操作系统实验4-请求分页存储管理模拟实验

操作系统实验4-请求分页存储管理模拟实验
操作系统实验4-请求分页存储管理模拟实验

实验四

请求分页存储管理模拟实验

一:实验目的

通过对页面、页表、地址转换和页面置换过程的模拟,加深对请求分页存储管理系统的原理和实现技术的理解。

二:实验内容

假设每个页面可以存放10条指令,分配给进程的存储块数为4。

用C语言或Pascal语言模拟一进程的执行过程。设该进程共有320条指令,地址空间为32个页面,运行前所有页面均没有调入内存。模拟运行时,如果所访问的指令已经在内存,则显示其物理地址,并转下一条指令;如果所访问的指令还未装入内存,则发生缺页,此时需要记录缺页产生次数,并将相应页面调入内存,如果4个内存块已满,则需要进行页面置换。最后显示其物理地址,并转下一条指令。在所有指令执行完毕后,显示进程运行过程中的缺页次数和缺页率。

页面置换算法:分别采用OPT、FIFO、LRU三种算法。

进程中的指令访问次序按如下原则生成:

50%的指令是顺序执行的。

25%的指令是均匀分布在低地址部分。

25%的指令是均匀分布在高地址部分。

三:实验类别

分页存储管理

四:实验类型

模拟实验

五:主要仪器

计算机

六:结果

OPT:

LRU:

FIFO:

七:程序

# include

# include

# include

# define blocknum 4//页面尺寸大小

int m; //程序计数器,用来记录按次序执行的指令对应的页号static int num[320]; //用来存储320条指令

typedef struct BLOCK //声明一种新类型--物理块类型

{

int pagenum; //页号

int accessed; //访问量,其值表示多久未被访问

}BLOCK;

BLOCK block[blocknum]; //定义一大小为8的物理块数组

void init() //程序初始化函数,对block初始化

{

for(int i=0;i

{

block[i].pagenum=-1;

block[i].accessed=0;

m=0;

}

}

int pageExist(int curpage)//查找物理块中页面是否存在,寻找该页面curpage是否在内存块block中,若在,返回块号

{

for(int i=0; i

{

if(block[i].pagenum == curpage )

return i; //在内存块block中,返回块号

}

return -1;

}

int findSpace()//查找是否有空闲物理块,寻找空闲块block,返回其块号

{

for(int i=0;i

{

if(block[i].pagenum==-1)

return i; //找到了空闲的block,返回块号

}

return -1;

}

int findReplace()//查找应予置换的页面

{

int pos = 0;

for(int i=0;i

{

if(block[i].accessed > block[pos].accessed)

pos = i; //找到应该置换页面,返回BLOCK中位置

}

return pos;

void display()//显示物理块中的页面号

{

for(int i=0; i

{

if(block[i].pagenum != -1)

{

printf(" %02d ",block[i].pagenum);

printf("%p |",&block[i].pagenum);

}

}

printf("\n");

}

void randam()//产生320条随机数,显示并存储到num[320]

{

int flag=0;

printf("请为一进程输入起始执行指令的序号(0~320):\n");

scanf("%d",&m);//用户决定的起始执行指令

printf("******进程中指令访问次序如下:(由随机数产生)*******\n");

for(int i=0;i<320;i++)

{//进程中的320条指令访问次序的生成

num[i]=m;//当前执行的指令数,

if(flag%2==0)

m=++m%320;//顺序执行下一条指令

if(flag==1)

m=rand()%(m-1);//通过随机数,跳转到低地址部分[0,m-1]的一条指令处,设其序号为m1

if(flag==3)

m=m+1+(rand()%(320-(m+1)));//通过随机数,跳转到高地址部分[m1+2,319]的一条指令处,设其序号为m2

flag=++flag%4;

printf(" %03d",num[i]);//输出格式:3位数

if((i+1)%10==0) //控制换行,每个页面可以存放10条指令,共32个页面printf("\n");

}

}

void pagestring() //显示调用的页面序列,求出此进程按次序执行的各指令所在的页面号并显示输出

{

for(int i=0;i<320;i++)

{

实验三存储管理实验

实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二.实验内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 算法描述: 本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。 算法原程序 #include "" #include "" #include <>

#include <> #define PCB_NUM 5 行程序."); printf("\n\t\t\t0.退出程序."); scanf("%d",&m); switch(m) { case1: break; case0: system("cls"); menu(); break; default: system("cls"); break; } } void paixu(struct MemInf* ComMem,int n) { int i,j,t; for(j=0; jComMem[i+1].size) { t=ComMem[i].size; ComMem[i].size=ComMem[i+1].size; ComMem[i+1].size=t; } } void paixu2() { int i,j,t; for(j=0; j<4; j++) for(i=0; i<4-j; i++) if(pcbList[i].size>pcbList[i+1].size) { t=pcbList[i].size; pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t; } } void main() { DD: menu();

请求分页存储管理模拟实验

操作系统模拟实验 实验名称:请求分页存储管理模拟实验 实验目的:通过实验了解windows系统中的线程同步如何使用,进一步了解操作系统的同步机制。 实验内容:调用Windows API,模拟解决生产者-消费者问题;思考在两个线程函数中哪些是临界资源?哪些代码是临界区?哪些代码是进入临界区?哪些代码是退出临界区?进入临界区和退出临界区的代码是否成对出现?学习Windows API中的如何创建线程,互斥,临界区等。 程序运行结果:

源程序: #include "stdAfx.h" //包含头文件以支持多线程 #include "windows.h" #include "stdio.h" //用于标志所有的子线程是否结束 //每次子线程结束后,此值便加1。 static long ThreadCompleted = 0; //互斥量 HANDLE mutex; //信号量,用于生产者通知消费者 HANDLE full; //信号量,用于消费者通知生产者 HANDLE empty; //信号量,当所有的子线程结束后,通知主线程,可以结束。HANDLE evtTerminate; //生产标志 #define p_item 1 //消费标志 #define c_item 0 //哨兵 #define END 10 //缓冲区最大长度 const int max_buf_size=11; const int cur_size=10; //缓冲区定义 int BUFFER[max_buf_size]; //放消息指针 int in=0; //取消息指针 int out=0; int front=0; int tail=0; int sleep_time=1000; bool flag=true; //线程函数的标准格式 unsigned long __stdcall p_Thread(void *theBuf); unsigned long __stdcall c_Thread(void *theBuf); //打印缓冲区内容 void PrintBuf(int buf[],int buf_size);

计算机操作系统实验 源码 模拟请求分页虚拟存储管理中的硬件地址变换过程

实验报告 模拟请求分页虚拟存储管理中的硬件地址变换过程 【实验目的】 1.通过实验加深对请求分页虚拟存储器管理中的地址变换加深理解。 2.熟练使用所学知识完成地址转换过程。 【实验原理】 1. 请求分页虚拟存储管理技术是把作业地址空间的全部信息存放在磁盘上。当作业被选中运行时,,先把作业的开始几页装入主存并启动运行。为此在为作业建立页表时,应说明哪些页已在主存,哪些页不在主存。页表的格式如表1-1所示,其中,”标志”表示对应页是否已经装入主存: “1”表示对应页已经装入主存; “0”表示对应页未装入主存; “主存快号”表示该页对应的主存快号; “修改位”指示该页调入主存后是否修改过的标志。 “外存地址”指示该页所在的外存地址。 自己设计一个主存分块表。 2. 作业业执行时,指令中的逻辑地址指出参加运算的操作数(或指令)地址中的页号和页内偏移量。硬件地址转换机构按页号查页表。 若该页的标志为1 ,则表示该页已在主存,从而找到该页对应的主存块号。 根据关系式: 绝对地址=块号*块的长度+页内偏移量 计算出欲访问的主存地址。由于页号为2的整次幂,所以只要将块号与页内偏移量相拼接,放入主存地址寄存器即可。按照该地址取指令或取操作数,完成指定的操作。 3. 设计一个”地址变换”程序,模拟硬件地址变化过程。当访问的页在主存时,则形成绝对地址后,不去模拟指令的执行,而是输出被转换的地址。当访问的页不在主存时,输出”该页不在主存,产生缺页中断”,以表示产生一次缺页中断。 4. 进行缺页中断处理。中断返回后,重新执行该指令。 假定主存的每块长度为64个字节,现有一个具有8页的作业,系统为其分配了4个主存块(即m=4),且最多分4块。其中第0页至第3页已经装入主存。该作业的页表如表10—2所示。 地址变换算法框图如图10—1所示。 运行设计的地址变换程序,显示或打印运行结果。。因为只是模拟地址变换,并不

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

操作系统实验四存储管理

师学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名秋指导教师远帆 实验日期2015-05-20

图1 word运行情况 “存使用”列显示了该应用程序的一个实例正在使用的存数量。 5) 启动应用程序的另一个实例并观察它的存需求。 请描述使用第二个实例占用的存与使用第一个实例时的存对比情况: 第二个实例占用存22772K,比第一个实例占用的存大很多 4:未分页合并存。 估算未分页合并存大小的最简单法是使用“任务管理器”。未分页合并存的估计值显示在“任务管理器”的“性能”选项卡的“核心存”部分。 总数(K) :________220___________ 分页数:_____________________ 未分页(K) :_________34__________ 图2核心存

C 简单基本NTFS 30G 良好(系 统) D 简单基本NTFS 90G 良好 E 简单基本NTFS 90G 良好 F 简单基本NTFS 88 G 良好 图3磁盘情况 6:计算分页文件的大小。 要想更改分页文件的位置或大小配置参数,可按以下步骤进行: 1) 右键单击桌面上的“我的电脑”图标并选定“属性”。 2) 在“高级”选项卡上单击“性能选项”按钮。 3) 单击对话框中的“虚拟存”区域中的“更改”按钮。 请记录: 所选驱动器的页面文件大小: 驱动器:______________F_____________________ 可用空间:___________9825_____________________ MB 初始大小(MB) :_____ 2048______________________ 最大值(MB) :________4092_____________________ 所有驱动器页面文件大小的总数: 允的最小值:________16____________________ MB

请求分页存储管理(虚拟存储)

任务四、请求分页存储管理(虚拟存储)一、实验目的 通过请求分页存储管理的设计,让学生了解虚拟存储器的概念和实现方法。进行运行时不需要将所有的页面都调入内存,只需将部分调入内存,即可运行,在运行的过程中若要访问的页面不在内存时,则需求有请求调入的功能将其调入。假如此时若内存没有空白物理块,则通过页面置换的功能将一个老的不用的页面淘汰出来,其中淘汰的算法有多种。 二、实验内容 模拟仿真请求分页调度算法,其中淘汰的算法可选下列其一 1、先进先出算法 2、最近最久算法 3、CLOCK算法 三、实验代码 #include #include using namespace std; int n; typedef struct Queue{ int time; int data; struct Queue *next; }Queue,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; //fifo======================================= void InitQueue(LinkQueue &Q); void FiFoEnQueueRear(LinkQueue &Q,int e,vector &v); void FiFoDeQueueFront(LinkQueue &Q); inline void PrintQueue(LinkQueue &Q); void FiFoFiFoDoQueueEarly(LinkQueue &Q,int a,vector &v); void FiFoDoQueue(LinkQueue &Q,int a,vector &v); inline int PanDuan(LinkQueue &Q,int a); inline int YeMianCount(LinkQueue &Q); void fifo(); //lru============================================= void InitQueue(LinkQueue &Q); void EnQueueMid(LinkQueue &Q,int e,QueuePtr p,vector &v); void EnQueueTheFist(LinkQueue &Q,int e);

动态分页缺页率分析实验报告

动态分页缺页率分析 一、实验名称 动态分页缺页率分析 二、实验目标 在地址映射过程中,若在也表中发现所要访问的页面不在内存中,就会发生缺页中断,当发生缺页中断时,如果操作系统内存中没有空闲页面,则操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法。使用不同的页面置换算法,会影响虚拟系统的性能。通过实现常用的页面置换算法,理解不同的页面置换算法的含义和实现过程。 三、实验环境要求: 1.PC机。 2.Windows。 3.Visual Studio 2017。 四、实验基本原理 1.本实验设计一个可执行三种缺页次数计算算法的系统,分别是先进先出页面置换算法,理想页面置换算法、最近最少使用页面置换算法。 2.程序首先给用户提供一个菜单,可选择需要的算法,选择算法后可以输入访问页面序列和内存分配页数,直到输入退出指令后退出当前程序。 3.每种算法选择后都会输出缺页次数。 4.理想页面置换算法,将最远将被访问的页面置换掉,在这里根据页面访问序列确定哪个页面是最远的。先进先出置换算法,选择置换掉在主存中停留时间最长也就是最先进入内存的页面,在这里用队列实现。。最近最久未被使用,选择在之前一段时间内最久没有被使用的页面进行置换,在这里使用栈的思想来实现,

栈顶放目前使用最多,占底放目前最少使用。 五、数据结构设计 1.理想页面置换算法中用vectorpagetemp用来记录已访问在内存中的页面 2.先进先出页面置换算法中,用queuere记录内存中置换后的页面序列,queuepagetemp记录当前已经访问的内存中的页面。 3.最近最少使用页面置换算法,用queuere记录内存中置换后的页面序列,queuepagetemp记录当前已经访问的内存中的页面。 4.用vactorpagewalk 存储要访问的页面序列。 六、流程图

佛山科学技术学院-操作系统-存储管理-实验报告

实验二存储管理 2.1背景知识 耗尽内存是Windows 2000/XP系统中最常见的问题之一。当系统耗尽内存时,所有进程对内存的总需求超出了系统的物理内存总量。随后,Windows 2000/XP必须借助它的虚拟内存来维持系统和 进程的运行。虚拟内存机制是Windows 2000/XP操作系统的重要组成部分,但它的速度比物理内存慢得多,因此,应该尽量避免耗尽物理内存资源,以免导致性能下降。 解决内存不足问题的一个有效的方法就是添加更多的内存。但是,一旦提供了更多的内存,Windows 2000/XP很可以会立即“吞食”。而事实上,添加更多的内存并非总是可行的,也可能只是推迟了实际问题的发生。因此,应该相信,优化所拥有的内存是非常关键的。 1、分页过程 当Windows 2000/XP求助于硬盘以获得虚拟内存时,这个过程被称为分页(paging)。分页就是将信息从主内存移动到磁盘进行临时存储的过程。应用程序将物理内存和虚拟内存视为一个独立的实体,甚至不知道Windows 2000/XP使用了两种内存方案,而认为系统拥有比实际内存更多的内存。例如,系统的内存数量可能只有 16MB,但每一个应用程序仍然认为有4GB内存可供使用。 使用分页方案带来了很多好处,不过这是有代价的。当进程需要已经交换到硬盘上的代码或数据时,系统要将数据送回物理内存,并在必要时将其他信息传输到硬盘上,而硬盘与物理内存在性能上的差异极大。例如,硬盘的访问时间通常大约为4-10毫秒,而物理内存的访问时间为60 us,甚至更快。 2、内存共享

应用程序经常需要彼此通信和共享信息。为了提供这种能力,Windows 2000/XP必须允许访问某些内存空间而不危及它和其他应 用程序的安全性和完整性。从性能的角度来看,共享内存的能力大大减少了应用程序使用的内存数量。运行一个应用程序的多个副本时,每一个实例都可以使用相同的代码和数据,这意味着不必维护所加载应用程序代码的单独副本并使用相同的内存资源。无论正在运行多少个应用程序实例,充分支持应用程序代码所需求的内存数量都相对保持不变。 3、未分页合并内存与分页合并内存 Windows 2000/XP决定了系统内存组件哪些可以以及哪些不可 以交换到磁盘上。显然,不应该将某些代码 (例如内核) 交换出主内存。因此,Windows 2000/XP将系统使用的内存进一步划分为未 分页合并内存和分页合并内存。 分页合并内存是存储迟早需要的可分页代码或数据的内存部分。虽然可以将分页合并内存中的任何系统进程交换到磁盘上,但是它临时存储在主内存的这一部分,以防系统立刻需要它。在将系统进程交换到磁盘上之前,Windows 2000/XP会交换其他进程。 未分页合并内存包含必须驻留在内存中的占用代码或数据。这种结构类似于早期的MS-DOS程序使用的结构,在MS-DOS中,相对较小的终止并驻留程序 (Terminate and Stay Resident,TSR) 在启动时加载到内存中。这些程序在系统重新启动或关闭之前一直驻留在内存的特定部分中。例如,防病毒程序将加载为TSR程序,以预防可能的病毒袭击。 未分页合并内存中包含的进程保留在主内存中,并且不能交换到磁盘上。物理内存的这个部分用于内核模式操作(例如,驱动程序)和必须保留在主内存中才能有效工作的其他进程。没有主内存的这个部分,内核组件就将是可分页的,系统本身就有变得不稳定的危险。

实验六请求分页存储管理

页眉 实验六:请求分页存储管理 一.实验目的 深入理解请求页式存储管理的基本概念和实现方法,重点认识其中的地址变换、缺页中断、置换算法等实现思想。 二.实验属性 该实验为综合性、设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求2学时完成。 本实验要求完成如下任务: (1)建立相关的数据结构:页表、页表寄存器、存储块表等; (2)指定分配给进程的内存物理块数,设定进程的页面访问顺序; (3)设计页面置换算法,可以选择OPT、FIFO、LRU等,并计算相应的缺页率,以比较它们的优劣; (4)编写地址转换函数,实现通过查找页表完成逻辑地址到物理地址的转换;若发生缺页则 选择某种置换算法(OPT、FIFO、LRU等)完成页面的交换; (5)将整个过程可视化显示出来。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。 三、设计过程 3.1算法原理分析 OPT算法是未来最远出现,当当前内存中没有正要访问的页面时,置换出当前页面中在未来的访问页中最远出现的页面或再也不出现的页面。 FIFO算法是先进先出,当当前内存中没有正要访问的页面时,置换出最先进来的页面。 LRU算法是最近最久未使用,当当前内存中没有正要访问的页面时,置换出在当前页面中最近最久没有使用的页面。 3.2数据定义 int length,num_page,count,seed; //length记录访问串的长度,num_page页面数,count 记录缺页次数 页脚 页眉 存储访问,order//result记录结果int result[20][30],order[30],a[10]; 存储当前页面中的值串,a flag1等为标志变量int pos1,flag1,flag2,flag3; //pos1位置变量,//最佳void opt() char result1[30]; //记录缺页数组 void fifo() //先进先出 bool search(int n) //查找当前内存中是否已存在该页 3.3流程图与运行截图 开始

实验操作系统存储管理实验报告

实验四操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1)通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k,用户虚存容量为32k,用户内存容量为4页到32页。 (2)produce_addstream通过随机数产生一个指令序列,共320条指令。 A、指令的地址按下述原则生成: 1)50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3)25%的指令是均匀分布在后地址部分 B、具体的实施方法是: 1)在[0,319]的指令地址之间随机选取一起点m; 2)顺序执行一条指令,即执行地址为m+1的指令; 3)在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4)顺序执行一条指令,地址为m’+1的指令 5)在后地址[m’+2,319]中随机选取一条指令并执行; 6)重复上述步骤1)~5),直到执行320次指令 C、将指令序列变换称为页地址流

在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页<对应虚存地址为[0,9]); 第10条~第19条指令为第1页<对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页<对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法

分页管理实验报告

2015-2016学年第二学期 操作系统课程实验设计报告 班级网络2班 学号 201414620207 姓名韩金铖 成绩 指导教师于复兴

1、实验题目: (1)模拟请求分页存储管理中的硬件地址转换和产生却页中断的过程。 (2)采用先进先出(或LRU)算法实现分页管理的缺页调度。 2、实验目的: (1)通过实验模拟请求分页存储管理中的硬件地址转换和产生却页中断帮助理解在分页式存储管理中怎样虚拟存储器。 (2)通过采用先进先出(或LRU)算法实现分页管理的缺页调度帮助理解和掌握模拟分页式虚拟存储管理的缺页中断,帮助自己对请求分页管理的概念有一个清楚的理解。3、程序设计及实现过程: (1)请求分页储存管理是把作业的全部信息存在磁盘上,当作业被选中时,可把作业的开始几页先装入主存并启动运行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表格式为: 其中,标志表示对应页是否已经装入主存,“标志 = 0”表示该页尚未装入主存,“标志= 1”表示该页已在主存。 主存块号表示已装入主存的页所占用的块号。 外存地址表示该页在外存的地址。 (2)作业执行完时,指令中的逻辑地址指出了参加运算的操作数存放的页号和单元号,硬件地址转换机构按页号查页表,若该页对应的标志为“1”,则表示该页已在主存。根据关系式:绝对地址=块号*块长+单元号。 计算出欲访问的主存单元地址,将块长设成2的整次幂,可把块号作为地址寄存器的高位部分,单元号作为低位部分。两个拼接形成绝对地址。按计算出的绝对地址取操作数,完成一条指令的执行。 若访问的页对应标志为“0”,则表示不在主存,这时硬件发缺页中断信号,由操作系统按页表中的该页对应的外存地址把该页装入主存后,执行该指令。 (3)设计一个“地址变换”程序来模拟硬件的地址转换工作。当访问的页不在主存时,则形成绝对地址后不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行,当访问的页不在主存时,则输出“*”,表示产生了一次缺页中断。 该算法框图如下:

操作系统实验四存储管理

宁德师范学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名王秋指导教师王远帆 实验日期2015-05-20

2) 右键单击任务栏以启动“任务管理器”。 3) 在“Windows任务管理器”对话框中选定“进程”选项卡。 4) 向下滚动在系统上运行的进程列表,查找想要监视的应用程序。 请在表4-3中记录: 表4-3 实验记录 映像名称PID CPU CPU时间内存使用 WINWORD.EXE 5160 00 0:00:10 22772k 图1 word运行情况 “内存使用”列显示了该应用程序的一个实例正在使用的内存数量。 5) 启动应用程序的另一个实例并观察它的内存需求。 请描述使用第二个实例占用的内存与使用第一个实例时的内存对比情况: 第二个实例占用内存22772K,比第一个实例占用的内存大很多 4:未分页合并内存。 估算未分页合并内存大小的最简单方法是使用“任务管理器”。未分页合并内存的估计值显示在“任务管理器”的“性能”选项卡的“核心内存”部分。 总数(K) :________220___________ 分页数:__________167___________ 未分页(K) :_________34__________

图2核心内存 还可以使用“任务管理器”查看一个独立进程正在使用的未分页合并内存数量和分页合并内存数量。操作步骤如下: 1) 单击“Windows任务管理器”的“进程”选项卡,然后从“查看”菜单中选择“选择列”命令,显示“进程”选项卡的可查看选项。 2) 在“选择列”对话框中,选定“页面缓冲池”选项和“非页面缓冲池”选项旁边的复选框,然后单击“确定”按钮。 返回Windows “任务管理器”的“进程”选项卡时,将看到其中增加显示了各个进程占用的分页合并内存数量和未分页合并内存数量。 仍以刚才打开观察的应用程序(例如Word) 为例,请在表4-4中记录: 表4-4 实验记录 映像名称PID 内存使用页面缓冲池非页面缓冲池 WINWORD.EXE 2964 37488 951 42 从性能的角度来看,未分页合并内存越多,可以加载到这个空间的数据就越多。拥有的物理内存越多,未分页合并内存就越多。但未分页合并内存被限制为256MB,因此添加超出这个限制的内存对未分页合并内存没有影响。 5:提高分页性能。 在Windows 2000的安装过程中,将使用连续的磁盘空间自动创建分页文件(pagefile.sys) 。用户可以事先监视变化的内存需求并正确配置分页文件,使得当系统必须借助于分页时的性能达到最高。 虽然分页文件一般都放在系统分区的根目录下面,但这并不总是该文件的最佳位置。要想从分页获得最佳性能,应该首先检查系统的磁盘子系统的配置,以了解它是否有多个物理硬盘驱动器。 1) 在“开始”菜单中单击“设置”–“控制面板”命令,双击“管理工具”图标,再双击“计算机管理”图标。 2) 在“计算机管理”窗口的左格选择“磁盘管理”管理单元来查看系统的磁盘配置。 如果系统只有一个硬盘,那么建议应该尽可能为系统配置额外的驱动器。这是因为:Windows 2000最多可以支持在多个驱动器上分布的16个独立的分页文件。为系统配置多个分页文件可以实现对不同磁盘I/O请求的并行处理,这将大大提高I/O请求的分页文件性能。 请在表4-5中记录: 表4-5 实验记录

请求页式存储管理中常用页面置换算法模拟

湖南科技学院计算机与信息科学系 实验报告 实验名称请求页式存储管理中常用页面置换算法模拟 课程名称计算机操作系统所属系部班级计科0902 时间2011年12 月8 日第9、10 节地点E305 姓名王校君学号200908001230 成绩 本组成员(一人一组) 一、实验要求 1、上机前认真阅读实验内容,并编好程序; 2、上机实验后,请列出实验数据,写出实验结果; 3、完成实验报告后交任课教师。 二、实验目的 页式虚拟存储器实现的一个难点是设计页面调度(置换)算法,即将新页面调入内存时,如果内存中所有的物理页都已经分配出去,就要按某种策略来废弃某个页面,将其所占据的物理页释放出来,供新页面使用。本实验的目的是通过编程实现几种常见的页面调度(置换)算法,加深读者对页面思想的理解。三、实验环境 每人一台电脑,在下实现。 四、实验内容 (1)设计程序实现以上三种页面调度算法,要求: ①.可以选择页面调度算法类型; ②.可以为进程设置分到物理页的数目,设置进程的页面引用情况,可以从键盘输入页面序列,也可从文件中读取; ③.随时计算当前的页面调度次数的缺页中断率; ④.使用敲键盘或响应WM-TIMER的形式模仿时间的流逝; ⑤.以直观的的形式将程序的执行情况显示在计算机屏幕上; ⑥.存盘及读盘功能,可以随时将数据存入磁盘文件,供以后重复实验时使用。(2)假定进程分配到3个物理块,对于下面的页面引用序列: 7-0-1-2-0-3-0-4-2-3-0-3-2-1-2-0-1-7-0-1 请分别用先进和先出调度算法,最近最少用调度算法,最近最不常用调度算法计算缺页中断次数,缺页中断率和缺页调度次数、缺页置换率。 再假定进程分配到4、5个物理块,重复本实验。 (3)假定进程分配到3个物理块,对于下面的页面引用序列: 4-3-2-1-4-3-5-4-3-2-1-5-0-7-3-8-9-0-2-1-4-7-3-9 请分别用先进先出调度算法、最近最少用调度算法,最近最不常用调度算法计算缺页中断次数,缺页中断率和缺页调度次数、缺页置换率。 再假定进程分配到4、5个物理块,重复本实验。 (4)假定进程分配到3个物理块,使用程序的动态页面序列生成算法,生成一个页面序列,将此序列存入磁盘文件。再从磁盘文件读入该序列,用程序分别计算三种算法下的缺页中断次数、缺页中断率和缺页调度次数、缺页置换率。

实验四 操作系统存储管理实验报告

实验四 操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1) 通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命 中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。 (2) produce_addstream 通过随机数产生一个指令序列,共320条指令。 A 、 指令的地址按下述原则生成: 1) 50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3) 25%的指令是均匀分布在后地址部分 B 、 具体的实施方法是: 1) 在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令; 3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4) 顺序执行一条指令,地址为m ’+1的指令 5) 在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令 页地址流长度页面失效次数命中率- =1

C、将指令序列变换称为页地址流 在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0,9]); 第10条~第19条指令为第1页(对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页(对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法(FIFO); 2)最近最少使用算法(LRU); 3)最佳淘汰算法(OPT); 4)最少访问页面算法(LFR); 其中3)和4)为选择内容

请求页式存储管理

软件学院 操作系统实验报告 专业:软件工程 班级: RB软工互152 学号: 201560160226 学生姓名:王泽华 指导教师:韩新超

实验四:请求页式存储管理 一.实验目的 深入理解请求页式存储管理的原理,重点认识其中的地址变换、缺页中断、置换算法等实现思想。 二.实验属性 该实验为综合性、设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求4学时完成。 本实验要求完成如下任务: (1)建立相关的数据结构:存储块表、页表等; (2)实现基本分页存储管理,如分配、回收、地址变换; (3)在基本分页的基础上实现请求分页存储管理; (4)给定一批作业/进程,选择一个分配或回收模拟; (5)将整个过程可视化显示出来。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。 五、实验提示 1、本实验虽然不以前面实验为基础,但建议在其界面中继续增加请求页式存储管理功能。 2、数据结构:内存分配表、页表空间(用数组实现),修改PCB结构增加页表指针、页表长度。 3、存储管理:编写内存分配、内存回收算法、页面置换算法。 4、主界面设计:在界面上增加一个请求分页内存分配按钮、请求分页内存回收按钮、装入指定进程的指定页按钮。 触发请求分页内存分配按钮,弹出作业大小输入框,输入后调用内存分配函数,在内存分配表和页表中看到分配的存储块。触发请求分页内存回收按钮,弹出进程ID输入框,输入后调用内存回收函数,在内存分配表中看到回收后的状态改变。 5、功能测试:从显示出的内存分配表和页表,可查看操作的正确与否。 六、实验步骤 (1)任务分析:

分页管理的缺页调度—LRU算法

南通大学操作系统实验课 实验报告 学生姓名 所在院系 专业 学号 指导教师 南通大学 2014年 5 月 30 日

虚拟存储器管理 采用LRU算法实现分页管理的缺页调度 一、实验目的 为了使大的进程(其地址空间超过主存可用空间)或多个进程的地址空间之和超过实际主存空间时,仍能运行,引入了虚拟存储器的概念。使进程的一部分地址空间在主存,另一部分在辅存,由操作系统实现多级存储器的自动管理,实现主存空间的自动覆盖。模拟请求分页虚拟存储器管理技术中的硬件地址变换、缺页中断以及页式淘汰算法,处理缺页中断。 通过本实验,使学生对请求分页管理的概念有一个清楚的理解。 二、实验要求 书写实验报告,应该包括以下几项内容: (1)实验题目; (2)程序中使用的数据结构及主要符号说明; (3)程序流程图和带有详细注释的源程序; (4)执行程序名,并打印程序运行时的系统状态的初值、每次调入调出的页号和运行结果;(5)通过实验后的收获与体会及对实验的改进意见和见解。 三、简要概述 当采用LRU算法时,用一个数组P构成堆栈,堆栈中各个元素为进程已在主存的页号,为了进行页面置换,可设置一个栈指针HEAD,初始化为0。假定分配给每个进程的内存块数固定不变,为M。当队列满需要淘汰时,操作系统选择栈底的元素淘汰,其他元素向下移一个位置,将新调入页放HEAD指示的栈顶。当访问的页在栈中时,还应调整页从当前位置到栈顶。采用LRU淘汰算法的流程如下所示。

四、流程图

五、结果 六、总结与感悟 经过了这学期的操作系统实验,我对操作系统实验有了全新的认识。尤其是当拿到一个任务时,如何去分析,先干什么,接着干什么,最后干什么,有了比较明确的思路。 拿到一个题目后,我们应该先对这个题目进行概要的分析、设计,分析出这个程序是干什么用的,应该实现什么功能,这些功能应该包含哪些函数。概要设计做好后,我们就要开始做详细设计,将做好的概要设计进行完善,把每个函数要实现的功能用伪代码写出来,或者是用流程图画出来,这样我们就能基本上知道每个程序应该如何实现它自身的功能,写源代码时也就不会那么盲目。 写源代码是将详细设计转化为C++代码的过程,详细设计做好后,我们只需在其基础上将一些简单的或者是用汉语代替的语句用C++语句写出来,再将一些语法错误改过来,并将概要设计和详细设计时未考虑到的东西在语句中完善,最终形成一个可执行的C++文件。刚开始的时候,我根据书上的提示自己编写好程序输入电脑,然后编译的时候,出现了许许多多各种各样的问题,回头查看程序,自己却很难找到问题所在,于是查阅各种资料,问了身边很多同学,终于将程序顺利调试出来了。通过这个系统的实现,我从输入代码跟运行调试的整个过程中学习到了很多东西,也了解到系统出现问题的时候的各种错误应该如何解决。

实验四 存储管理

实验四存储管理 背景知识 耗尽内存是Windows 2000/XP系统中最常见的问题之一。当系统耗尽内存时,所有进程对内存的总需求超出了系统的物理内存总量。随后,Windows 2000/XP必须借助它的虚拟内存来维持系统和进程的运行。虚拟内存机制是Windows 2000/XP操作系统的重要组成部分,但它的速度比物理内存慢得多,因此,应该尽量避免耗尽物理内存资源,以免导致性能下降。解决内存不足问题的一个有效的方法就是添加更多的内存。但是,一旦提供了更多的内存,Windows 2000/XP很可以会立即“吞食”。而事实上,添加更多的内存并非总是可行的,也可能只是推迟了实际问题的发生。因此,应该相信,优化所拥有的内存是非常关键的。 1. 分页过程 当Windows 2000/XP求助于硬盘以获得虚拟内存时,这个过程被称为分页(paging) 。分页就是将信息从主内存移动到磁盘进行临时存储的过程。应用程序将物理内存和虚拟内存视为一个独立的实体,甚至不知道Windows 2000/XP使用了两种内存方案,而认为系统拥有比实际内存更多的内存。例如,系统的内存数量可能只有16MB,但每一个应用程序仍然认为有4GB内存可供使用。 使用分页方案带来了很多好处,不过这是有代价的。当进程需要已经交换到硬盘上的代码或数据时,系统要将数据送回物理内存,并在必要时将其他信息传输到硬盘上,而硬盘与物理内存在性能上的差异极大。例如,硬盘的访问时间通常大约为4-10毫秒,而物理内存的访问时间为60 us,甚至更快。 2. 内存共享 应用程序经常需要彼此通信和共享信息。为了提供这种能力,Windows 2000/XP必须允许访问某些内存空间而不危及它和其他应用程序的安全性和完整性。从性能的角度来看,共享内存的能力大大减少了应用程序使用的内存数量。运行一个应用程序的多个副本时,每一个实例都可以使用相同的代码和数据,这意味着不必维护所加载应用程序代码的单独副本并使用相同的内存资源。无论正在运行多少个应用程序实例,充分支持应用程序代码所需求的内存数量都相对保持不变。 3. 未分页合并内存与分页合并内存 Windows 2000/XP决定了系统内存组件哪些可以以及哪些不可以交换到磁盘上。显然,不应该将某些代码(例如内核) 交换出主内存。因此,Windows 2000/XP将系统使用的内存进一步划分为未分页合并内存和分页合并内存。 分页合并内存是存储迟早需要的可分页代码或数据的内存部分。虽然可以将分页合并内存中的任何系统进程交换到磁盘上,但是它临时存储在主内存的这一部分,以防系统立刻需要它。在将系统进程交换到磁盘上之前,Windows 2000/XP会交换其他进程。 未分页合并内存包含必须驻留在内存中的占用代码或数据。这种结构类似于早期的MS-DOS 程序使用的结构,在MS-DOS中,相对较小的终止并驻留程序(Terminate and Stay Resident,TSR) 在启动时加载到内存中。这些程序在系统重新启动或关闭之前一直驻留在内存的特定部分中。例如,防病毒程序将加载为TSR程序,以预防可能的病毒袭击。 未分页合并内存中包含的进程保留在主内存中,并且不能交换到磁盘上。物理内存的这个部分用于内核模式操作(例如,驱动程序)和必须保留在主内存中才能有效工作的其他进程。

操作系统实验3 请求分页式存储管理

请求分页式存储管理 为简单起见。页面淘汰算法采用 FIFO 页面淘汰算法, 只将该页在页表中修改状态位。 而不再判断它是否被改写过, 也不 将它 输入进程大小(例如 5300bytes ),对页表进行初始化 系统为进程分配3个物理块(页框),块号分别为0、1、2,页框管理表(空闲块表) 任意输入一个需要访问的指令地址流(例如: 4355,输入负数结束),打印页表情况。 每访问一个地址时, 首先要计算该地址所在的页的页号, 然后查页表,判断该页是否在 主存 ——如果该页已在主存,则打印页表情况;如果该页不在主存且页框未满 (查空闲块表, 找到空闲块),则调入该页并修改页表,打印页表情况;如果该页不在主存且页框已满,则 按FIFO 页面淘汰算法淘汰一页后调入所需的页,修改页表,打印页表情况。 存储管理算法的流程图见下页。 三、实验要求 完成实验内容并写出实验报告,报告应具有以下内容: 1、 实验目的。 2、 实验内容。 3、 程序及运行情况。 4、 实验过程中出现的问题及解决方法。 #in clude #in clude int P UB[20][3]; int ABC[3][2]={{0,1},{1,1},{2,1}};// 物理块 int key=0; 一、 问题描述 设计一个请求页式存储管理方案, 并且在淘汰一页时, 写回到辅存。 二、 基本要求 页面尺寸1K , 页表结 构如下: 3635、 3642、 1140、 0087、 1700、 5200、

void output(int size){ //打印int i,j; printf(”页号\t\t物理块号\t\t状态位\n\n"); for(i=0;i20000) { printf(" 进程大小超出范围\n"); exit(0); } size%1000==0 ? size=size/1000 : size=size/1000+1; for(i=0;i

相关文档
最新文档