连续时间马尔科夫链

连续时间马尔科夫链
连续时间马尔科夫链

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

第五章 连续时间的Markov链

第五章 连续时间的马尔可夫链 第四章我们讨论了时间和状态都是离散的M arkov 链,本章我们研究的是时间连续、状态离散的M arkov 过程,即连续时间的M arkov 链. 连续时间的M arkov 链可以理解为一个做如下运动的随机过程:它以一个离散时间M arkov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立. 5.1 连续时间马尔可夫链的基本概念 定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数 1210n t t t +≤<<< 及任意的非负整数121,,,n i i i I +∈ ,条件概率满足 {}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++==== {}11()|()n n n n P X t i X t i ++=== (5.1) 则称{(),0}X t t ≥为连续时间的M arkov 链. 由定义知,连续时间的M arkov 链是具有M arkov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关. 记(5.1)式条件概率的一般形式为 {()|()}(,)ij P X s t j X s i p s t +=== (5.2) 它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关. 定义 5.2 若(5.2)式的转移概率函数与s 无关,则称连续时间M arkov 链具有平稳的转移概率函数,称该M arkov 链为连续时间的齐次(或时齐)M arkov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥. 若状态空间{0,1,2,}I = ,则有 ()00010210 11 12 012() ()() ...()()()()()... ... .. ....()()( )...... .. .... ij n n n p t p t p t p t p t p t P t p t p t p t p t ?? ? ? ?== ? ? ?? ? (5.3) 假设在某时刻,比如说时刻0,M arkov 链进入状态i ,在接下来的s 个单位时间内过程 未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由M arkov 性知,过程在时刻s 处于状态i 的条件下,在区间[,] s s t +

马尔科夫链的介绍.doc

马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态[1]。马尔可夫链是具有马尔可夫性质的随机变量X_1,X_2,X_3...的一个数列。这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则P(X_{n+1}=x|X_1=x_1,X_2=x_2,...,X_n=x_n) = P(X_{n+1}=x|X_n=x_n). 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。 理论发展 马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 物理马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算术编码(著名的LZMA数据压缩算法就使用了马尔可夫链与类似于算术编码的区间编码)。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。 马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。这一马尔可夫链地理统计学方法仍在发展过程中。 马尔可夫过程 马尔可夫过程的定义: ⑴设{(X(t),t∈T)}是一个随机过程,如果{X(t),t∈T)}在t0时刻所处的状态为已知时,与它在时刻t>t0之前所处的状态无关,则称{X(t),t∈T)}具有马尔可夫性。 ⑵设{X(t),t∈T)}的状态空间为S,如果对于任意的n≧2,任意的t1

论文:马尔科夫链模型

市场占有率问题 摘要 本文通过对马尔科夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,并给出了均匀状态下的市场占有率模型。单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 通过转移概率求得八月份的各型号商品的市场占有率为……稳定状态后,通过马尔科夫转移矩阵,计算出各商品的市场占有率为…… 关键词马尔科夫链转移概率矩阵

一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某些产品的需求受多种因素的影响,普遍具有随机性。为此,利用随机过程理论的马尔科夫模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 已知六月份甲,乙,丙,三种型号的某商品在某地有相同的销售额。七月份甲保持原有顾客的60%,分别获得乙,丙的顾客的10%和30%;乙保持原有顾客的70%,分别获得甲,丙的顾客的10%和20%;丙保持原有顾客的50%,分别获得甲,乙顾客的30%和20%。求八月份各型号商品的市场占有率及稳定状态时的占有率。 二、问题分析 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。题目给出七月份甲、乙、丙三种型号的某商品的顾客转移率,转移率的变化以当前的状态为基准而不需要知道顾客转移率的过去状态,即只要掌握企业产品目前在市场上的占有份额,就可以预测将来该企业产品的市场占有率。概括起来,若把需要掌握过去和现在资料进行预测的方法称为马尔科夫过程。 马尔科夫预测法的一般步骤: (1)、调查目前本企业场频市场占有率状况,得到市场占有率向量A ; (2)、调查消费者的变动情况,计算转移概率矩阵B ; (3)、利用向量A 和转移概率矩阵B 预测下一期本企业产品市场占有率。 由于市场上生产与本企业产品相同的同类企业有许多家,但我们最关心的是本企业产品的市场占有率。对于众多消费者而言,够不够买本企业的产品纯粹是偶然事件,但是若本企业生产的产品在质量、价格、营销策略相对较为稳定的情况下,众多消费者的偶然的购买变动就会演变成必然的目前该类产品相对稳定的市场变动情况。因为原来购买本企业产品的消费者在奖励可能仍然购买本企业的产品,也可能转移到购买别的企业的同类产品,而原来购买其他企业产品的消费者在将来可能会转移到购买本企业产品,两者互相抵消,就能形成相对稳定的转移概率。 若已知某产品目前市场占有率向量A ,又根据调查结果得到未来转移概率矩阵B ,则未来某产品各企业的市场占有率可以用A 乘以B 求得。即: 111212122212312*()*n n n n n nn a a a a a a A B p p p p a a a ????????????=????????????????????? 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。

实验7 马尔科夫预测

实验7:马尔柯夫预测 7.1实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 7.2实验原理 7.2.1 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 7.2.1.1马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 7.2.1.2状态及状态转移 1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 7.2.2状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

基于马尔科夫链对股票价格预测

基于马尔科夫链对股票价格预测 一、选题背景 股票市场是经济发展的“晴雨表”和“警报器”,它的作用一直受到政府和广大投资者的广泛关注。一方面,股票投资者希望更准确的掌握股价变化趋势,这样才能获得更多的利润并合理规避风险;另一方面,作为一个宏观调控者,国家也需要了解股票价格走向,对国家的经济建设具有重大意义。综上,对股票价格市场的研究及预测是有着其理论意义和广阔的应用前景的。 我国的第一支股票于1985年发行,现在已经有沪、深两大交易所,上百家证券公司,3000多个证券营业部,7000多万证券投资者。随着科技的不断进步,计算机和网络技术在股票市场上越来越得以应用,更加促进了股票市场的发展。但进入21世纪后,中国股市几乎一直处于危机的状态。而随着时代不断向前发展,危机也在逐步扩散和加深,进而成为由多种因素形成的复合危机。长久以来,我国股市制度缺陷被忽视,使得市场里的消极的因素不断积聚,最后演变成今天较为严重的危机。 股票是市场经济不断发展的产物,并通过发行与交易反过来促使市场经济向前发展。由于股票市场行情受多方面的影响,规律复杂,同时投资者的结构有着其特殊性,不同类型的投资者个人心理状态不尽相同,产生不同的股票交易行为,从而引起股价波动,

难以掌控。 股票市场价格波动,股市才能运行。分析影响股价的因素,不仅可以为投资者提供依据,还可以对股票市场进行把握以促进其发展。由于国家经济正快速向前发展,股民人数也在逐年攀升,股票价格预测的需求也更加迫切了。所谓预测,就是要用历史的数据挖掘信息,来估计未来的情况,做下一步打算,这便是模糊数据所要完成的工作。而马尔科夫链模型模糊数学中应用较为广泛的一个方法。 二、马尔科夫法 (一)马尔科夫链 马尔科夫链,是数学领域中具有马尔科夫性质的离散时间随机过程。该过程中,在给定当前指示或信息的情况下,过去(即现在时期以前的历史状态)对与预测将来(即现在时期以后的状态)是无关的。如果n个连续变动事物在变动过程中,其中任一次变动的结果都具有无后效性,那么,这n个连续变动事物的集合就叫做马尔科夫链,这类事物演变的过程称为马尔科夫过程。(二)马尔科夫模型 公式为Sk+1=Sk·P,其中Sk是预测对象在t=k时刻的状态向量;P为为一步转移概率矩阵;Sk+1是预测的结果。 S(k+1)=S(0)·Pk+1=S(k)·■ (三)状态转移概率 客观事物可能有E1,E2,…,En共n种状态,其每次只能处于

随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

————————————————————————————————作者:————————————————————————————————日期:

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为 ,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上 改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的 ,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转 移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

连续时间马尔可夫链

5 连续时间马尔可夫链 5.1引言 本章中我们考虑与离散时间马尔可夫链类似的连续时间马尔可夫链。如离散情形一样,它们由马尔可夫性刻画,即已知现在的状态时将来与过去独立。 在5.2节中。我们定义连续时间马尔可夫链且把它们与第四章的离散时间马尔可夫链相联系。在5.3节中,我们引入一类重要的连续时间马尔可夫链,即所谓生灭过程。这些过程可用作在任何时刻其总量的变化仅为一个单位的群体的模型。在5.4节中,我们导出两组描述系统的概率规律的微分方程——向前与向后方程。5.5节的内容是确定连续时间马尔可夫链的有关的极限(或长时间后的)概率。在5.6节中,我们考虑时间可逆的问题。其中,我们证明一切生灭过程是时间可逆的,而后阐明这事实对于排队系统的重要性。在这一节中也提供了时间可逆性对随机群体模型的应用。在5.7节中,我们阐明逆向链的重要性,即使过程不是时间可逆的。利用它我们研究排队网络模型。导出爱尔朗消失公式,分析共用加工系统。5.8节中我们表面如何“一致化”马尔可夫链——对于数值计算有用的一种技巧。 5.2连续时间马尔可夫链 考虑取非负整数值的连续时间随机过程t,0 X t,与第四章中给出的离散时间马尔可夫链的定义类似,过程t,0 X t称为连续时间马尔可夫链,如 果对一切,0 s t及非负整数,i j,x u,0u s,有 |X,X,0 P X t s j s i u x u u s P X t s j X s i | 换言之,连续时间马尔可夫链是具有马尔可夫性的随机过程,即已知现在s时是状态及一切过去的状态的套件下在将来时刻t s的状态的条件分布只依赖现在的状态而与过去独立。若又有| P X t s j X s i与s无关则称连续时间马尔可夫链具有平稳的或其次的转移概率。将假定我们所考虑的马尔可夫链都有平稳转移概率。 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且假设在接下来的s个单位时间中过程未离开状态i(即未发生转移)。在随后的t个单位时间中过程仍不离开状态i的概率是多少呢?为了回答这个问题。注意到因为在时间s 过程处于状态i,从马尔可夫性得在区间,s s t中它仍然处于状态i的概率正是 记过程在转移到他处于状态i至少t个单位时间的(无条件)概率。也即若以 i 另一状态之前停留在状态i的时间,则对一切,0 s t有 | P s t s P t i i i

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

马尔可夫链

马尔可夫过程 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗传过程)在一定条件下可以用马尔可夫过程来近似。

马尔科夫理论浅析

马尔科夫理论浅析 引子: 1.随机变量X n表示第n 年某个人的健康状况,X n=1 表示健 康,X n=2 表示疾病,n=0 ,1 用ai(n)表示第n 年 处于状态i 的概率,i=1,2,即ai(n)=p(X n=i).用P ij 表示今年处于的状态i,明年的状态j 的概率,i,j=1,2 , 即P ij=P(X n+1 =j|X n=i).ai(n) 称为状态转移概率。 2.典型的跳蛙例子,X n表示第n 次跳青蛙所处的荷叶,第一 次荷叶i,第二次荷叶j。(i,j=1,2,3,4 ).P ij表示状 态转移概率,就是第n 次在i 荷叶上,第n+1 次在j 荷叶 上,这个事情发生的概率。P ij=P(X n+1=j|X n=i)。 以上例子的时间和状态的参数都是离散的,并且状态随着时间的变化随时变化,这样的过程称之为马尔科夫链。 马尔科夫链是最简单的马尔科夫过程 1 。一般的马尔科夫过程所研究的时间是无限的,是连续变量,其数值是连续不断的,相邻两值 之间可做无限分割,且做研究的状态也是无限多的。而马尔科夫链的时间参数取离散数值。 1 也称为具有马尔科夫性质的过程;简称马氏过程。

马尔科夫过程有两个性质: 1.“无后效性,”即事物将来的状态及其出现的概率的大小,只取 决于该事物现在所处的状态,而与以前时间的状态无关。以跳 蛙为例,青蛙下一次所在的荷叶位置与他之前所在的荷叶位置 无关,只和他现在所在的荷叶位置有关。 2.“遍历性,”是指不管事物现在出于什么状态,在较长时间内, 马尔科夫过程逐渐趋于稳定状况,而且与初始状况无关。 四个分类: 按其状态空间I 和时间参数集T 是连续还是离散四类: 时间参数T 离散连续状态空间I 离散马尔科夫链马尔科夫序列 连续可列马尔科夫过程马尔科夫过程 其中马尔科夫链是以马尔科夫性为核心概念的时间和状态均为离散的随机过程。而在我们经济的预测中时间和空间往往都是有限的。所以重点是马尔科夫链。

相关文档
最新文档