最短路径问题(经典)

最短路径问题(经典)

文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 最短路径问题(珍藏版)

【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:

①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.

②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.

③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.

④全局最短路径问题- 求图中所有的最短路径.

【问题原型】“将军饮马”,“造桥选址”,“费马点”.

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.

【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

【十二个基本问题】

全国初中数学资料群群号:0

1文档来源为:从网络收集整理.word版本可编辑.

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

最短路径问题教学案例

专题学习:最短路径问题 一、教学目标: 知识与技能: 理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。 过程与方法: 能利用轴对称解决实际问题中路径最短的问题。 情感态度与价值观: 通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。 二、教学重、难点 教学重点:将实际问题转化成数学问题,运用轴对称解决生活中路径最短的问题,确定出最短路径的方法。 教学难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。 三、学法指导 自主探索,合作交流。 四、教学过程 (一)、创设情景,引入新知。 同学们:我们已经学习过“两点之间的所有连线中,线段最短。”和“直线外一点与直线上各点连接的所有线段中,垂线段最短。”等问题,我们称他们为最短路径问题。 (二)、自主学习,探究新知。 1、如图所示,从A地到c地有四条路可供选择,你会选走哪条路最近?你的理由是什么? 2、两点在一条直线异侧: F E D C B A

活动1: 已知:如图,A,B在直线l的两侧,在l上求一点P,使得这个点到点AB的距离和最短,即PA+PB最小。 思考:为什么这样做就能得到最短距离呢?你如何验证PA+PB最短呢? 3、两点在一条直线同侧 活动2:如图,牧马人从A地出发到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? (1)你能将这个问题抽象为数学问题吗? (2)这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直线. 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于 点C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何 A·M 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥 N E

要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在 河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N , 则CM+MN+CN 最短 例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 · · C D A B E a

专题训练之最短路径问题(最全面的经典例题)

最短路径问题 1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面 爬到点B处,则它爬行的最短路径是 _______________ 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。 2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 *李庄 张村. ②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。请在图中找出点P的位置,并计算PA+P啲最小值。.B A■ _____________________ L ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。 A沿木块侧 A B

是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂 蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度 忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。 3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径 为 。 5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上 的一个动点,贝S PE+PB 勺最小值为 ___________ 。 6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。 7、 AB 是OO 的直径,AB=2 OC 是O O 的半径,OCL AB,点 D 在 AC 上,AD 二 2CD 点P 是半径OC 上的一个动点,贝S AP+PD 勺最小值为 __________ 。 &如图,点P 关于OA OB 的对称点分别为 C D,连接CD 交OA 于M 交OB 于N 若CD= 18cm 则厶PMN 勺周长为 ___________ 。 9、已知,如图DE >^ ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于 E ,且 AC= 5, BC= 8,则厶 AEC 的周长为 __________ 。 10、已知,如图,在△ ABC 中, AB

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

初中最短路径问题

最短路径问题(珍藏版) 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结 点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题 1】 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 连 AB ,与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 AB . 【问题 2】“将军饮马” 作法 图形 原理 在直线 l 上求一点 P ,使 PA +PB 值最小. 作 B 关于 l 的对称点 B ' 连 A B ',与 l 交点即为 P . 两点之间线段最短. PA +PB 最小值为 A B '. 【问题 3】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使△PMN 的周长最小. 分别作点 P 关于两直线的 对称点 P '和 P ',连 P 'P '与两直线交点即为 M ,N . , 两点之间线段最短. PM +MN +PN 的最小值为线段 P 'P ''的长. 【问题 4】 作法 图形 原理 在直线l 1 、l 2 上分别求点 M 、N ,使四边形 PQMN 的周长最小. 分别作点 Q 、P 关于直线 l 1 、l 2 的对称点 Q '和 P ' 连 Q 'P ',与两直线交点即为 M ,N . 两点之间线段最短. 四边形 PQMN 周长的最小值为线段 P 'P ''的长.

最短路径问题(珍藏版纯word版)

第11讲:轴对称 【问题概述】初中数学最值问题是每年中考必出题,更是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.一.【十二个基本问题】 在直线l上求一点 +PB 值最小。 【问题2】作图 在直线l上求一点 A+PB 值最小. 【问题3】“将军饮马”作图 在直线l1 、l2 上分别 求点M、N,使△PMN 周长最小. 【问题 4】作图 在直线l1、l2上分别求 M 、N ,使四 PQMN的周长最小。

直线m∥ n,在m、 上分别求点M、N,使 m,且AM+MN+BN 值最小。 【问题 6】作图 在直线l上求两点M、 在左),使MN a,并使 +MN+NB 的值最小 作图 l1上求点A,在l2 B,使P A+AB值最小. 【问题 8】作图 A 为l1上一定点,B 上;A 为l1上一定点, B 为l2上一定点,在 上求点M在l1上求点N 作图 在直线l上求一点 PA-的值最小 PB

二.“一次对称”常见模型:在直线 l 上求一点 PB PA -的值最大作图 在直线 l 上求一点 PB -的值最大 .【问题 12】“费马点”作图 ABC 中每一内角都小120°,在△ABC 内求一点P ,使 P A +PB +PC 最小.

最短路径问题_比赛题目

2011年CUDA校园编程竞赛指定题目?最短路径问题 最短路径问题(Shortest Path Problem)是经典图论问题之一,具有重大研究价值和工程意义。从学术角度来说,图灵奖得主EdsgerDijkstra针对该问题的一系列工作是现代算法研究的起点之一,以他的名字命名的Dijkstra最短路径算法成为计算机科学家武器库中的基本装备。从工程意义上讲,最短路径问题是对大量工程问题的直观抽象。最典型的例子当然是导航,我们在谷歌地图上寻找驾车路径时,显然就是要找到一条物理距离最短或者行驶时间最短的路线。此外,机器人路径规划、集成电路布线、计算机网络路由等应用都需要寻找最短路径。因此,今年我们选择该问题作为CUDA校园编程竞赛指定题目。 最短路径问题是在图(graph)的概念上定义的。这里的“图”服从图论中的定义,但是不需要学习图论也可以理解其概念。一个图由节点(vertex或者node)集合和边(edge或者arc)集合组成,图1是一个例子。其中,标有数字的圆圈是节点,分别具有编号0到5,即节点0到节点5一共六个。两个节点之间可以由一条边连接,由相应节点标志,例如图1中连接节点0和1的边可以记作(0,1)。边可以有方向或无方向,本次竞赛中只考虑有方向的边,因此图1中的边都有箭头。这时可以一条边(i,j)是由节点i指向节点j,当然反过来也行,相应的图被称为有向图。每条边上一般可以有一个权重,表示某种属性,图1里面每条边旁边的数字就是相应权重。对本次竞赛而言,可以把权重理解为相应节点之间的真实物理距离,因此权重是大于0的实数。 图1. 图及其节点和边 在一个图里面,从某一节点i开始,经由一系列边可以到达某个节点k,则i→k称为一条路径(path),该路径的长度是所有经过的边上的权重之和。如果从

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题- 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P , 点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一 点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

最短路径问题经典练习题分类汇编

B C D 【题型8】最短路径问题(一) 1.如图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 . 2.如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 . 【变式训练】 1.如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 . 2.如图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 . 3.要在如图的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 . 【题型9】最短路径问题(二) 如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短. 若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 . 第2题 B B 第1题 第3题 张村 李庄

图(2) 图(3) 【变式训练】 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 . 第1题 第2题 第3题 第4题 2.如图,在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 . 3.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为 . 4.如图,AB 是⊙O 的直径,AB=2,OC 是⊙O 的半径,OC ⊥AB ,点D 在AC 上,AD = 2CD ,点P 是半径OC 上的一个动点,则AP+PD 的最小值为 . 5.如图,在河两岸有两个村子,要在两个村子之间铺设光缆,请你画出使用最少光缆的线路图(河流的宽度不计),并说明理由. 6.如图,在河两岸有两个村子,要在两个村子之间架设一座桥梁,请你利用已学知识,画出使两个村子之间距离最短的桥梁的建设位置,保留作图痕迹并说明理由. B

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、 两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短. 解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点. 三、一点在两相交直线内部 例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小. 解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求 分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 A· B M N E

最短路径问题合集

最短路径问题 《郑重声明:本文档非本人原创,仅作为学术交流,禁止作为商业用途,侵权删除》 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点 之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”。 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【十二个基本问题】 【问题1】 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 【问题2】“将军饮马” 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 【问题3】 图形 原理 在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小. 【问题4】 图形 原理 在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小. l A B l B A l 1 l 2 P l 1l 2 P Q

【问题5】“造桥选址” 图形 原理 直线m ∥n ,在m 、n ,上分别求点M 、N ,使MN ⊥m ,且AM +MN +BN 的值最小. 【问题6】 图形 原理 在直线l 上求两点M 、N (M 在左),使a MN ,并使AM +MN +NB 的值最小. 【问题7】 图形 原理 在1l 上求点A ,在2l 上求点B ,使P A +AB 值最小. 【问题8】 图形 原理 A 为1l 上一定点, B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小. l a A B M N m n A B M N l 1l 2 P l 2 l 1 A B N M

(完整)初中数学最短路径问题典型题型复习

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点 C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能 使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, A·M N E

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要2 二.网络最短路径问题的基础知识3 2.1有向图5 2.2连通性错误!未定义书签。 2.3割集错误!未定义书签。 2.4最短路问题6 三.最短路径的算法研究错误!未定义书签。 3.1最短路问题的提出6 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签。 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义书签。 3.7 Dijkstra算法的基本思想6 3.8 Dijkstra算法的理论依据6 3.9 Dijkstra算法的计算步骤6 3.10 Dijstre算法的建模应用举例7 3.11 两种算法的分析错误!未定义书签。 1.Diklstra算法和Bellman-Ford算法思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每次循环都要修改所有顶点的权值,也就是说 源点到各顶点最短路径长度一直要到Bellman-Ford算法结束才确定下来。错误! 未定义书签。 2.Diklstra算法和Bellman-Ford算法的限制错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定义书签。 4.Bellman-Ford算法的改进错误!未定义书签。

摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究,使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题的建模问题中。 关键词:计算机图论交通道路网最短路径 A. In this paper, Computer developing rapidly in recent years, graph theory research also have been greatly developed, and the shortest path problem is a typical problem in graph theory, it has been applied in geographical information science, computer science, and many other fields. And in the transportation network of the shortest route between two cities in is a typical example of the shortest path problem. Due to the shortest path problem is widely used in various aspects, and the researchers on the in-depth study of the shortest path, make in the shortest path problem also generates a lot of classical algorithm. In this topic I'll suggest some algorithm and the algorithm of the shortest path problem between the comparison, finally the algorithm is applied to the modeling of the actual problem again. Key words: computer graph traffic road network The shortest path

相关文档
最新文档