【医院病房呼叫器的设计】【无线】【51单片机+nRF905无线模块】【毕业设计】

【医院病房呼叫器的设计】【无线】【51单片机+nRF905无线模块】【毕业设计】
【医院病房呼叫器的设计】【无线】【51单片机+nRF905无线模块】【毕业设计】

摘要

随着科技的发展,无线应用技术已经渗透到生活的各个领域,无线传输技术也越来越成熟。本设计是将无线传输技术应用到医院的研究型课题,实现基于单片机的由无线传输模块构成的无线医院病房呼叫器。

本毕业设计以STC89C52单片机为控制核心,通过无线收发模块nRF905发射接收信号,经STC89C52单片机处理后显示输出并伴有报警提示,从而实现病人与护士之间的无线远距离通信。本病房呼叫系统能够实现远距离发射接收,其性能稳定、占用空间小、使用材料少、传输速度快、距离远,能够满足医院应用的要求。

关键词:单片机STC89C52;无线传输模块;病房呼叫

- 1 -

Abstract

With the development of science and technology, the wireless application technology has penetrated into every field of life, and the wireless transmission technology is also more and more mature.This design is about that the wireless transmission technology is applied to hospital research subject to make the wireless hospital sickroom beeper which is based on single chip microcomputer and wireless transmission module.

This design is taking STC89C52 as core control to realize the wireless long-distanced communication between the patients and the nurses with nRF905 wireless module transmitting and receiving signals.The sickroom call system can realize long transmission and receival .Besides,It has stable performance, high transmission speed and long transmission distance,and takes less rooms, uses less material, and can satisfy the requirements of hospital application.

Keywords: chip microcomputer STC89C52,wireless transmit module,sickroom beeper

- 2 -

前言

当代科学技术日益向高速化、智能化、信息化、网络化发展,各种各样的制造业和通信业设备除了可以与计算机联机外,还可以互相联机,而实现设备间相互联机的最具发展潜力的方式就是无线通信。与有线通信方式相比,无线通信具有一系列优点,特别适用于手持现场设备、电池供电设备、遥控遥测设备、水文气象监控设备、生物信号采集系统、工业数据采集系统等。在上述无线通信技术应用实际中,无线通信协议起着至关重要的作用,直接关系到无线通信系统的安全性和误码率以及系统运行的速度。

医院病房呼叫器主要应用于医院病房、养老院等地方,方便医护人员和病人之间的沟通,是提高医院水平的必备设备之一。病房呼叫系统的优劣直接影响到病人的安危,历来受到各大医院的普遍重视。它要求及时、准确可靠、简便可行、利于推广。

我国传统的医院病房呼叫系统采用的大多都是有线传输,存在着安装布线复杂,检查维修困难,抗干扰能力差,病房扩建不易及费用高,不雅观的缺陷。为克服以上的不足,本毕业设计介绍的是一种无线的医院病房呼叫器,其使用专用的无线收发模块nRF905,并使用单片机控制。这样不但解决了复杂布线等问题,更能提高医疗服务水平,适应现代社会需求。

- 3 -

- 4 -

目录

第1章绪论 (1)

1.1 背景 (1)

1.2 设计的目的及意义 (1)

1.3 相关领域国内外技术和发展趋势............................ . (2)

第2章方案设计 (3)

2.1 方案概述 (3)

2.2 方案设计 (3)

2.2.1 单片机的选择 (4)

2.2.2 无线收发模块的选择 (4)

2.2.3 按键的选择 (4)

2.2.4 显示方式的选择 (5)

2.2.5 报警器的选择 (5)

2.2.6 电源转换电路的选择 (5)

第3章硬件电路的设计 (6)

3.1 单片机AT89S52的功能及最小系统的电路设计 (7)

3.2 nRF905无线收发模块的功能 (9)

3.2.1 nRF905无线收发模块的特点 (10)

3.2.2 nRF905无线收发模块工作模式 (11)

3.2.3 nRF905无线收发模块与单片机STC89C52的连接方案 (12)

3.3键盘电路设计.................................. .. (13)

3.4 地址变更电路的设计 (14)

3.5 LED数码管显示电路 (16)

3.5.1 LED数码管的引脚说明 (16)

3.5.2 LED数码管与单片机接口电路的设计 (16)

- 5 -

3.6报警电路设计.................................. (17)

3.7电压转换电路的设计 (17)

第4章软件设计 (19)

4.1 主机软件设计........................................ (19)

4.2 分机软件设计 (21)

4.3 无线发送模块子程序设计............................ (21)

4.4 无线接收模块子程序设计............................ (23)

第5章调试与实现 (26)

5.1 KeilC51软件简介............................... ...................... . (26)

5.2系统硬件调试.................................. (28)

第6章结论 (29)

第7章社会经济效益分析 (30)

致谢.................................. .................................. .. (31)

参考文献.................................. .................................. .. (32)

附录Ⅰ从机电路原理图 (35)

附录Ⅱ主机电路原理图 (36)

附录Ⅲ主机程序清单 (37)

附录Ⅳ从机程序清单 (45)

- 6 -

- 7 -

第1章绪论

1.1背景

近年来,随着人们生活水平的不断提高,人们对医疗水平的要求也不断提高,特别是突发情况下病人请求值班医生或护士进行及时诊断或护理,这一环节对提高医院的管理服务质量显得尤其重要,这同时也大大提高了医院医护人员应对突发事件的能力。在以往医院,病人遇到突发情况时,由于向医护人员得不到及时的救助,往往错过了最佳治疗的时间,最后造成小病酿成大病,大病酿成无法医,最后导致无药可医以至于死亡,因此,一种新型医院病房呼叫器的研制很有必要。医院病房呼叫器可将病人的请求快速传送给值班医生或护士,并在值班室的监控中心主机上留下准确完整的记录,是提高医院和病室护理水平的必备设备之一。呼叫器的优劣直接关系到病员的安危,历来受到各大医院的普遍重视。它要求及时、准确、可靠、简便可行、利于推广。

目前大多医院的病床呼叫系统采用有线传输方式,有线传输占用空间较大,耗材多,而且不易移动,因此现今需要对病床呼叫系统进行升级,近年来在我国无线领域有了大的进展,这为此提供了有力的技术支持。

1.2设计的目的和意义

一款适合服务性行业的无线呼叫系统,对人们生活的改善,对企业形象的提升起着十分重要的作用。对医院单位而言,在同类行业中,安静清雅的环境更具有竞争优势,快而准的服务极大地提高了工作人员的办事效率,便捷的呼叫系统节约了大量的人力,财力。对医务人员而言,不需要时刻去查房、巡逻,更不需要高声应答病人或家属,免去了无数次的来回奔波,维护了医院良好的安静环境,及时而准确的给病人带来需要和服务。对病人及其家属而言,不必在医院大声喧哗地呼叫医务人员,也不用亲自走到护士房告知护士,更不用在各个病房到处寻找护士。即使病人在没有家属陪伴的情况下,也能及时呼叫得到护理。只需轻轻一按从机的按钮,无论是在床上还是走廊,还是厕所,都能传达呼叫的信号。护士只要在总机旁观察就能看到呼叫的房- 8 -

间,便能立刻派护士去查看和护理。

本设计是基于单片机和nRF905无线收发模块实现的医用无线病床呼叫系统,分为无线发射部分、无线接收部分、单片机控制部分、地址变更部分、显示部分、警报呼叫部分等。本系统采用无线电方式实现信号的传递,单片机作为控制部件协调处理整个系统的工作,实现无线信号的远距离传输,减少了材料的耗费,安装简单,使医患沟通更加灵活,是无线网络技术在医院设备上的大胆应用,具有创新性。

1.3相关领域国内外技术和发展趋势

无线呼叫器是在有线呼叫器的基础上发展起来的,我们所常见的有线呼叫器,如:医院的病床呼叫器、电梯里的求助按钮和公共场所的紧急报警按钮等,因其操作简单而有效。但是有线呼叫器需要布线,费用高,施工繁琐而无法得到广泛应用。有需求,就会有产品,无线呼叫器应运而生。无线呼叫器从技术和应用可大致分为三个阶段:第一阶段以调幅AM技术为主(即:第一代无线呼叫器),主要用于场地较小的场所;第二阶段是以调频FM为核心技术的产品(即:第二代无线呼叫器系统),信号稳定,适合大型组网,应用行业从茶楼、咖啡厅等小型服务场所,发展到大型娱乐场所、酒店、工厂、超市、学校和银行等行业,这个阶段是无线呼叫器应用发展最为迅速的一个时期;第三阶段是调频技术、语音技术和对讲技术为核心的语音无线呼叫系统,实现了无线呼叫器从模拟、数字到语音的蜕变,成为无线呼叫器系统应用的趋势和主流。

- 9 -

第2章方案设计

在对课题进行了深入了解的基础上,形成了最终的设计方案,本章的内容对本设计方案进行较为详细的说明。首先应该对所设计的电路的总体框图有所了解,更应该了解各个部分。根据对系统的分析与构思,本系统主要是由呼叫机和主机两部分组成。呼叫机部分包括:无线发送部分、单片机控制部分、地址变更部分、按键部分;主机部分包括:无线接收部分、单片机控制部分、按键部分、报警部分、显示部分。所以本章旨在如何最优的选择各部分器件以达到最佳的性价比。

2.1方案概述

本毕业设计是医院病房呼叫器的设计,设计的关键是实现呼叫机与主机之间的单工通信。通过SPI通信协议,实现单片机对无线收发模块nRF905的控制以及数据的读取。当主机收到呼叫机的呼叫时,单片机会控制报警器发出报警信号并通过LED数码管进行显示。此外还可以通过主机上的按键来对其进行删除、翻页等操作。

本设计系统的硬件设计是以单片机STC89C52与nRF905无线模块为核心器件的一套收发系统,以制作出的电路板为实物,以C语言进行软件程序设计。系统主要由无线收发模块、数码显示电路、键盘电路、报警电路、单片机控制电路部分组成,电路图如附录I与附录II所示。

2.2方案设计

根据对系统工作的基本原理的了解,此设计的总体设计方案如图2.1所示。

图2.1 总的设计方案图

- 10 -

2.2.1 单片机的选择

单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机诞生于二十世界70年代末,各种制造商也是很多。比如台湾的义隆公司出品的EMC单片机,MICROCHIP公司出品的PIC单片机,还有STC公司出品的STC系列单片机,以及ATMEL公司出品的AT系列单片机。根据本课题,选择了STC公司的STC89C52单片机。因为其性价比最高,价格还很便宜,而且能完全能满足所需的功能。

2.2.2 无线收发模块的选择

本毕业设计的无线收发模块选择的是nRF905无线模块。

nRF905是挪威Nordic VLSI公司推出的单片射频收发器,工作电压为1.9-3.6V。32引脚QFN封装(5x5mm),工作于433/868/915MHz三个ISM(T业、科学和医学)频道,频道之间的转换时间小于650us。nRF905由频率合成器、接收解调器、功率放大器、晶体振荡器和调制器组成,不需外加声表面滤波器,ShockBurst工作模式,自动处理字头和CRC(循环冗余码校验),使用SPI接口与微控制器通信,配置非常方便。此外,其功耗非常低,以一10dBm的输出功率发射时电流只有1lmA,工作于接收模式时的电流为12.5mA,内建空闲模式与关机模式,易于实现节能。nRF905适用于无线数据通信、无线报警及安全系统、无线开锁、无线监测、家庭自动化和玩具等诸多领域。

nRF905片内集成了电源管理、晶体振荡器、低噪声放大器、频率合成器、功率放大器等模块,曼彻斯特编码/解码由片内硬件完成.无需用户对数据进行曼彻斯特编码,因此使用非常方便。

2.2.3 按键的选择

在单片机中,常用的按键有独立按键和行列式按键两种。独立式按键就是指各键相互独立,每个按键分别各接一根输入线,通过检测输入线的电平状态就可以很容易地判断出哪个按键被按下。独立式按键是直接用I/O口线构成的单个按键电路,其特

- 11 -

点是每个按键单独占用一根I/O口线,每个按键的工作不会影响其它I/O口线的状态。即一个按键对应着一个端口输入,每一个按键都有一个按键电路来判断其是否按下。

行列式按键,也称矩阵式按键,用于按键数目较多的场合,它由行线和列线组成,按键位于行,列的交叉点上。在按键数目较多的场合,行列式按键与独立式按键相比,要节省很多的I/O口线。所以综合比较之下,因为本次设计中,只需要1个发送键,1个删除键,1个翻页键,按键不是很多,完全没有必要选择复杂的行列式按键。所以,选择独立式按键作为本次设计的按键系统。

2.2.4显示方式的选择

显示系统是设计中重要的输出部分,用来显示系统的输出结果,以便设计人员对系统进行调试和维护等。LCD与LED都是目前两种成熟的显示技术,LCD是由液态晶体组成的显示屏,而LED则是由发光二极管组成的显示屏。LED显示屏与LCD显示屏相比,LED技术更加先进,而且本次毕业设计只需要1个LED数码管即可实现所要求的功能,所以选择LED数码管作为显示系统。

2.2.5 报警器的选择

报警电路也是本次设计电路当中一个比较重要的环节。可使用蜂鸣器,扬声器,喇叭等多种器件,蜂鸣器是由蜂鸣片振动而发声的,扬声器一般指由线圈驱动而发声的。虽然蜂鸣器只能发出滴滴的警报音,但是比较适用于本系统,为得到最高的性价比,所以选择蜂鸣器作为报警系统的主体器件。

2.2.6 电源转换电路的选择

本毕业设计中使用的无线模块需要的供电电压为3.3V,而单片机所使用的电压为5V,故需要电源转换电路。这里使用的是AMS1117-3.3V芯片。

AMS1117分为两个版本,固定电压输出版本和可调电压输出版本,固定电压输出版本的输出电压可以为:1.8V,3.3V和5.0V,可调电压输出版本能提供的输出电压范围为:1.8V~5.5V。

考虑到使用上的稳定和方便,所以我选择了3.3V固定电压输出版本的AMS1117。- 12 -

第3章硬件电路的设计

本毕业设计的设计方案是由呼叫机和主机构成,使用nRF905无线收发模块,使系统工作在频段433MHz附近。一个完整的无线呼叫系统,是由一台主机、若干台呼叫机构成。每个呼叫机有唯一的识别码,并且识别码可以随时修改。当用户按发射键后,识别码被发送出去,主机接收到服务申请后,根据识别码鉴别出是由哪一台呼叫器发出的申请, 并给出声音提示和显示出呼叫器的识别号。如果有几个呼叫器在短时间里同时呼叫, 主机则按照先后顺序存储起来, 通过按键实现翻页查询。此外,为了避免重复处理服务申请,主机还可以通过按键实现删除功能。呼叫分机和接收主机的连接组成框图如图3.1和图3.2所示。

图3.1 呼叫分机框图

图3.2 接收主机框图

分机由拨码开关来控制地址位的设置, 当扫描到呼叫按钮按下时, 其地址被读入单片机, 经过处理后再送至无线发射模块发射。分机用来进行呼叫,分机的核心电路即是单片机与无线发送模块的连接电路。主机负责接收分机发来的信号, 并进行显

- 13 -

示和报警。主机上还设有键盘用于翻查、删除记录, 所以主机上应接有键盘电路、显示电路和报警电路。

3.1单片机STC89C52的功能及最小系统的电路设计

STC89C52是一个低功耗,高性能CMOS 8位单片机,片内含8k BytesISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的STC89C52可为许多嵌入式控制应用系统提供高性价比的解决方案。STC89C52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,片内时钟振荡器。

另外,STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

STC89C52共有四个8位的并行I/O口:P0、P1、P2、P3端口,对应的引脚分别是P0.0 ~P0.7,P1.0 ~P1.7,P2.0 ~P2.7,P3.0 ~P3.7,共32根I/O线。每根线可以单独用作输入或输出。

P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0不具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。

P1 口:P1口是一个具有内部上拉电阻的8 位双向I/O口,p1输出缓冲器能驱动4 个TTL逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.1分别作定时器/计数器2的外部- 14 -

计数输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX)。在flash编程和校验时,P1口接收低8位地址字节。此外,P1.0和P1.1分别作定时器/计数器2的外部计数输入(P1.0/T2)和定时器/计数器2 的触发输入(P1.1/T2EX)。

P2口:P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在使用8位地址访问外部数据存储器时,P2口输出P2锁存器的内容。在flash 编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3 口:P3口是一个具有内部上拉电阻的8位双向I/O口,p3 输出缓冲器能驱动4 个TTL逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。P3口亦作为STC89C52特殊功能使用,在flash编程和校验时,P3口也接收一些控制信号。单片机的引脚图如图3.3所示。

图3.3 STC89C52单片机引脚图

- 15 -

单片机最小系统,是指用最少的元件与单片机组成的可以工作的系统。对52单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路。单片机接口电路主要用来连接计算机和其他外部设备,各功能模块及原理如下:

复位电路:单片机最小系统复位电路的极性电容C3的大小直接影响单片机的复位时间,一般采用10-30μF,51单片机最小系统容值越大需要的复位时间越短。单片机工作之后,只要在RST引线上加载10ms以上的高电平,单片机就能有效地复位。CS-51单片机通常采用自动复位和按键复位两种方式。这里采用按键复位和上电复位两种电路结合。

晶振电路:典型的晶振取11.0592MHZ,晶振越大,则单片机的处理速度越快。单片机的最小起振电容C1,C2一般采用15-33pF,并且电容离晶振越近越好。单片

所示。

机最小系统的设计电路如图3.4

3.2 nRF905无线收发模块的功能

nRF905单片无线收发器是挪威Nordic公司推出的单片射频发射器芯片,工作电压为1.9-3.6V,32引脚QFN封装(5mm×5mm),工作于433/868/915MHz3个ISM频道(可

- 16 -

以免费使用)。nRF905无线收发模块的引脚图如图3.5所示。

图3.5 nRF905引脚图

nRF905可以自动完成处理字头和CRC(循环冗余码校验)的工作,可由片内硬件自动完成曼彻斯特编码/解码,使用SPI接口与微控制器通信,配置非常方便,其功耗非常低,以-10dBm的输出功率发射时电流只有11mA,在接收模式时电流为12.5mA。nRF905单片无线收发器工作由一个完全集成的频率调制器,一个带解调器的接收器,一个功率放大器,一个晶体振荡器和一个调节器组成。ShockBurst工作模式的特点是自动产生前导码和CRC,可以很容易通过SPI接口进行编程配置。

3.2.1 nRF905无线收发模块特点

(1)真正的单片

(2)低功耗ShockBurst工作模式

(3)工作电源电压范围1.9—3.6V

(4)多通道工作—ETSI/FCC兼容

(5)通道切换时间<650us

(6)极少的材料消耗

- 17 -

(7)无需外部SAW滤波器

(8)输出功率可调至10dBm

(9)传输前监听的载波检测协议

(10)当正确的数据包被接收或发送时有数据准备就绪信号输出

(11)侦测接收的数据包当地址正确输出地址匹配信号

3.2.2 nRF905无线收发模块的工作模式

nRF905采用Nordic公司的VLSI ShockBurst技术。ShockBurst技术使nRF905能够提供高速的数据传输,而不需要昂贵的高速MCU来进行数据处理/时钟覆盖。通过将与RF协议有关的高速信号处理放到芯片内,nRF905提供给应用的微控制器一个SPI接口,速率由微控制器自己设定的接口速度决定。nRF905通过ShockBurst工作模式在RF以最大速率进行连接时降低数字应用部分的速度来降低在应用中的平均电流消耗。在ShockBurst RX模式中,地址匹配AM和数据准备就绪DR信号通知MCU 一个有效的地址和数据包已经各自接收完成。在ShockBurst TX模式中,nRF905自动产生前导码和CRC校验码,数据准备就绪DR信号通知MCU数据传输已经完成。总之,这意味着降低MCU的存储器需求也就是说降低MCU成本,又同时缩短软件开发时间。

(1)典型ShockBurst TX模式:

①当应用MCU有遥控数据节点时,接收节点的地址TX-address和有效数据TX-payload通过SPI接口传送给nRF905应用协议或MCU设置接口速度;

② MCU设置TRX_CE、TX_EN为高来激活nRF905 ShockBurst传输;

③ nRF905 ShockBurst:

无线系统自动上电

数据包完成(加前导码和CRC校验码)

数据包发送(100kbps,GFSK,曼切斯特编码)

④如果AUTO_RETRAN被设置为高nRF905将连续地发送数据包直到TRX_CE被设置为低;

⑤当TRX_CE被设置为低时,nRF905结束数据传输并自动进入standby模式。- 18 -

(2)典型ShockBurst RX模式

①通过设置TRX_CE高,TX_EN低来选择ShockBurst模式;

② 650us以后,nRF905监测空中的信息;

③当nRF905发现和接收频率相同的载波时,载波检测CD被置高;

④当nRF905接收到有效的地址时,地址匹配AM被置高;

⑤当nRF905接收到有效的数据包(CRC校验正确)时,nRF905去掉前导码、地址和CRC位,数据准备就绪(DR)被置高;

⑥ MCU设置TRX_CE低,进入standby模式低电流模式;

⑦ MCU可以以合适的速率通过SPI接口读出有效数据;

⑧当所有的有效数据被读出后,nRF905将AM和DR置低;

⑨ nRF905将准备进入ShockBurst RX、ShockBurst TX或Powerdown模式。(3)掉电模式

在掉电模式中,nRF905被禁止,电流消耗最小,典型值低于2.5uA。当进入这种模式时,nRF905是不活动的状态。这时候平均电流消耗最小,电池使用寿命最长。(4)在掉电模式中,配置字的内容保持不变。

STANDBY模式

Standby模式在保持电流消耗最小的同时保证最短的ShockBurstRX、ShockBurstTX的启动时间。当进入这种模式时,一部分晶体振荡器是活动的。电流消耗取决于晶体振荡器频率,如:当频率为4MHZ时,IDD=12uA;当频率为20MHZ 时,IDD=46uA。如果uPCLK(Pin3)被使能,电流消耗将增加。并且取决于负载电容和频率。在此模式中,配置字的内容保持不变。

3.2.3 nRF905无线收发模块与单片机STC89C52的连接方案

单片机STC89C52与nRF905无线收发模块连接,并通过SPI协议对nRF905无线收发模块进行一系列控制与通信。连接接口主要分为以下3种:

(1)模式控制

该接口由TRX_CE、TXEN、PWR组成控制由nRF905组成的高频头的四种工作模式:掉电和SPI编程模式;待机和SPI编程模式;发射模式;接收模式,各种模式的控制模式见下表1。

- 19 -

表3.1 各种模式的控制模式

PWR TRX_CE TXEN 工作模式

0 X X 掉电和SPI编程模式

1 0 X 待机和SPI编程模式

1 1 0

接收

1 1 1 发射

(2)SPI接口

SPI接口由SCK、MISO、MOSI以及CSN组成。

①在配置模式下单片机通过SPI接口配置高频头的工作参数;

②在发射/接收模式下单片机SPI接口发送和接收数据。

(3)状态输出接口

提供载波检测输出CD,地址匹配输出AM,数据就绪输出DR。

nRF905无线收发模块与单片机STC89C52的连接方案如图3.6所示。

图3.6 nRF905无线收发模块与单片机STC89C52的连接电路

3.3 键盘电路设计

本系统的操作接口采用独立式按键结构,独立式按键是指直接用I/O口线构成的单个按键电路,每个独立式按键单独有一根I/O口线,每根I/O口线上的按键工作状态不会影响其它I/O口线的工作状态。由于独立式按键电路配置灵活,软件结构简单但每个按键必须占用一根I/O口线,在按键数量较多时,I/O 口线的浪费较大,故在按键数量不多时,常采用这种按键电路。

- 20 -

基于89C51单片机的秒表课程设计讲解

《单片机技术》 课程设计报告 题目:基于MCU-51单片机的秒表设计班级: 学号: 姓名: 同组人员: 指导教师:王瑞瑛、汪淳 2014年6月17日

目录 1课程设计的目的 (3) 2 课程设计题目描述和要求 (3) 2.1实验题目 (3) 2.2设计指标 (3) 2.3设计要求 (4) 2.4增加功能 (4) 2.5课程设计的难点 (4) 2.6课程设计内容提要 (4) 3 课程设计报告内容 (4) 3.1设计思路 (4) 3.2设计过程 (5) 3.3 程序流程及实验效果 (6) 3.4 实验效果 (13) 4 心得体会 (14)

基于 MCS-51单片机的秒表设计 摘要:单片机控制秒表是集于单片机技术、模拟电子技术、数字技术为一体的机电一体化高科技产品,具有功耗低,安全性高,使用方便等优点。本次设计内容为以 8051 单片机为核心的秒表,它采用键盘输入,单片机技术控制。设计内容以硬件电路设计,软件设计和 PCB 板制作三部分来设计。利用单片机的定时器/计数器定时和计数的原理,用集成电路芯片、LED 数码管以及按键来设计计时器。将软、硬件有机地结合起来,使他拥有正确的计时、暂停、清零、并同时可以用数码管显示,在现实生中应用广泛。 关键词:秒表;8051;定时器;计数器 1 课程设计的目的 《单片机应用基础》课程设计是学好本门课程的又一重要实践性教学环节,课程设计的目的就是配合本课程的教学和平时实验,以达到巩固消化课程的内容,进一步加强综合应用能力及单片机应用系统开发和设计能力的训练,启发创新思维,使之具有独立单片机产品和科研的基本技能,是以培养学生综合运用所学知识的过程,是知识转化为能力和能力转化为工程素质的重要阶段。 2 课程设计题目描述和要求 2.1实验题目 开始时,显示“00.0”,第一次按下按钮后开始从0-99.9s计时,显示精度为0.1s;对用有4个功能按键,第1个按键复位00.0,第2个按键正计时开始按钮,第3个按键复位99.9,第4个按钮倒计时开始。 2.2设计指标 了解8051芯片的的工作原理和工作方式,使用该芯片对 LED 数码管进行显示控制,实现用单片机的端口控制数码管,显示分、秒,并能用按钮实现秒表起

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

89C51单片机课程设计之秒表设计实验报告

单片机课程设计报告 单 片 机 秒 表 系 统 课 程 设 计 班级: 课程名称:秒表设计 成员: 实训地点:北校机房 实训时间:6月4日至6月15日

目录 1课程设计的目的和任务 1.1 单片机秒表课程设计的概述 1.2课程设计思路及描述 1.3 课程设计任务和要求 2硬件与软件的设计流程 2.1系统硬件方案设计 2.2所需元器件 3 程序编写流程及课程设计效果 3.1源程序及注释 3.2原理图分析 3.3课程设计效果 4 心得体会

1. 课程设计的目的和任务 1.1单片机秒表课程设计的概述 一、课程设计题目 秒表系统设计——用STC89C51设计一个4位LED数码显示“秒表”,显示时间为000.0~9分59.9秒,每10毫秒自动加一,每1000毫秒自动加一秒。 二、增加功能 增加一个“复位”按键(即清零),一个“暂停”和“开始”按键。 三、课程设计的难点 单片机电子秒表需要解决几个主要问题,一是有关单片机定时器的使用;二是如何实现LED的动态扫描显示;三是如何对键盘输入进行编程;四是如何进行安装调试。 四、课程设计内容提要 本课程利用单片机的定时器/计数器定时和记数的原理,结合集成电路芯片8051、LED数码管以及课程箱上的按键来设计计时器。将软、硬件有机地结合起来,使得系统能够正确地进行计时,数码管能够正确地显示时间。其中本课程设计有三个开关按键:其中key1按键按下去时开始计时,即秒表开始键,key2按键按下去时数码管清零,复位为“00.00”. key3按键按下去时数码管暂停。 五、课程设计的意义 1)通过本次课程设计加深对单片机课程的全面认识复习和掌握,对单片机课程的 应用进一步的了解。 2)掌握定时器、外部中断的设置和编程原理。 3)通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。 4)该课程通过单片机的定时器/计数器定时和计数原理,设计简单的计时器系统, 拥有正确的计时、暂停、清零,并同时可以用数码管显示,在现实生活中应用广泛,具有现实意义 1.2课程设计思路及描述

单片机课程设计——基于51单片机的温度监控系统设计

单片机课程设计报告 题目:温度监控系统设计 学院:能源与动力工程学院 专业:测控技术与仪器专业 班级: 2班 成员:魏振杰 二〇一五年十二月

一、引言 温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。 随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。 作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。本设计具有操作方便,控制灵活等优点。 本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度监控,完成了课题所有要求。 二、实验目的和要求 2.1学习DS18B20温度传感芯片的结构和工作原理。 2.2掌握LED数码管显示的原理及编程方法。 2.3掌握独立式键盘的原理及使用方法。 2.4掌握51系列单片机数据采集及处理的方法。 三、方案设计

基于51单片机课程设计

基于51单片机课程设计报告 院系:电子通信工程 团组:电子设计大赛1组 姓名: 指导老师:

目录 一、摘要 (3) 二、系统方案的设计 (3) 三、硬件资源 (5) 四、硬件总体电路搭建 (13) 五、程序流程图 (14) 六、设计感想 (14) 七、参考文献 (16) 附录 (17) 附录 1 程序代码 (17)

一、摘要 本设计以STC89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、led控制程序、超温报警程序。 关键词:STC89C51单片机 DS18B20温度芯片温度控制 ,LED报警提示. 二、系统方案的设计 1、设计要求 基本功能: 不加热时实时显示时间,并可手动设置时间; 设定加热水温功能。人工设定热水器烧水的温度,范围在20~70度之间,打开开关后,根据设定温度与水温确定是否加热,及何时停止加热,可实时显示温度; 设定加热时间功能。限定烧水时间,加热时间内超过温度上限或低于温度下限报警,并可实时显示温度。 2、系统设计的框架

本课题设计的是一种以STC89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。其主要包括:电源模块、温度测量及调理电路、键盘、数码管显示、指示灯、报警、继电器及单片机最小系统。 图1 系统设计框架 3 工作原理 温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机STC8951获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) ,这里采用通过LED1和LED2取代!!! 当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声,这里采用HLLED提示。

(完整)基于89C51单片机交通灯课程设计要点

(完整)基于89C51单片机交通灯课程设计要点 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基于89C51单片机交通灯课程设计要点)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基于89C51单片机交通灯课程设计要点的全部内容。

华北水利水电学院 基于C51单片机 交通灯课程设计实验报告 姓名:田坤 班级:125 专业:电子信息科学与技术 指导老师:辛艳辉刘明堂 2013年1月16日 摘要 近年来,随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,正在不断的应用到实际生活中,并且根据具体硬件结构软硬件结合,加以完善。 十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊.那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。交通信号灯控制方式很多。本系统采用MCS-51系列单片机STC89C51为中心器件来设计交通灯控制器,实现了通过信号灯对路面状况的智能控制。从一定程度上解决了交通路口堵塞、车辆停车等待时间不合理、急车强通等问题.系统具

有结构简单、可靠性高、成本低、实时性好、安装维护方便等优点,有广泛的应用前景。 关键词:交通灯 单片机 数码管 一 。总体设计思路 1.1设计目的及思路 设计目的 了解交通灯管理的基本工作原理,熟练掌握STC89C51的工作原理和应用编程,熟悉STC89C51单片机并行接口的各种工作方式和应用,并了解计数器/定时器的工作方式和应用编程外部中断的方法,掌握多位LED 显示问题的解决。 设计思路 (1)分析目前交通路口的基本控制技术,提出自己的交通控制的初步方案。 (2)确定系统交通控制的总体设计,增加了倒计时显示提示。 (3)进行显示电路。 (4)进行软件系统的设计。 1。2 实际交通灯显示时序及状态转换的理论分析 图1所示为红绿灯转换的状态图。 图1 红绿灯状态转换图 表1 十字路口指示灯燃 亮方 S1 S4 S3 S2

89C51单片机课程设计之秒表设计实验报告.

这里可以加学校LOGAL 单片机课程设计报告 院系:12级物信系 班别:光信息科学与技术7班 课程名称:秒表设计 姓名:龚俊才欧一景 学号:1210407033 1210407041 指导老师:张涛 2011.12.23

目录 1课程设计的目的和任务 1.1 单片机秒表课程设计的概述 1.2课程设计思路及描述 1.3 课程设计任务和要求 2硬件与软件的设计流程 2.1系统硬件方案设计 2.2软件方案设计 3 程序编写流程及课程设计效果3.1源程序及注释 3.2原理图分析 3.3课程设计效果 4 心得体会 5 相关查阅资料

1. 课程设计的目的和任务 1.1单片机秒表课程设计的概述 一、课程设计题目 秒表系统设计——用STC89C52RC设计一个4位LED数码显示“秒表”,显示时间为 00.00~99.99秒,每10毫秒自动加一,每1000毫秒自动加一秒。 二、增加功能 增加一个“复位”按键(即清零),一个“暂停”和“开始”按键。 三、课程设计的难点 单片机电子秒表需要解决三个主要问题,一是有关单片机定时器的使用;二是如何实现LED 的动态扫描显示;三是如何对键盘输入进行编程。 四、课程设计内容提要 本课程利用单片机的定时器/计数器定时和记数的原理,结合集成电路芯片8051、LED数码管以及课程箱上的按键来设计计时器。将软、硬件有机地结合起来,使得系统能够正确地进行计时,数码管能够正确地显示时间。其中本课程设计有两个开关按键:其中key1按键按下去时开始计时,即秒表开始键(同时也用作暂停键),key2按键按下去时数码管清零,复位为“00.00”. 五、课程设计的意义 1)通过本次课程设计加深对单片机课程的全面认识复习和掌握,对单片机课程的应用进一步 的了解。 2)掌握定时器、外部中断的设置和编程原理。 3)通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。 4)该课程通过单片机的定时器/计数器定时和计数原理,设计简单的计时器系统,拥有正确的 计时、暂停、清零,并同时可以用数码管显示,在现实生活中应用广泛,具有现实意义 六、课程设计仪器 a) 集成电路芯片8051,七段数码管,89C51单片机开发板 b) MCS-51系列单片机微机仿真课程系统中的软件(Keil uvision2)。

单片机课程设计题目..(DOC)

单片机课程设计题目 1 基于单片机的数字电压表设计 2 基于单片机的智能电压表设计(温度检测器) 3 基于单片机的智能船模设计 4 基于单片机的电梯控制模型设计 5 基于单片机的水位控制系统设计(STC89—51型) 6 基于单片机的多路数据采集系统设计 7 基于单片机的8路抢答器设计 9 基于单片机的数字温度计设计 10 基于单片机的智能小车设计 11 基于单片机的数字温度计设计 12 基于单片机的遥控器设计 13 基于单片机的串行通信发射机设计 14 基于单片机的简易智能电动车设计 15 基于单片机的太阳能热水器控制器设计 16 基于单片机的太阳能热水器控制器设计 17 MCS-51单片机温度控制系统的设计 18 直流电动机的转速检测与脉宽调速 19 基于单片机的智能机器人的设计 20 基于单片机的简易无线竞赛系统的设计 21 基于单片机的车辆闯红灯监控系统设计(89C51) 22 基于单片机控制的井下瓦斯监控系统设计 23 基于单片机的煤气泄漏检测报警装置设计 24 基于单片机的井式渗碳炉控制系统设计 25 基于单片机的蔬菜大棚温湿度智能控制系统设计 26 基于单片机的电子钟设计 27 基于单片机的电力线载波节电群控设计 28 基于单片机的液位控制器设计

29 基于单片机的串行通信发射机设计 30 基于单片机的智能八路抢答器设计 32 基于单片机的水位监控器设计(STC12C2052AD) 32 基于单片机的点阵电子显示屏设计 33 基于单片机的智能温度控制系统设计 34 基于单片机的智能时钟控制器设计 35 基于单片机的智能温控系统设计 36 基于单片机的智能寻迹避障小车设计 37 基于单片机的家用太阳能热水器控制器设计 38 基于单片机的新型抢答计分器设计 39 基于单片机的热敏电阻测温系统设计 40 基于单片机的林火监测系统-飞艇姿态控制系统设计 41 基于单片机的人性化时钟控制器设计 42 基于单片机的智能型电话远程遥控器设计 43 基于单片机的远程通讯控制器设计 45 基于单片机的智能水位控制器设计 46 基于单片机的水位控制系统设计 47 基于单片机的智能电动小车设计 48 基于单片机的数码电子时钟设计 49 -基于单片机的数控直流电源设计 50 基于单片机的交通灯控制器设计 51 基于单片机的数字温度计设计(STC89C51) 52 基于单片机的智能小车设计 53 基于单片机的温度控制器设计 54 基于单片机的串行通信发射机设计(版本3) 55 基于单片机的温度控制系统设计(版本1) 56 基于单片机的交通灯控制系统设计 D58-基于单片机的电子万年历设计 D59-基于单片机的水位控制器设计 D60-基于单片机的水位控制系统设计(版本2)

51单片机数字秒表设计说明

单片机系统课程设计 成绩评定表 设计课题

单片机系统课程设计 目录 第1章数字式秒表的设计介绍 (5) 1.1设计任务及功能要求说明 (5) 1.2工作原理及其方法 (5) 第2章数字式秒表硬件系统的设计 (7) 2.1数字式秒表硬件系统各模块功能简要介绍 (7) 2.1.1 AT89S52简介 (7) 2.1.2时钟电路 (8) 2.1.3键盘电路 (8) 2.1.4复位电路 (9) 2.1.5 驱动及显示电路 (9) 2.1.6 单片机下载口电路 (10) 2.2 数字式秒表的硬件系统设计图…………………11. 2.2.1 电路原理图…………………………………….11. 2.2.2 PCB图…………………………………………11. 第3章数字式秒表软件系统的设计………………….11. 3.1 数字式秒表使用单片机资源情况 (11) 3.2 主程序流程图……………………………………12. 3.3中断服务程序流程图 (12)

3.4显示程序流程图 (14) 3.5软件系统程序清单 (14) 第4章设计总结 (15) 4.1 数字式秒表的设计结论及使用说明 (15) 4.2 程序仿真与结果 (15) 4.3 误差分析及解决方法……………………………16.. 总结 (16) 参考文献 (17) 附录 (17) 第1章数字式秒表的设计介绍 1.1设计任务及功能要求说明 由单片机接收小键盘控制递增计时,由LED 显示模块计时时间,显示格式为 XX(分):XX(秒).XX,精确到0.01s的整数倍。绘制系统硬件接线图,并进行系统仿真和实验。画出程序流程图并编写程序实现系统功能。 使用单片机AT89S52作为主要控制芯片,以四位一体共阳极数码显示管通过三极管驱动作为显示部分,设计一个具有特定功能的数字式秒表。该数字式秒表上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。该数字式秒表通过按键控制可实现开始计1时、暂停计时、连续计时、清零和停止功能。 1.2工作原理及其方法 使用AT89S52单片机作为核心控制部件,采用12M晶体振荡器及微小电容构成振荡电路;采用S8550作为数码管的驱动部分;用两个四位一体共阳极或共阴极数码显示管作为显示部分,构成数字式秒表的主体结构,配合独立式键盘和复位电路完成此秒表的复位、计时、连续、清零、停止各项功能。 对于时钟,它有两方面的含义:一是指为保障系统正常工作的基准振荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间,它通常有两种实现方法:一是用软件实现,即用单片机内部的可编程定时/计数器来实现,但误差很大,主要用在对时间精度要求不高的场合;二是用专门的时钟芯片实现,在对时间精度要求很高的情况下,通常采用这种方法。 LED数码显示器有如下两种连接方法:共阳极接法:把发光二极管的阳极连在一起构成公共阳极,使用时公共阳极接+5V,每个发光二极管的阴极通过电阻

单片机课程设计题目

1.电子秒表设计:设计一个4位LED数码显示“秒表”,显示时间为00.00~99.99秒,每0.01 秒自动加一。另设计一个“开始”按键和一个“复位”按键。(2人) 2.简易4位(0—9999)计算器(+、-、*、/、四种运算)设计:设计一个能实现0-9整数 加法运算的计算器,利用LCD显示。键盘包括0-9及“+、-、*、/”和“=”及“清除” 16个按键。(除法应保留足够的的小数,满足共4位的显示)要有错误显示Err。(2人) 3.频率数显表:设计一个能实现对脉冲频率测量显示的电路。输入频率范围(0-10k),显 示为xxx.xx,用两个指示灯指示显示数字的单位,Hz和KHz两档,根据输入频率自动切换显示档。(脉冲信号是由外部信号发生器提供)(2人) 4.信号灯控制系统:南北线有红黄绿三只信号灯,东西线有红黄绿三只信号灯。 要求:(闪烁3次,每次亮灭时间各1s)时序要求如下(原始状态) 设计一个递增键和一个递减键,用于调节功能键选定的方向的绿灯时间,时间范围(10s-50s),每次以0.5S为增量。(2人) 5.简易电子时钟:用4位LED数码管分别显示小时数分钟和秒数,两个按键,一个为功能 键,用于切换显示界面(两个显示界面,一个是小时分钟,一个是秒数)长按此键3S 进入当前界面的参数修改界面。另一个按键用于参数修改(参数递增或递减),长按此键3s退参数修改,时间要求用单片机自带的定时器得到。(2人) 6.智能电子钟(LCD显示):以A T89C51单片机为核心,制作一个LCD显示的智能电子 钟:(1) 计时:秒、分、时、天、周、月、年。(2) 闰年自动判别。(3) 五路定时输出,可任意关断(最大可到16路)。(4) 时间、月、日交替显示。(5) 自定任意时刻自动开/关屏。(6) 计时精度:误差≤1秒/月(具有微调设置)。(7) 键盘采用动态扫描方式查询。所有的查询、设置功能均由功能键K1、K2完成。采用时钟芯片DS1302进行制作 7.多路报警器设计。用AT89C51单片机设计报警系统,用16个开关模拟报警点,当有 开关闭合时,用P1.0产生方波信号驱动蜂鸣器作为报警信号,同时用2位数码管显示报警点(即是第几个开关)。(2人) 8.简易数字电压表设计。利用单片机AT89S51与AD设计一个数字电压表,能够测量0- 36V之间的直流电压值,用LCE显示(根据测量精度,自定显示的位数)。(2人) 9.波形发生器。三种信号:正弦波、方波、三角波。利用DA转换器设计一波形发生器,

51单片机红绿灯课程设计

1 电源提供方案 为使模块稳定工作,须有可靠电源。因此考虑了两种电源方案:方案一:采用独立的稳压电源。此方案的优点是稳定可靠,且有各种成熟电路可供选用;缺点是各模块都采用独立电源,会使系统复杂,且可能影响电路电平。 方案二:采用单片机控制模块提供电源。改方案的优点是系统简明扼要,节约成本;缺点是输出功率不高。综上所述,选择方案二。 2 显示界面方案 该系统要求完成倒计时功能。基于上述原因,我考虑了二种方案:方案一:采用数码管显示。这种方案只显示有限的符号和数码字符,简单,方便。方案二:采用点阵式LED 显示。这种方案虽然功能强大,并可方便的显示各种英文字符,汉字,图形等,但实现复杂,成本较高。 综上所述,选择方案一。 3 输入方案: 设计要求系统能调节灯亮时间,并可处理紧急情况,我研究了两种方案:方案一:采用8155扩展I/O 口及键盘,显示等。 该方案的优点是:使用灵活可编程,并且有RAM,及计数器。若用该方案,可提供较多I/O 口,但操作起来稍显复杂。 方案二:直接在I/O口线上接上按键开关。 由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用。

综上所述,选择方案二。 3.1单片机交通控制系统的通行方案设计 设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。其具体状态如下图所示。说明:黑色表示亮,白色表示灭。交通状态从状态1开始变换,直至状态6然后循环至状态1,周而复始,即如图2.1所示: 图1 交通状态 本系统采用MSC-51系列单片机AT89C51作为中心器件来设计交通灯控制器。实现以下功能:

80c51单片机课程设计word文档良心出品

单片机课程设计报告 题目: 基于51单片机发光牌与伴奏音乐系统 专业班级机械111班 姓名 学号

一、设计目的 (一)、以AT89C51单片机为主体,设计一个有伴奏音乐的发光牌。 1、功能 放光牌用数码管显示,分别按顺序显示出“2”、“0”、“1”、“3”的数字样。而且不断的循环从左到右显示。同时还伴有歌名为“同一首歌”的旋律。 发光牌由数码管进行设置,歌声的旋律则由蜂鸣器来实现。 2、效果 即数码管为发光牌,同时伴有歌声 发光牌效果图可如下

二、硬件系统 AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz工作频率,使用AT89C51单片机时无须外扩存储器。 (1)、硬件总电路图如下 其中AT89C51单片机的设置如下 选择12MH的晶振,该单片机选用24V的电压。其中电路图中的7447芯片中的A,B,C,D,E,F,G 引脚是引出来用来分别接四个数码管的。其中低电平代表通电,其数码管的0~9的数字代码如下: 0X01、0X12、0X24、0X38、0X41、0X52、 0X64、0X78、0X81、0X92. 并通过p2.0、p2.1、p2.2、p2.3引脚分别来控制四个数码管的得电顺序。从而实现发光牌的设置和控制。 、对蜂鸣器的控制的电路介绍)2(. 为般是指时钟电路引脚、其中XTAL1XTAL2在片内它是振荡器反相放大器的

输接外部晶振和微调电容的一端,TAL1:X入;若使用外部时钟时,该引脚必 须接地。在片内它是振荡器反相放大器的:接外部晶振和微调电容的另一端,XTAL2 输出;若使用外部时钟时,该引脚接外部时钟的输入端。利用这两个引脚可以对歌曲的节奏和时间进行控制。从而演奏蜂鸣器可根据不同代码发出声音。其中歌曲的谱音可用代码表示,出“同一首歌”的旋律。三、软件系统protues,仿真用软件软件编程序用keil软件其中控制歌曲播放的流程图如下 开始 定义晶振频率 12000000HZ

简单51单片机数字时钟设计

题目:简单51单片机数字时钟设计 院系: 物理与电气工程学院 专业:自动化专业 班级:10级自动化 姓名:苏吉振 学号:101103022 老师:李艾华

引言 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。 目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。 单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟是采用数字电路实现对时,分,秒数字显示的计时装置,广泛用于个 人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

单片机课程设计题目11级1

题目1 电子时钟(LCD显示) 设计要求 以AT89C51单片机为核心的时钟,在LCD显示器上显示当前的时间: ●使用字符型LCD显示器显示当前时间。 ●显示格式为“时时:分分:秒秒”。 ●用4个功能键操作来设置当前时间,4个功能键接在P1.0~P1.3引 脚上。 功能键K1~K4功能如下。 ●K1—进入设置现在的时间。 ●K2—设置小时。 ●K3—设置分钟。 ●K4—确认完成设置。 程序执行后工作指示灯LED闪动,表示程序开始执行,LCD显示“00:00:00”,然后开始计时。 题目2 基于数字温度传感器的数字温度计 设计要求 利用数字温度传感器DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量范围为?55℃~125℃,精确到0.5℃。所测量的温度采用数字显示,控制器使用单片机AT89C51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示。 题目3 十字路口交通灯控制 设计要求 设计一个十字路口交通灯控制器。用单片机控制LED模拟交通灯。东西

向通行时间为80s,南北向通行时间为60s,缓冲时间为3s。 本项目为典型的LED显示和中断定时电路。利用定时器T0产生每10ms 一次的中断,每100次中断为1s。对两个方向分别显示红、绿、黄灯,并显示相应的剩余时间。值得注意的是,A方向红灯时间=B方向绿灯时间+黄灯缓冲时间。 题目4 节日彩灯控制器的设计 设计要求 以单片机为核心,设计一个LED显示的节日彩灯控制器,P1.2~P1.5引脚上接有4个按键,4个按键的各自的功能如下: ●P1.2—开始键,按此键则灯开始流动(由上而下)。 ●P1.3—停止键,按此键则停止流动,所有灯为暗。 ●P1.4—上,按此键则灯由上向下流动。 ●P1.5—下,按此键则灯由下向上流动。 本题目本质上是由按键控制功能的流水灯,LED工作的方式通过键盘的扫描实现。其中的LED采取共阳极接法,通过依次向连接LED的I/O口送出低电平,即可实现所要求的功能。 题目5 数字音乐盒的设计 设计要求 以单片机为核心,设计一个数字音乐盒: 利用I/O口产生一定频率的方波,驱动蜂鸣器,发出不同的音调,从而演奏乐曲(最少3首乐曲,每首不少于30s)。采用LCD显示信息。开机时有英文欢迎提示字符,播放时显示歌曲序号(或名称)。可通过功能键选择乐曲、暂停、播放。 题目6 单片机控制步进电机 设计要求

51单片机控制LED灯程序设计

51单片机:LED灯亮灯灭程序设计 1.功能说明:控制单片机P1端口输出,使P1.0位所接的LED点亮,其他7只灯熄灭。 程序: 01: MOV A , #11111110B ; 存入欲显示灯的位置数据 02: MOV P1,A ; 点亮第一只灯 03: JMP $ ; 保持当前的输出状态 04: END ; 程序结束 2.功能说明:单片机P1端口接8只LED,点亮第1、3、4、6、7、8只灯。 程序:

01:START: MOV A , #00010010B ; 存入欲显示灯的位置数据 02:MOV P1,A ; 点亮灯 03:JMP START ; 重新设定显示值 04:END ; 程序结束 3.功能说明:单片机P1端口接8只LED,每次点亮一只,向左移动点亮,重复循环。 程序: 01:START: MOV R0, #8 ;设左移8次 02:MOV A, #11111110B ;存入开始点亮灯位置

03:LOOP: MOV P1, A ;传送到P1并输出 04:RL A ;左移一位 05:DJNZ R0, LOOP ;判断移动次数 06:JMP START ;重新设定显示值 07:END ;程序结束 4.功能说明:单片机P1端口接8只LED,每次点亮一只,向右移动点亮,重复循环。 程序: 01:START: MOV R0, #8 ;设右移8次

02:MOV A, #01111111B ;存入开始点亮灯位置03: LOOP: MOV P1, A ;传送到P1并输出 04: ACALL DELAY ;调延时子程序05: RR A ;右移一位 06: DJNZ R0, LOOP ;判断移动次数07: JMP START ;重新设定显示值08: DELAY: MOV R5,#50 ; 09:DLY1: MOV R6,#100 ; 10: DLY2: MOV R7,#100 ;

基于stc89c51单片机的秒表设计

基于stc89c51单片机的秒表 //基于stc89c51单片机的秒表 //应用定时器和中断的知识。 //两个按键。K1是启动/暂停按键。K2是复位按键。 //显示数字从0-99. //zzuli_wuzhipeng #include #define uchar unsigned char #define uint unsigned int uchar count=0,time=0,K1num=0; uchar seg_date[11]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; // 共阳极数码管段码表 sbit K1=P3^0; sbit K2=P3^1; uchar ge=0,shi=0; void delay(uint xms) //简单延时程序 { uint i,j; for (i=xms;i>0;i--) for(j=115;j>0;j--);

void display() // 显示程序 { shi=time/10; // 分离十位 ge=time%10;// 分离个位 P2=0x01; P1=seg_date[ge];//显示个位 delay(1); P2=0x02; P1=seg_date[shi];//显示十位 delay(1); } void key() // 键盘处理程序 { if( K1==0 ) // K1键功能 { K1num++; delay(1); if( K1==0 ) { while(!K1); if( K1num==1 ) {TR0=1; } if( K1num==2 ) {TR0=0;K1num=0; } } } if(K2==0) // K2键功能 { delay(1) ; if (K2==0) { while (!K2); TR0=0; time=0; TR0=1; } } } void main () //主函数

单片机原理与应用课程设计题目2012

《单片机原理与应用》课程设计题目 1.电子秒表 本设计以MCS-51系列单片机为核心,采用常用电子器件设计,一个电源开关,两个按键,三位数码管显示,打开电源开关后显示8,每秒循环左移一位,即□□8—>□8□—>8□□—>□□8—>…,按A键开始计时,实时显示所经历的时间,按B键停止计时并显示从开始到当前时刻的时间,要求精确到0.1秒,量程为0~99.9秒。 要求按键输入采用中断方式,按键A接INT0,按键B接INT1。 2.智能温控器 本设计以MCS-51系列单片机为核心,采用常用电子器件设计,一个电源开关,两个控制温度设定按键(增大/ 减小),四位数码管分别显示设定温度和实际温度,量程为0~99度,打开电源开关后设定温度值初始化为26度。 按键输入采用中断方式,两个按键分别接INT0和INT1. 采用温度传感器进行温度测量,模数转换采用ADC0809. 单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

51单片机课程设计 AD转换

课程设计报告 华中师范大学武汉传媒学院 传媒技术学院 电子信息工程2011 仅发布百度文库,版权所有.

AD转换 要求: A.使用单片机实现AD转换 B.可以实现一位AD转换,并显示(保留4位数字)设计框图:

方案设计: AD转换时单片机设计比较重要的实验。模数转换芯片种类多,可以满足不同用途和不同精度功耗等。 外部模拟量选择的是简单的电位器,通过控制电位器来改变模拟电压。显示电压值采用一般的四位七段数码管。而AD转换芯片采用使用最广的ADC0809 ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。 下面说明各引脚功能: ?IN0~IN7:8路模拟量输入端。 ?2-1~2-8:8位数字量输出端。 ?ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。?ALE:地址锁存允许信号,输入端,高电平有效。 ?START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。 ?EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。 ?OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。 ?CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。

?REF(+)、REF(-):基准电压。 ?Vcc:电源,单一+5V。 ?GND:地 工作原理: 首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC 变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。 本次实验采用中断方式 把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。 不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。 首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。 采用中断可以减轻单片机负担。并可以使程序有更多的空间作二次开发。

51单片机课程设计源程序

TIME0_DOWN EQU F0 ;将F0设置为定时器0定时到标志 FINISH_ID EQU 30H ;学号发送标志 KEY_FLAG BIT 00H ;有键按下标志 KEY_LONG BIT 01H ;键长按 KEY_D EQU 31H ;键值存放地址 ADC0809_AD EQU 8000H ;设置ADC0809地址 DAC0832_AD EQU 0000H ;设置DAC0832地址 ADC_FLAG BIT 02H ;设置ADC0809读数据标志 ADC_DATE EQU 32H ;设置ADC0809数据地址 ADC_0 EQU 33H ;ADC0809转化为BCD码后个位存放地址 ADC_1 EQU 34H ;十分位存放地址 ADC_2 EQU 35H ;百分位存放地址 ADC_3 EQU 36H ;千分位存放地址 ORG 0000H ;程序开始,跳转至主程序 0000 020030 LJMP MAIN ORG 0003H ;外部中断0入口0003 020141 LJMP INT0_IN ORG 000BH ;设置定时器0中断入口地址 000B 020132 LJMP TIME0 ORG 0013H ;外部中断1入口0013 020151 LJMP INT1_IN ORG 0030H ;主程序开始地址 0030 758169 MAIN: MOV SP,#69H ;初始化堆栈指针 0033 C292 CLR P1.2 ;显示器清零 0035 D292 SETB P1.2 0037 753000 MOV FINISH_ID,#0 ;将标志位清零 003A C2D5 C LR TIME0_DOWN 003C C200 CLR KEY_FLAG 003E C201 CLR KEY_LONG 0040 753100 MOV KEY_D,#0 0043 C202 CLR ADC_FLAG 0045 753200 MOV ADC_DATE,#0 0048 753300 MOV ADC_0,#0 004B 753400 MOV ADC_1,#0 004E 753500 MOV ADC_2,#0 0051 753600 MOV ADC_3,#0 0054 C291 CLR P1.1 ;初始化键盘,行线置零,有键按下触发中断 0056 C293 CLR P1.3

相关文档
最新文档