已经成为制约电动汽车发展的关键问题,因此,使用高效的电动机与电动机驱动系统是电动汽车发展的极为重要的方向。与其他电动机相比,永磁同步电动机具有更高的效率,更高的功率密度和更高的控制精度,在最新的电动汽车中有着极为广泛的应用,是目前世界各国电动汽车驱动电机研究的热点。我国稀土资源储备丰富,总储量是世界其他国家储量总和的四倍,这使得我国使用稀土永磁同步电机具备了一个天然优势,同时,永磁同步电机研究与在电动车上的广泛应用也将极大地提高我国稀土出口的附加值。然而,目前新能源汽车驱动用电机的设计方法还不够成熟,永磁同步电机的设计过程中还存在着许多问题。

最新Ansoft永磁同步电机设计报告

目录 第1章引言………… 第2章 RMxprt在永磁同步电机中的电机性能分析………… 2.1 Stator项设置过程………… 2.2 Rotor项设置过程………… 2.3 Line Start-Permanent Magnet Synchronous Machine的电机仿真………… 2.4 计算和结果的查看………… 第3章静态磁场分析………… 3.1 电机模型和网格剖分图………… 3.2 磁力线分布图…………………… 3.3 磁密曲线 3.3.1 气隙磁密分布………… 3.3.2 定子齿、轭部磁密大小………… 3.3.3 转子齿磁密大小………… 第4章瞬态场分析………… 4.1 额定稳态运行性能………… 4.1.1 电流与转矩大小………… 4.1.2 各部分磁密………… 4.2 额定负载启动………… 4.2.1 转矩-时间曲线………… 4.2.2 电流-时间曲线………… 4.2.3 转速-时间曲线………… 4.2.4 转矩-转速曲线…………

第1章引言 Ansoft Maxwell作为世界著名的商用低频电磁场有限元软件之一,在各个工程电磁场领域都得到了广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解。该软件包括二维求解器、三维求解器和RMxprt旋转电动机分析专家系统这3个主要模块,不仅可以进行静磁场、静电场、交直流传导电场、瞬态电场、涡流场、瞬态磁场等不同的基本电磁场的特性分析,还可以通过RMxprt电动机模块仿真多种电动机模型,为实际电动机设计提供帮助。利用Ansoft软件进行仿真可以帮助我们了解电动机的结构特性。 本文是一台4极、36槽绕组永磁同步电动机,利用RMxprt模块进行电机的建模、仿真以及导入到Maxwell2D的有限元模块的方法,然后再对Maxwell2D 中的永磁体模型进行修正,最后对该电机在静态磁场和瞬态磁场的情况下进行分析。

永磁同步电机结构设计及其特点

40 现代制造技术与装备2017第2期总第243期永磁同步电机结构设计及其特点 贺建忠 (广州数控设备有限公司,广州510530) 摘要:本文首先对永磁同步电机的结构设计原则进行介绍,然后对永磁同步电机结构设计特点进行探讨,最后对永磁同步电机的设计措施进行分析。 关键词:永磁同步电机结构设计特点 永磁同步电机直接使用永磁体励磁,简化了电机结构,且发热量和损耗量都较低。在永磁同步电机中,电机励磁 部分具有永磁体,可以根据具体的需求设置其结构和形状,具有较高的灵活性。设计时,除了要考虑结构强度、布置 合理性外,还需要考虑机械使用年限。 1永磁同步电机工作原理 永磁同步电机属于一种交流电机。与异步电机不同,永磁同步电机转子侧安装有永磁磁极,有明确的极性。永 磁同步电机运行过程中,当定子合成磁场轴线落后于转子 主磁场轴线时,即功率角大于0时,转子和电磁转矩的旋 转方向会相反,转矩表现为制动性质[1]。为了可以对电磁 转矩制动效果进行平衡,保持转子转速不变化,需要利用 转子轴对驱动性质的机械转矩进行传递。这时外界机械功 率输入后,永磁同步电机发出电功率使发电机运行。 如果功率角小于0,即定子合成磁场轴线超出了转子主 磁场轴线,转子旋转方向和电磁转矩会保持一致,转矩表 现为驱动型。为了保持转子的转速,机械转矩为制动转矩。如果负载转矩大于电机最大电磁转矩,会破坏输出功率和 输入功率的平衡性,致使电机没有能力保持转子同步旋转。 当功率角为0时,转子主磁场和定子合成磁场轴线会 重合,那么电磁转矩为0。这时,外界和电机之间并没有传 递有功功率,此时会处于补偿机制的运行状态下。 2永磁同步电机的结构特点 2.1表面转子结构 表面转子结构布置在转子铁芯的外表面。为了方便,永磁体以瓦片形放置。一般在永磁体的外表面使用具有固 定和保护效果的非导体磁套筒。转子转速过高时,套筒可 以保护好永磁体,避免因离心力过大被甩出。 2.2内置式转子结构 由于永磁体布置在转子铁芯的内部,因此又叫内置式转 子结构。永磁磁极很容易因受到保护而导致抗去磁能力变大。转子磁路不对称结构会使交直轴同步电感产生差异,增大磁 阻转矩,提升电机功率密度,进而提升电机的整体性能。 2.3定子绕组选型 一般可以根据相数将定子绕组划分为三相绕组、单相 绕组、多相绕组。按照每相、每极的槽数,又可以划分为 分数槽绕组和整数槽绕组。根据绕组层数的差异,可以分 为双层绕组和单层绕组。定子绕组结构不同,设计时的要求也有所不同。所以,要对定子绕组连接方式进行合理设计。 一般来说,电机主要选择三相对称绕组。 3永磁同步电机结构设计 3.1永磁同步电机结构的设计原则 在进行永磁同步电机结构设计时,需要充分考虑电机 性能,确定电机磁路,合理选择材料和参数,设计出工艺 可行、性能良好、经济性好的磁路。设计过程中,首先要 根据电机性能要求确定磁路结构,使空间不均匀分布的磁 场转变成等效多端磁路,合理选择材料,并修正相关系数, 验证磁路特性和参数是否可以达到要求。如果不能达到要 求,需要对磁路结构材料和尺寸进行调整。 3.2永磁同步电机结构的设计措施 3.2.1选择材料 在对电机尺寸进行设计前,需要合理选择材料。一般 选择硅钢片作为转子材料,选择永磁体作为磁极材料,选 择铜作为绕组材料。具体要满足下述几方面的要求: (1)要考虑永磁同步电机各种工作情况,保证短路、高温情况下去磁面积处在可以接受的范围内。 (2)永磁体需要达到电机日常运行过程中对磁场强度 的要求。 (3)材料的价格要合理,不能导致电机成本过大。 例如,在进行硅钢钢片材料选择时,常用的两种硅钢 钢片材料如表1所示。通过对比可以发现,两种硅钢钢片 在低速情况下效率差别不大,但在高速情况下50W470的效 率会较低。为了保证电机可以在宽广调速范围内高效率运 行,建议选择35W250。 表1硅钢片材料参数比较 硅钢片35W250硅钢片50W470 厚度/m m0.340.49 电机铁损@2800转204W250W 电机效率@2800砖95.3%95.3% 电机铁损@8400转 1.5kW 3.1kW 电机效率@8400砖90.4%85.4% 损耗密度@60Hz,1.5T(W/kg) 3.05 4.63 3.2.2 转子结构设计 转子结构主要分为外转子结构和内转子结构。对于内 转子结构来说,主要分为内置式和表贴式。但是,由于表 贴式转子结构弱磁扩速能力差,且高速运行(下转第42页)

相关文档
最新文档