三角函数的图像与性质(押题专练)-2020年高考理数二轮复习精品资料Word版含解析_1

三角函数的图像与性质(押题专练)-2020年高考理数二轮复习精品资料Word版含解析_1
三角函数的图像与性质(押题专练)-2020年高考理数二轮复习精品资料Word版含解析_1

1.已知α为锐角,且sin α=4

5,则cos(π+α)=( )

A .-35 B.35

C .-45 D.45

解析:因为α为锐角,所以cos α=1-sin 2α=35,所以cos(π+α)=-cos α=-3

5,故选A.

答案:A

2.已知角α的终边与单位圆x 2+y 2=1交于P ????1

2,y 0, 则sin ????π

2+2α=( ) A .-1

2 B .1

C.12 D .-32

3.某函数部分图象如图所示,它的函数解析式可能是( )

A .y =sin ????-56x +3π

5 B .y =sin ????

65x -2π5

C .y =sin ????65x +3π5

D .y =-cos ????56x +3π5

解析:不妨令该函数解析式为y =A sin(ωx +φ)(ω>0),由图知A =1,T 4=3π4-π3=5π12,于是2πω=5π

3,即ω

=65,π3是函数的图象递减时经过的零点,于是65×π3+φ=2k π+π,k ∈Z ,所以φ可以是3π

5

,选C. 答案:C

4.若将函数y =3cos ????2x +π2的图象向右平移π

6个单位长度,则平移后图象的一个对称中心是( ) A.????π6,0 B.????-π

6,0 C.????π12,0 D.????-π

12,0

5.设函数f (x )=cos ????x +π

3,则下列结论错误的是( ) A .f (x )的一个周期为-2π

B .y =f (x )的图象关于直线x =8π

3对称

C .f (x +π)的一个零点为x =π

6

D .f (x )在????

π2,π单调递减

解析:A 项,因为f (x )=cos ????x +π

3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )=cos ????x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π

3对称,B 项正确.C 项,f (x +π)=cos ????x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π

6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=cos ????x +π3的递减区间为2k π-π3,2k π+2π

3(k ∈Z ),递增区间为2k π+2π3,2k π+5π3(k ∈Z ),所以????π2,2π3是减区间,2π

3

,π是增区间,D 项错误.故选D. 答案:D

6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )

A.π12

B.π

6 C.π3 D.5π6

解析:函数y =3cos x +sin x =2cos ????x -π

6的图象向左平移m (m >0)个单位长度后,所得图象的函数解析式为y =2cos ????x +m -π6.因为函数的图象关于y 轴对称,所以m -π6=k π,m =k π+π

6(k ∈Z ),所以m 的最小值为π

6

,故选B. 答案:B

7.将函数f (x )=sin ????2x +π3的图象向右平移2π

3个单位长度,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y =g (x )的图象,则函数y =g (x )的图象与直线x =-π2,x =π

3,x 轴围成图

形的面积为( )

A.52

B.3

2 C .1+

32 D .1-3

2

解析:将函数f (x )=sin ????2x +π3的图象向右平移2π

3个单位长度得到函数f (x )=sin ????2????x -2π3+π3 =sin(2x -π)=-sin2x 的图象,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y =g (x )=-sin x 的图象.函数y =g (x )的图象与直线x =-π2,x =π3,x 轴围成的图形面积S =??0-π

2

(-sin x)d x

-∫π

30(-sin x)d x =cos x ???? 0

-π2-cos x ??

??

π30

=1-????-12=32,故选B . 答案:B

8.将函数y =cos ????π6-2x 的图象向右平移π

12个单位长度后所得图象的一条对称轴的方程是( ) A .x =π6 B .x =π

4

C .x =π3

D .x =π

12

解析:将函数y =cos ????π6-2x 的图象向右平移π

12个单位长度后所得图象的函数解析式为y =cos ???

6-2????x -π12=cos ????2π3-2x =cos 2???

?x -π3, 因为函数在函数图象的对称轴处取得最值,经检验x =π

6成立,故选A .

答案:A

9.已知函数f(x)=A sin (ωx +φ)(A>0,ω>0,0<φ<π),其导数f′(x)的图象如图所示,则f ????

π2的值为( )

A .2 2

B . 2

C .-

22 D .-2

4

解析:依题意得f′(x)=Aωcos (ωx +φ),结合函数y =f′(x)的图象可知,T =2πω=4????3π8-π8=π,ω=2.又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f′????3π8=cos ????3π4+φ=-1,所以3π4+φ=π,φ=π4,f(x)=12sin ????2x +π4,f ????π2=12sin ????π+π4=-12×22=-2

4

,故选D . 答案:D

10.将函数f(x)=sin (2x +φ)????|φ|<π2的图象向左平移π6个单位后的图象关于原点对称,则函数f(x)在????0,π2上的最小值为( )

A .

32 B .1

2

C .-12

D .-32

11.已知函数f(x)=3sin 2x +2cos 2x ,下列结论正确的是( ) A .函数f(x)的最小正周期为2π B .函数f(x)在区间????π12,π4上单调递增 C .函数f(x)的图象关于直线x =π

6对称

D .函数f(x)的图象关于???

?-π

12,0对称 解析:由已知,得f(x)=3sin 2x +2cos 2x =3sin 2x +cos 2x +1=2sin ????2x +π

6+1.函数f(x)的最小正周期T =2π2=π,A 错误;当π12

3,所以函数f(x)在????π12,π4上不具有单调性,B 错误;因为f ????π6=2sin ????2×π6+π6+1=2sin π2+1=3,即当x =π6时,函数f(x)取得最大值,所以函数f(x)的图象关于直线x =π

6对称,C 正确;???

?-π

12,1是函数f(x)的图象的一个对称中心,D 错误,故选C . 答案:C

12.已知函数f(x)=sin ωx -3cos ωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )

A .????136,72

B .????72,256

C .????256,112

D .???

?112,376 解析:因为f(x)=2sin ????ωx -π3,方程2sin ????ωx -π3=-1在(0,π)上有且只有四个实数根,即sin ????ωx -π

3=-12在(0,π)上有且只有四个实数根.设t =ωx -π3,因为0

6,

解得72<ω≤25

6

,故选B .

答案:B

13.函数f (x )=A sin ωx (A >0,ω>0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 017)的值为( )

A. 2 B .3 2 C .6 2 D .- 2

解析:选A.由图象可得,A =2,T =8,2πω=8,ω=π

4,

∴f (x )=2sin π

4

x ,

∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,

f (6)=-2,f (7)=-2,f (8)=0,∴f (x )是周期为8的周期函数, 而2 017=8×252+1, ∴f (1)+f (2)+…+f (2 017)= 2.

14.函数f (x )=2cos(ωx +φ)(ω≠0)对任意x 都有f ????π4+x =f ????π4-x ,则f ????π

4等于( ) A .2或0 B .-2或2 C .0 D .-2或0

解析:选B.由f ????π4+x =f ????π4-x 得x =π

4是函数f (x )的一条对称轴,所以f ????π4=±2,故选B. 15.若函数y =f (x )的最小正周期为π,且图象关于点????

π3,0对称,则f (x )的解析式可以是( ) A .y =sin ????x 2+5π6 B .y =sin ?

???2x -π

6 C .y =2sin 2x -1 D .y =cos ?

???2x -π

6 解析:选D.依次判断各选项,A 项周期不符;B 项函数图象不关于点????

π3,0成中心对称;C 错,因为y =2sin 2x -1=-cos 2x ,同样点????π3,0不是图象的对称中心,故选D.

16.已知ω>0,函数f (x )=cos ????ωx +π4在????π

2,π上单调递增,则ω的取值范围是( ) A.????12,54 B.????12,7

4 C.????34,94 D.????32,74

17.为了得到函数f (x )=2sin ????2x -π

6的图象,可将函数g (x )=3sin 2x +cos 2x 的图象( ) A .向左平移π3 B .向右平移π

3

C .向左平移π6

D .向右平移π

6

解析:选 D.依题意得g (x )=2sin ????2x +π6=2sin ???

?2????x +π6-π6=f ???

?x +π

6,因此为了得到函数f (x )=2sin ????2x -π6的图象,可将函数g (x )的图象向右平移π

6

个单位长度,故选D.

18.将函数f (x )=cos 2x 的图象向右平移π

4个单位后得到函数g (x ),则g (x )具有性质( )

A .最大值为1,图象关于直线x =π

2对称

B .在????0,π

4上单调递增,为奇函数 C .在????-3π8,π

8上单调递增,为偶函数 D .周期为π,图象关于点????3π8,0对称

解析:选B.依题意,得g (x )=cos ????2????x -π4=cos ????2x -π2=sin 2x ,故函数g (x )图象的对称轴为x =π4+k π2

(k ∈Z ),故A 错误;因为g (-x )=-sin 2x =-g (x ),故函数g (x )为奇函数,函数g (x )在????-34π,-1

4π上单调递减,在????-14π,14π上单调递增,故B 正确,C 错误;因为g ????38π=sin 34π=2

2≠0,故D 错误.综上所述,故选B.

19.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π

2,则f ????π6的值是( ) A .- 3 B.

3

3

C. 3 D .1

解析:选C.因为f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π

2,所以函数f (x )的最小

正周期为π2,πω=π2,ω=2,则f (x )=tan 2x ,f ????π6=tan π

3

=3,故选C. 20.将函数f (x )=sin ????2x +π

3的图象向右平移φ个单位,得到的图象关于原点对称,则φ的最小正值为( )

A.π6

B.π

3 C.5π12 D.7π12

解析:选 A.函数f (x )=sin ????2x +π

3的图象向右平移φ个单位,得到的图象对应的解析式为f (x )=sin ????2x -2φ+π3,因为图象关于原点对称,所以-2φ+π3=k π,k ∈Z ,所以φ=π

6-k π,k ∈Z ,则当k =0时,φ取得最小正值π

6

,故选A.

21.若函数f (x )=2sin ????

π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B ,C 两点,则(OB →+OC →)·OA →=( )

A .-32

B .-16

C .16

D .32

解析:选D.因为当-2<x <10时,0<π6x +π3<2π,故令f (x )=2sin ????π6x +π3=0,则π6x +π

3=π,解得x =4,由正弦函数的对称性可知点B ,C 关于点A (4,0)成中心对称,故有(OB →+OC →)·OA →=2OA →·OA →=2|OA →

|2=32,故选D.

22.已知函数f (x )=sin(2x +α)在x =π

12时有极大值,且f (x -β)为奇函数,则α,β的一组可能值依次为( )

A.π6,-π12

B.π6,π12

C.π3,-π6

D.π3,π6

23.函数y =12sin x +32

cos x ????x ∈????0,π2的单调递增区间是________. 解析:y =12sin x +32cos x =sin ????x +π3,x ∈????0,π2的单调递增区间即为0≤x +π3≤π

2与x ∈????0,π2的交集,所以单调递增区间为???

?0,π

6. 答案:???

?0,π

6 24.已知函数f (x )=sin ????2x +π6.若y =f (x -φ)????0<φ<π

2是偶函数,则φ=________. 解析:利用偶函数定义求解.y =f (x -φ)=sin ????2

x -φ+π6=sin ????2x -2φ+π6是偶函数,所以-2φ+

π

6

=π2+k π,k ∈Z ,得φ=-π6-k π2,k ∈Z .又0<φ<π2,所以k =-1,φ=π

3

. 答案:π3

25.将函数y =2sin ????ωx -π4(ω>0)的图象分别向左、向右各平移π

4个单位长度后,所得的两个图象对称轴重合,则ω的最小值为________.

解析:将函数y =2sin ????ωx -π4,ω>0的图象向左平移π

4个单位后得到图象的解析式为y =2sin ?

???ωx +

ω-1π4,ω>0,向右平移π

4个单位后得到图象的解析式为y =2sin ????ωx -

ω+1π4,ω>0.

因为平移后的对称轴重合,所以ωx +ω-1π4=ωx -ω+1π

4

+k π,k ∈Z ,化简得ω=2k ,k ∈Z ,又ω>0,所以ω的最小值为2.

答案:2

26.已知函数f (x )=cos x sin 2x ,下列结论中正确的是________(填入正确结论的序号). ①y =f (x )的图象关于点(2π,0)中心对称; ②y =f (x )的图象关于直线x =π对称; ③f (x )的最大值为

32

; ④f (x )既是奇函数,又是周期函数.

解析:依题意,对于①,f (4π-x )=cos(4π-x )·sin[2(4π-x )]=-cos x ·sin 2x =-f (x ),因此函数y =f (x )的图象关于点(2π,0)中心对称,①正确;对于②,f ????π4=22,f ????2π-π4=-2

2,因此f ????2π-π4≠f ????π4,函数y =f (x )的图象不关于直线x =π对称,②不正确;对于③,f (x )=2sin x cos 2x =2(sin x -sin 3x );令t =sin x ,则y =2(t -t 3),t ∈[-1,1],y ′=2(1-3t 2),当-

33<t <33时,y ′>0;当-1≤t <-33或3

3

<t ≤1时,y ′<0,因此函数y =2(t -t 3)在[-1,1]上的最大值是y =2

????33-????333=439

,即函数f (x )的最大值是439,③不正确;

对于④,f (-x )=-f (x ),且f (2π+x )=2sin(2π+x )cos 2(2π+x )=2sin x cos 2x =f (x ),因此函数f (x )既是奇函数,又是周期函数,④正确.综上所述,其中正确的结论是①④.

答案:①④

27.已知函数f (x )=2sin x ·sin ????x +π

6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈???

?0,π

2时,求函数f (x )的值域. 解:(1)f (x )=2sin x ·

???

?32sin x +12cos x

=3×1-cos 2x 2+12sin 2x =sin ????2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π

2+2k π,k ∈Z ,

解得-π12+k π≤x ≤5π

12

+k π,k ∈Z ,

所以函数f (x )的单调递增区间是????-π12+k π,5π

12+k π,k ∈Z . (2)当x ∈????0,π2时,2x -π

3∈????-π3,2π3, ∴sin ????2x -π3∈????-3

2,1, 故f (x )∈?

??

?

0,1+

32,

3 2.

即函数f(x)的值域是????

0,1+

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

2020高考数学专项复习《三角函数大题压轴题练习》

3 三角函数大题压轴题练习 1. 已知函数 f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 (Ⅰ)求函数 f (x ) 的最小正周期和图象的对称轴方程 (Ⅱ)求函数 f (x ) 在区间[- , ] 上的值域 12 2 解:(1)Q f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 = 1 cos 2x + 3 sin 2x + (sin x - cos x )(sin x + cos x ) 2 2 = 1 cos 2x + 3 sin 2x + sin 2 x - cos 2 x 2 2 = 1 cos 2x + 3 sin 2x - cos 2x 2 2 = sin(2x - ∴周 周 6 T = 2 = 2 k 由2x - = k + (k ∈ Z ), 周 x = + (k ∈ Z ) 6 2 2 3 ∴函数图象的对称轴方程为 x = k + ∈ Z ) 3 5 (2)Q x ∈[- , ],∴ 2x - ∈[- , ] 12 2 6 3 6 因为 f (x ) = sin(2x - ) 在区间[- , ] 上单调递增,在区间[ , ] 上单调 递减, 6 12 3 3 2 所以 当 x = 时, f (x ) 取最大值 1 3 1 又 Q f (- ) = - < f ( ) = ,当 x = - 时, f (x ) 取最小值- 12 2 2 2 12 2 所以 函数 f (x ) 在区间[- , ] 上的值域为[- 12 2 ,1] 2 2. 已知函数 f (x ) = sin 2 x + 3 sin x sin ?x + π ? (> 0 )的最小正周期为π . 2 ? ? ? (Ⅰ)求的值; 3 3 ) (k

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一) 1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R . ( 1)求函数 y f ( x) 的对称中心; 6 ( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且 f ( B 6 ) b c , ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 2 2a 【解析】 f ( x) 1 cos2 x 1 cos2( x ) cos(2 x ) cos2 x 6 3 1 3 sin 2x cos 2x cos2x 2 2 3 sin 2x 1 cos2x sin(2 x 6 ) . 2 2 (1)令 2x k ( k Z ),则 x k ( k Z ), 6 2 12 所以函数 y f ( x) 的对称中心为 ( k ,0) k Z ; 2 12 (2)由 f ( B ) b c ,得 sin( B ) b c ,即 3 sin B 1 cos B b c , 2 6 2a 6 2a 2 2 2a 整理得 3a sin B a cos B b c , 由正弦定理得: 3 sin A sin B sin A cos B sin B sin C , 化简得 3 sin A sin B sin B cos Asin B , 又因为 sin B 0 , 所以 3 sin A cos A 1 ,即 sin( A 1 , 6 ) 2 由 0 A ,得 A 5 , 6 6 6 所以 A ,即 A 3 , 6 6 又 ABC 的外接圆的半径为 3 , 所以 a 2 3 sin A 3 ,由余弦定理得

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

三角函数图象和性质(总结的很全面,不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数 1.已知函数 f (x ) = 4 c os x s in(x + (Ⅰ)求 f (x ) 的最小正周期; ) -1. 6 (Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值. 6 4 2、已知函数 f (x ) = sin(2x + ) 3 + sin(2x - 3 + 2 cos 2 x - 1, x ∈ R . (Ⅰ)求函数 f (x ) 的最小正周期; (Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值. 4 4 3、已知函数 f (x ) = tan(2x + ), 4 (Ⅰ)求 f (x ) 的定义域与最小正周期; ? ? (II )设∈ 0, ? ,若 f ( ) = 2 cos 2, 求的大小 ? ? 4、已知函数 f (x ) = (sin x - cos x ) sin 2x . sin x (1) 求 f (x ) 的定义域及最小正周期; (2) 求 f (x ) 的单调递减区间. 5、 设函数 f (x ) = cos(2x + + sin 2 x . 2 4 (I )求函数 f (x ) 的最小正周期; ( II ) 设 函 数 1 g (x ) 对 任 意 x ∈ R , 有 g (x + 2 = g (x ) , 且 当 x ∈[0, ] 时 , 2 g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式. 2 2 ) )

3 + = 6、函数 f (x ) = A sin(x - 称轴之间的距离为 , 2 ) +1( A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6 (1)求函数 f (x ) 的解析式; (2)设∈(0, ) ,则 f ( ) = 2 ,求的值. 2 2 7、设 f ( x ) = 4cos( ωx - π )sin ωx + cos 2ωx ,其中> 0. 6 (Ⅰ)求函数 y = f ( x ) 的值域 (Ⅱ)若 y = f ( x ) 在区间?- 3π , π? 上为增函数,求 的最大值. ?? 2 2 ?? 8、函数 f (x ) = 6 cos 2 x + 2 3 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且?ABC 为正三角形. (Ⅰ)求的值及函数 f (x ) 的值域; 8 3 (Ⅱ)若 f (x 0 ) 5 ,且 x 0 ∈(- 10 2 , ) ,求 f (x 0 1) 的值. 3 3 9、已知 a , b , c 分别为?ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0 (1)求 A ; (2)若 a = 2 , ?ABC 的面积为 ;求b , c . 10、在 ? ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C . = 2 ,sin B = 5 3 (Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求? ABC 的面积.

三角函数图像与性质测试

三角函数的性质与图像(学案) 一、 学习目标 1、“五点法”画函数sin()y A x ω?=+的图像. 2、图像变换规律. 3、由函数图像或性质求解析式. 重点:围绕三角函数图像变换、五点作图求函数解析式. 难点:图像变换中的左右平移变换中平移量的确定. 二、 学习过程 1、高考考点分析 2、知识梳理: (1)用“五点法”画sin()y A x ω?=+一个周期的简图时,要找出

五个关键点。 填写表格: (2)三角函数图像的变化规律: (3)函数sin()y A x ω?=+的物理意义:

(4)由函数sin()y A x k ω?=++图像求函数解析式的步骤和方法: ①A 的确定: ②k 的确定: ③ω的确定: ④?的确定: 三、基础训练 1、函数sin(2)3 y x π =+的最小正周期为( ) A. 4π B. 2π C. π D. 2 π 2、将函数2sin(2)6 y x π =+的图像向右平移14 个周期后,所得图像 对应的函数为( ) A. 2sin(2)6 y x π=+ B. 2sin(2)3 y x π =+ C. 2sin(2)4 y x π=- D. 2sin(2)3 y x π =- 3、为了得到sin()3 y x π =+的图像,只需把函数sin y x =的图像上所 有的点( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向上平移3π个单位 D .向下平移3 π 个单位 4、函数2cos2y x x +的最小正周期为( ) A . 2 π B .23π C. π D. 2π

四、范例导航 题型一:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 变式练习.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( ) 题型二:函数sin()y A x ω?=+图像及变换 例2、已知函数2sin(2)3 y x π =+ (1)求它的振幅、周期、初相。 (2)用五点作图法作它在一个周期内的图像。 (3)试说明2sin(2)3 y x π =+的图像可由sin y x =的图像经过 怎样的变换得到? 列表:

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ),y=A cos(ωx +φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函 数、余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象 与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

高考数学三角函数大题综合训练

高考数学三角函数大题 综合训练 Revised as of 23 November 2020

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3, cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值. 12.(2015?河西区二模)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

相关文档
最新文档