北京地铁矿山法区间隧道结构设计指南070106

北京地铁矿山法区间隧道结构设计指南070106
北京地铁矿山法区间隧道结构设计指南070106

验收文件之三北京地铁矿山法区间隧道

结构设计计算指南

(试用)

北京市轨道交通建设管理有限公司

二○○六年十二月

前言

根据北京城市轨道交通矿山法修建区间隧道的地层、地面环境和埋深等实际条件,以及多年的设计施工经验,针对矿山法区间隧道设计检算中有关地层压力、计算模型、计算参数等不统一或不明确状况,在《地铁设计规范》(GB50157-2003)基础上,吸纳“北京地铁矿山法区间隧道结构设计方法”研究成果,编制了《北京地铁矿山法区间隧道设计计算指南》,供北京轨道交通建设设计参考。

本指南主要起草人:罗富荣、朱永全、陈曦、张成满、王占生、宋玉香、贾晓云、李宏建、徐凌等。

编者

2006年12月

目录

1 总则 (1)

2 设计计算技术指标 (2)

3 设计计算荷载 (4)

3.1 荷载分类和荷载组合 (4)

3.2 地层压力 (5)

3.3 地面车辆荷载引起的附加压力 (6)

3.4 地震荷载 (7)

3.5 水压力 (7)

3.6 邻近地面设施及建筑物压力荷载 (8)

3.7 人防荷载 (10)

3.8 其它荷载 (10)

4 初期支护设计计算 (10)

4.1 一般规定 (11)

4.2 初期支护结构检算模型 (11)

4.3 初期支护强度检算方法 (13)

5 二次衬砌设计计算 (146)

5.1 一般规定 (16)

5.2 计算方法 (16)

5.3 衬砌结构温度伸缩缝 (19)

条文说明 (24)

1 总则 (24)

2 设计计算技术指标 (25)

3 设计计算荷载 (25)

4 初期支护设计计算 (30)

5 二次衬砌设计计算 (32)

1 总则

1.0.1地下铁道区间主要构件设计使用年限为100年。根据承载能力和正常使用要求,采取有效措施,保证结构强度、刚度,满足结构耐久性要求。

1.0.2 结构设计计算应满足施工、运营、城市规划、环境保护、防水、防火、防迷流、防腐蚀和人民防空的要求。

1.0.3 矿山法区间隧道结构按结构“破损阶段”法,以材料极限强度进行设计。

1.0.4 设计中除参照本指南外,尚应符合《地铁设计规范》(GB50157-2003)等国家现行的有关强制性标准的规定。

1.0.5 本指南适用范围:第四纪地层中的矿山法标准单线区间隧道。

2设计计算技术指标

2.0.1地下铁道区间隧道为地铁的主体结构工程,防水等级为二级,耐火等级为一级。

2.0.2 隧道结构的抗震等级按三级考虑,根据《北京地区地震烈度区划图(50年超越概率10%)》,隧道结构抗震设防基本烈度为7度或8度。

2.0.3衬砌结构按上级批复的人防抗力标准进行验算。

2.0.4结构设计在满足强度、刚度和稳定性的基础上,应根据地下水水位和地下水腐蚀性等情况,满足防水和防腐蚀设计的要求。当结构处于有腐蚀性地下水时应采取抗侵蚀措施,混凝土抗侵蚀系数不低于0.8。

2.0.5在永久荷载和可变荷载作用下,二类环境中二次衬砌结构裂缝宽度(迎土面)应不大于0.2mm,一类环境(非迎土面及内部混凝土构件)衬砌结构的裂缝宽度均应不大于0.3mm。当计及地震、人防或其他偶然荷载作用时,可不验算结构的裂缝宽度。

2.0.6矿山法区间隧道施工地面沉降控制标准应根据环境条件认真分析确定。一般路面下宜控制在30mm以内,当穿越重要地面建筑物或地下管线时,上述数值应按照允许的条件确定。

2.0.7 混凝土和钢筋混凝土结构中所用混凝土的极限强度应按表2-1采用。区间隧道内层衬砌采用钢筋混凝土时其混凝土强度等级不应低于C30,抗渗等级不低于S8,同时应满足其抗冻、抗渗和抗侵蚀性等耐久性相关要求。

2.0.8混凝土的弹性模量应按表2-2采用。混凝土的剪切弹性模量可按表2-2数值乘以0.43采用。混凝土的泊松比可采用0.2。

2.0.9钢筋强度和弹性模量按表2-3采用。

2.0.10支护喷射混凝土的强度等级不得小于C20。C20喷射混凝土的极限强度可采用:轴心抗压15 MPa,弯曲抗压18 MPa,抗拉1.3 MPa,弹性模量为21GPa (注:喷射混凝土的强度等级指采用喷射大板切割法,制作成边长为10cm的立方体试块,在标准条件下养护28d,用标准试验方法所得的极限抗压强度乘以0.95的系数) 。

3 设计计算荷载

3.1荷载分类和荷载组合

3.1.1隧道结构设计荷载类型及名称应按表3-1采用。

(2)表中所列荷载未加说明者,可根据国家有关规范或根据实际情况确定;

(3)施工荷载包括:设备运输及吊装荷载,施工机具及人群荷载,施工堆载,相邻施工的影响等荷载。

3.1.2 确定荷载的数值时,应考虑施工和使用过程中发生的变化。

3.1.3结构设计时应按结构可能出现的最不利工况组合进行计算。可能出现的荷载组合有基本组合、长期效应组合、抗震偶然组合和人防偶然组合。荷载组合形式如表3-2所示。

3.2 地层压力

3.2.1 竖向均布压力

?????≥--+≤<--+≤=1

211311213)1)(()1)((D h K D K K D D h D K h K K h D h h v γγγσ (3-1)

式中 γ——地层重度,为上覆地层重度加权平均值,i i

h h γγ=∑;

i γ、i h ——第i 层地层重度和厚度。

h ——隧道上覆地层厚度;

D ——开挖断面宽度;

D 1——竖向土压力保持不变的起始深度,1

312121K K K K D --=。 其中,1212)245(tan tan a K ??-?=;γ?

?1

2)]

245tan(tan 21[a c K -

?-=;

)245tan(21?-?+=t H D a ; D K D K K D K

K 2

12

131--+=;

?——上覆地层内摩擦角加权平均值,i i

h h ??=∑;

i ?——第i 层地层内摩擦角。

c ——上覆地层内聚力加权平均值,i i

c h c h =∑;

i c ——第i 层地层内聚力。

t H ——断面高度。

竖向荷载与隧道埋深的关系如图3-1曲线所示。

3.2.2 侧向均布压力

21

()(45)22v t e H tg ?

σγ=+?-

(3-2) 式中 v σ——洞顶地层的垂直压力;

?——隧道开挖高度内各地层内摩擦角的层厚加权平均值;

其他符号同前。

3.3 地面车辆荷载引起的附加压力

3.3.1 竖向压力

在道路下方的地下结构,地面车辆及施工荷载可按20kPa 的均布荷载取值,并不计冲击压力的影响。

3.3.2 车辆荷载的侧向压力

地面车辆荷载传递到地下结构上的侧压力ox p ,可按下式计算:

oz a ox p p λ= (3-3)

20452a tg ?λ??=- ???

(3-4) 式中 a λ——侧压力系数

其它符号意义同前。

3.4 地震荷载

在衬砌结构横截面和沿结构纵轴方向的抗震设计和抗震稳定性检算中采用地震变形法,即以隧道所在位置的地层位移作为地震对结构作用的输入。在北京地区隧道结构抗震设防基本烈度为7度或8度条件下,地震偶然荷载值(或影响程度)小于按上级批复人防抗力标准的人防偶然荷载。因此,在计入人防偶然荷载时,可不验算地震偶然荷载。

等代的静地震荷载包括:结构本身和洞顶上方土柱的水平、垂直惯性力以及主动土压力增量。

水平地震荷载可分为垂直和沿着隧道纵轴两个方向进行计算。由于地震垂直加速度峰

h

1图3-1 地层竖向压力计算图式 )2K

值一般为水平加速度的1/2~2/3,而且也缺乏足够的地震记录,因此对震级较小和对垂直地震振动不敏感的结构,可不考虑垂直地震荷载的作用。只有在验算结构的抗浮能力时才计及垂直惯性力。

3.5 水压力

一般静水压力可使隧道结构内力的轴向力加大,对抗弯性能差的混凝土结构来说,相当于改善了它的受力状态;但高水位时,对侧墙和底板的某些截面的受力也可能产生不利影响,因此,计算静水压力时应分别按可能出现的最高和最低水位考虑。而验算隧道结构的抗浮能力时,按可能出现的最高水位考虑。

计算静水压力时,两种方法可供选择,一种是和土压力分开计算;另一种是将其视为土压力的一部分和土压力一起计算。偏于安全,对于砂性土、粘土地层(含粉质粘土)采用水土分算。

水土分算时,地下水位以上的土采用天然重度γ,水位以下的土采用有效重度γ'计算土压力,另外再计算静水压力的作用。水土合算时,地下水位以上的土与水土分算时相同,水位以下的土采用饱和重度s γ计算土压力,不计算静水压力。其中土的有效重度γ'为:

w s γγγ-=' (3-5)

式中,w γ——水的重度,一般3kN/m 10=w γ。

两种计算静水压力的方法的差异示于图3-2中。

3.6 邻近地面设施及建筑物压力荷载

隧道穿越或邻近地面高大建筑物时,应考虑邻近地面建筑物地基应力荷载所引起的附加荷载。按土力学理论,假定地基为各向同性半无限体,在不同地面荷载作用下,地基中

(b)水土合算

(a)水土分算 图3-2 两种计算静水压力方法

任一点所引起的附加应力,以布内斯克(Boussinesq)解为基础推导求解。

矩形面积均布荷载作用下,土中任一点N 的z σ已有解析解,但公式计算比较复杂,计算时常用图表来进行。

边长为a 、b 的矩形面积均布荷载作用时,矩形角点下深度Z 点(如图3-3(a)所示)的附加应力z σ为:

p k z ?=σ (3-6)

2(,)a z k f b b =

式中 a 、b ——面积荷载的长和宽;

Z ——待求点深度;

p ——均布荷载值;

k ——矩形面积均布荷载角点下的应力系数,如表3-3所示。

矩形面积均布荷载下,土中任一点N (如图(3-3(b)、(c))所示)的附加应力可用叠加原理求得。如图3-3(b)所示,为求矩形(a ×b )面积荷载中心Z 点的z σ,可把矩形面积分成四等分,先由表3-3找四分之一面积角点下的应力系数)5.02,5.05.0(b

z b a f k =,则中心点下z σ为p b

z b a f z ?=)5.02,5.05.0(4σ。又如图3-3所示,为求矩形面积外任意点M 下的z σ,可按图上虚线过M 点分成若干面积,则M 点下的z σ可由几个矩形面积角点下的z σ相叠加而成,即

p k k k k M M M M z ?+--=)(584674523613σ (3-7) 式(3-7)中k 的脚标表示所代表的面积,如613M k 表示矩形面积13M 6的角点应力系数,图3-3 矩形均布荷载角点下和任一点下的应力

(a) 角点下应力;(b) 中点下应力;(c)任一点下应力

(a) (b) (c)

σ

σ

按每个面积的长边和短边比及深度和短边之比,由表3-3中查得。用表时要注意表中之b 永远代表短边。

3.7人防荷载

区间隧道结构人防荷载按《人民防空工程设计规范》(GB50225-95)中地道、坑道式人防工程结构荷载、结构动力计算等有关规定计算确定。

3.8其它荷载

正常施工条件下,区间隧道结构可忽略地铁车辆荷载及其制动力作用、温度变化及混凝土收缩徐变作用、人群荷载、施工荷载及设备重量作用。

4初期支护设计计算

4.1一般规定

4.1.1矿山法隧道初期支护设计参数可采用工程类比法确定,施工中通过监测进行修正,并应通过理论验算。

4.1.2矿山法隧道在预设计和施工阶段,应对初期支护的稳定性进行判别。初期支护施工阶段的稳定性,可按支护结构实际总位移U与极限位移U0比较,并结合位移发展趋势进行判别。

当U≤U0时,隧道稳定;当U>U0时,隧道不稳定。

极限位移U0应根据地层条件、断面特征及施工方法等因素分析确定。

4.1.3矿山法隧道初期支护应考虑能承受施工期间的全部荷载,并对控制地层变形起主要作用。

4.2初期支护结构检算模型

4.2.1矿山法地铁隧道埋深浅,水、土作用荷载较为明确,初期支护结构厚度较大,隧道初期支护后独立承受上覆地层压力作用时间较长,因此,常用的“荷载-结构”和“地层-结构”两种计算模式均可采用。

4.2.2检算初期支护强度时,宜采用相对简单的“荷载-结构”计算模式。

4.2.3 初期支护结构强度检算时,应考虑地层对初期支护结构变形的约束作用。按局部

σ为其向地层方向产生的位移δ与地层弹性抗力系数k的乘积,变形理论,约束作用力

p

即:

σk

δ

=(4-1)

p

式中k——地层的弹性抗力系数(MPa/m),可用地质勘察部门提供的基床系数代替。当无地质勘察基床系数时,可按表4-1所列基床系数平均值采用。

4.2.4 检算初期支护后地层变形及支护刚度时,宜采用“地层-结构”计算模式。在分析施工过程中的地层变形情况时,还应考虑超前支护和超前加固的作用。

4.3初期支护强度检算方法

4.3.1计算荷载

采用“荷载—结构”模型时,作用在初期支护上的荷载有永久荷载中的地层压力、结构自重,和可变荷载的地面车辆荷载及其动力作用,不计水压力、偶然荷载等其他荷载。

4.3.2计算图式

初期支护结构按弹性支承链杆图式计算,将计算断面划分为40~ 60个直梁等分单元,拱部90°~120°(自动试算确定)范围不设弹性链杆,侧边加水平链杆,底边加竖直链杆。

地铁隧道矿山法施工事故风险分析与评价

地铁隧道矿山法施工事故风险分析与评价 发表时间:2018-11-15T09:38:32.460Z 来源:《基层建设》2018年第30期作者:韩燕[导读] 摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。 中国铁路设计集团有限公司天津 300142摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。城市地铁属于万众瞩目的工程,在网络日益普及的今天,一旦出现安全事故,极可能造成不可估量的社会影响和极大的舆论压力。因此,准确分析城市地铁施工期间风险事故原因,研究其结构的可靠度是一个非常重要的课题。 关键词:地铁隧道矿山法;施工事故风险;评价引言 随着城市地铁建设的大规模开展,城市地铁隧道施工风险管理日益受到各方面重视。隧道工程作为一项高风险建设工程,具有建设规模大、风险高、风险因素众多以及客观条件复杂等特点。 1安全事故统计自我国1965年第一条地铁一北京地铁1号线开工建设以来,截至2016年末,共有30个城市开通城市轨道交通运营,其中地铁里程3168.7km,获得批复的城市共有58个,规划线路总长为7345.3km,总投资超过37000亿元。相比于英国、法国、美国、日本等发达国家近百年的轨道交通发展历史,我国轨道交通建设经验还很不足,虽然我国60年代就开始了地铁建设,但是大规模建设也就是2000年以后至今十几年的时间。加之城市地铁建设多位于城区密集区,施工环境复杂,施工难度大,与之相应的施工及管理人员素质偏低,因此,在我国地铁高速发展的近一段时期内施工事故频频发生。 我国在煤矿事故、交通事故、危险化学品事故等统计方面的研究比较多,但是在隧道施工尤其是地铁施工事故方面统计较少,有关隧道事故统计大部分仅限于运营阶段和火灾事故等。针对地铁隧道施工事故的事故类型、风险源指向、发展趋势等数据分析不系统,事故发生的原因、类型、条件等对相似地质条件下的新建隧道施工有极大的参考意义,通过对历史事故资料的分析,可以揭示事故发生特征和规律,同时可以为避免事故和提高隧道与地下工程施工管理水平提供指导。 通过分析我国近10年来100起地铁隧道矿山法建设施工期所发生的安全事故样本发现,该样本包含坍塌事故55起,由各种机械伤害引起的事故11起,火灾与水灾诱发事故各7起,坠物击打引起事故6起,模板坍塌造成事故5起,爆炸引发事故4起,由其他方面原因导致事故5起,如图1所示。对于各类事故造成的人员伤亡方面,坍塌占总伤亡人数的55.9%,通过对上述各类事故数据统计分析可知,坍塌是地铁隧道工程建设期的多发多害事故,是重点防备的事故类型。 图1安全事故统计 2工程实例分析 2.1事故概况 2012?04?25凌晨突降大雨,某市地铁3号线某区间由于雨水渗入掌子面前方的土体,引起掌子面涌水、涌砂、突泥,进而发生隧道坍塌冒顶事故。此事故诱发地面坍塌范围约15m×15m,坍塌深度约为8m,并且造成4条高压电缆受损,部分砂土、各种杂物涌入隧道,造成大面积浸水。 由于工作人员发现较早,抢险及时,未引起人员伤亡情况,但坍塌段位于某市交通干道,人流量较大,引起较多市民围观,产生极坏的社会负面影响。 事故原因如下:坍塌区隧道围岩为富水砂层,在其开挖前已经布设降水井进行降水,并且降水后地下水位已降至隧道底部以下,确保隧道开挖在无水环境下进行,但由于突降大雨,排放雨水的暗渠无法大量排水,导致暗渠转折处(即塌方位置)产生破裂,暗渠中的大量雨水涌入隧道上方土层,在雨水浸泡下,原来无水的隧道周围砂层内黏聚力下降、内摩擦角变小,整体强度变弱,自稳能力下降,掌子面发生涌水、涌砂现象,并导致地面发生冒顶事故。 2.2坍塌事故可靠度分析 塌方处隧道埋深约8m,穿越地层岩性以砂土为主,采用上下台阶预留核心土方法开挖,数值计算模型分为回填土、砂土、上台阶、下台阶、核心土、上下台阶衬砌、强风化花岗岩、中风化花岗岩等9种模型单元,模型范围为52m(横向)×10m(纵向)×31m(竖向),对其四周进行水平约束,底面竖直方向约束,上边界为自由边界,模型采用Mohr-Coulomb弹塑性模型,即τ=c+σtanφ,f=tanφ,其模型如图2所示。

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

北京交通大学地铁车站设计

北京交通大学地铁车站毕业设计 中文题目:北京地铁6号线东大桥站结构设计 英文题目:Beijing Subway Line No. 6 East Bridge station structural design 一.毕业设计(论文)基本内容和要求: 基本内容: 1、车站站位选择; 2、车站总平面布置(包括站位选择、出入口布置、通风亭布置等); 3、车站结构形式选择; 4、车站纵断面设计; 5、主体结构各工况内力组合计算; 6、截面检算与结构配筋设计; 7、施工方案设计。 基本要求: 1、设计内容要有依据; 2、独立完成上述各项内容; 3、论文写作规范化; 4、引用规范应注明; 5、每项计算应附正规的计算简图和内力图。 二.毕业设计(论文)重点研究的问题: 1、车站总平面布置; 2、车站主体结构横断面设计; 3、车站主体结构纵断面设计; 4、结构各工况内力组合计算及配筋设计; 3、施工方案设计。 三.毕业设计(论文)应完成的工作: 1、中英文摘要; 2、开题报告; 3、设计正文,包括计算说明书; 4、计算分析采用专用软件进行; 5、提交图纸:车站总平面布置图、车站主体结构横断面图、、车站主体结构纵剖面图、车站主体结构配筋图、施工方案设计图; 6、外文翻译一篇,不少于50000英文字符; 7、毕业设计实习报告; 8、查阅相关文献不少于20篇。 四.设计详细资料 1.站位概况及站位地区总平面图 东大桥站位于东大桥路口东侧,朝外大街、工体东路、东大桥路、朝阳北路及朝阳路五条道路交汇与此形成五叉路口,路口西北象限为临街商用建筑群及东草园等居住小区;路口西南象限为蓝岛大厦和昆泰大厦等高层商业建筑;路口东南象限为市政绿化用地和CBD住宅、商业用地;路口东北象限为佰富国际商用高层写字楼;朝阳北路和工人体育场东路之间为公交站场(共5路公交车在此始发)。该区域是朝阳地区重要的客流集散点,地面交通十分繁忙。地铁车站设置在公交站场及以东的朝阳北路下,东西走向。

上海地铁区间隧道6---傅德明

上海地铁区间隧道直径6.34m土压盾构施工 上海申通轨道交通研究咨询有限公司傅德明 1.工程概况 上海地铁规划22条线路,总长1050km,见图1所示,其中大部分为地下铁道。已建地铁1、2、3、4、5、6、7、8、9、11号线共10条线,运营长度330km,日客流量达400万人次。在建10号线和2号线东西延伸段长度约90km,将于2010年4月上海世博会前建成运营,使上海的运营地铁线路达11条约420km,日客流量可达500万人次。2012年将建成运营500km。 上海地铁区间隧道95%以上采用土压盾构掘进机施工,自1990年地铁1号线工程正式开工以来的19年间,已掘进隧道约达400km,其中,前10年仅施工40km,后9年施工380km。2008年使用的盾构掘进机多达97台。2007年掘进隧道80km,2008年掘进隧道140km。

图1 上海地铁线路总平面图 上海地铁1号线试验段始建于1980年,于1989年全线开工,全长14.5km,其中18km 区间隧道首次采用7台Φ6.34m土压盾构于1990年起陆续掘进施工。上海地铁1号线于1995年4月建成运营,成为我国第一条采用盾构法施工的地铁线路。 1996年至1999年,上海地铁2号线工程圆隧道部分西起中山公园站,东至龙东路站,双线(上、下行)全长24km,采用10台Φ6.34m土压盾构掘进施工。 2000年至2007年的8年中,上海地铁4、6、8、9号线约140km区间隧道采用40余台盾构掘进施工,并首次应用5台双圆DOT盾构掘进8.2km隧道。 2008年在建的5线2段约260km区间隧道共采用97台盾构同时掘进施工,创世界盾构隧道工程史新纪录。

地铁区间隧道结构设计计算书

地下工程课程设计 《地铁区间隧道结构设计计算书》

目录 一、设计任务 (3) 1、1工程地质条件 (3) 1、2其他条件 (3) 二、设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; (5) 2.2 计算作用在结构上的荷载; (5) 2.3 进行荷载组合 (8) 2.4 绘出结构受力图 (10) 2.5 利用midas gts程序计算结构内力 (10) 附录: (15)

地铁区间隧道结构设计计算书 一、设计任务 对某区间隧道进行结构检算,求出荷载大小及分布,画出荷载分布图,同时利用软内力。具体设计基本资料如下: 1、1工程地质条件 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1。 1、2其他条件 其他条件 地下水位在地面以下5m处;隧道顶部埋深6m;采用暗挖法施工。隧道段面为圆形盾构断面。断面图如下:

二、设计过程 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; 可以采用《铁路隧道设计规范》推荐的方法,即有 上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。 由于隧道拱顶埋深6m,位于杂填土、粉土层、细砂层中,根据《地铁设计规范》10.1.2可知 “暗挖结构的围岩分级按现行《铁路隧道设计规范》确定”。 围岩为Ⅵ级围岩。则有 因为埋深,可知该隧道为极浅埋。 2.2 计算作用在结构上的荷载;

1 永久荷载 A 顶板上永久荷载 a. 顶板(盾构上部管片)自重 b. 地层竖向土压力 由于拱顶埋深6 m,则顶上土层有杂填土、粉土,且地下水埋深5m,应考虑土层压力和地下水压力的影响。(粉土使用水土合算) B 底板上永久荷载 a. 底板自重 b. 水压力(向上): C 侧墙上永久荷载 地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。(分图层水土合算,砂土层按水土分算) a. 侧墙自重 b. 对于隧道侧墙上部土压力: 用朗肯主动土压力方法计算

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

北京地铁规划

北京地铁规划 昌平线二期全长10.6公里,将从南邵站向北延伸,依次经过昌平新区站、水库路站、昌平站、十三陵景区站,直达涧头西站,全部为地下线路,也真正进入到昌平城区。根据计划,昌平线二期2015年内开通,开通后从最南的西二旗站到最北的涧头西站,预计需要40分钟。 地铁14号线是北京市轨道交通线网中一条连接东北、西南方向的轨道交通“L”形骨干线,线路全长47.3公里,途经丰台、东城、朝阳等区。目前西段(张郭庄站-西局站)和东段(金台路站-善各庄站)均已建成通车运营。即将开通的中段(西局站-金台路站)长20.3公里,规划在沿途设置了20座车站。

点击进入:北京地铁16号线车站设计方案展示(点击查看大图) 一、功能定位 西郊线连接了颐和园、南水北调公园、玉东、北坞郊野公园、万安公墓、植物园、香山等景点,是一条服务于西郊风景区,以旅游、休闲、观光为目的的旅游专用轨道交通线路。 二、线路方案 西郊线西起于香山路停车场,沿香山路向东,下穿西五环路香泉环岛后,右转进入旱河路,沿旱河路向南经过万安东路后右转,沿万安东路向东穿过茶棚村后进入规划玉泉郊野公园,线路经过北坞村路前转向南并下穿北坞村路,而后沿北坞村南街向东,在规划金河路路口转向南,再沿规划金河路向南,同时线路穿过规划南水北调公园北端,在规划金河路终点处线路右转从南水北调公园东侧上跨四环路和京

密引水渠进入巴沟路,终点进入巴沟车辆段与地铁10号线巴沟站衔接换乘。 西郊线全长约9.4公里,新建7座车站和1座巴沟车辆段。 图上所载站名为命名预案。正式命名方案,将在市规划委就车站站名做专题公示、听取公众意见,并请示市政府同意后确定。 从北京市轨道交通建设管理有限公司获悉,作为一条房山新城与中心城区的连接线路,地铁燕房线主线计划于2015年底实现线路基本贯通,力争在2016年底开通,并将在阎村北站实现和房山线的同台换乘。 主要服务房山新城居民 对于住在房山新城的居民来说,进出城一直是件难事。地铁房山线只开到苏庄站,从苏庄站下车,必须搭乘公交车回到房山新城。因此,正在施工建设中的地铁燕房线,对于他们是个福音。 燕房线分为主线和支线,主线自燕化产业区南段起,沿燕房路、京周路、大件路接入阎村北站;支线起自周口店地区,沿兴房大街、京周路在饶乐府站接入主线。 燕房线主线长度约14.4公里,设8座高架车站,分别为阎村北站、大紫草坞站、阎村站、星城站、顾八路站、饶乐府站、老城区北站和燕化站,并在阎村北站和西延的房山线

地铁区间隧道结构设计

地铁区间隧道结构设计 前言 一. 地下铁道的基本功能及特点 地下铁道(metro subway)是指,在大城市下的地下修筑隧道、铺设轨道,以电动快速列车运送大量乘客的公共交通体系,简称地铁。在城市郊区,地铁线路可延伸至地面或高架桥上。地铁运输几乎不占街道面积,不干扰地面交通,有些国家称它为“街外运输”,或称为“有轨公共交通线”(mass transit railway)。它是解决城市交通拥挤问题,并能大量快速、安全运送旅客的一种现代化交通工具。 随着国民经济的发展,城市人口的大量增加,机动车和非机动车数量迅速增长,市区的客运交通流量猛增,城市规模随之不断扩大,这样就使城市中空气污染、噪音、交通拥挤等影响城市居民生活的因素逐渐突出,于是居民区就需要向城市郊区扩展。在上下班时和节假日,城市交通更显得拥挤混乱。原有的城市道路面积和城市面积的比例(道路率)是受城市发展历史制约等,一般不容易改变,想通过拆迁改造城市交通状况是极其困难的,甚至是不可实现的。如上海市人均道路面积仅为2.2m2,要增加道路面积非常困难。因此,许多干道的交通堵塞状况日益严重。目前很多城市道路交通的平均车速已下降至10km/h以下,很多路口交通负荷度已经很饱和。根据国内、外的经验,建设大容量快速轨道交通包括地铁和轻轨运输是缓解交通紧张状况的有效途径。尤其是在市内,建设地铁,向地下发展是今后城市发展的一种趋势。 地下铁道在城市客运交通中的主要作用有以下几个方面: 1.能满足大客运量的需要。一条低铁道单方向每小时的运送能力可达4~6万人次,为公共汽车的6倍至8倍,为轻轨交通的2倍多。完善的地下铁道系统会成为城市公共交通系统的骨干,可担负起城市客客运量的一般左右(实例见下表)

深圳地铁矿山法隧道二衬施工方案

第1章编制依据及原则 1.1 编制依据 1 xx地铁2号线工程土建2202标段的施工及设计图纸。 2 xx地铁2号线工程土建2202标段工程岩土工程勘察报告。 3 相关行业的施工规范和标准、xx市相关规程规范及标准。 4 工程现场调查资料及周边建筑物基础资料。 5 现行有关法规、标准、技术规范、定额,以及环境保护、水土保持方面的政策和法规。 6 根据我局现有施工水平、技术、设备、施工经验、科技进步、施工能力和资源配置等施工要素。 1.2 编制原则 确保工期目标的原则 在施工方案的编制中充分考虑了实现关键工期及总工期目标所必须预留的“抢工”条件;从施工顺序安排上也充分考虑了各工期目标的需要。 技术进步原则 施工方案及各分部分项工程施工方法的选择体现了技术进步原则。 成本最优化原则 在保证工程安全、质量、工期的前提下通过科学管理、精细组织、技术创新使得成本最优。进而使得工程自始至终保持质量、成本、安全良性循环的有序状态。

第2章工程概况 2.1工程范围 xx隧道处于xx地铁2号线工程土建2202标段沙世区间,位于xx市南山区世界之窗景区下。 2.2设计概况 沙世区间xx隧道分左、右线,左线ZDK14+245.857~ZDK14+759.000,长513.143m,右线YDK14+252.15~YDK14+759.000,长506.850m,单线总长1019.993m。 全隧道按浅埋暗挖法及喷锚构筑法进行设计,采用复合式衬砌结构。隧道埋深13~28m左右,围岩为Ⅲ~Ⅵ级,Ⅲ级长70.7m,Ⅳ级长208.2m,Ⅴ级长397.8m、Ⅵ级长343.293m (处于砂质粘性土),暗挖隧道断面单线A、单线B、单线C、单线D型及小间距隧道5种。单线隧道直线及曲线段内净空均为5200mm。 2.3二衬施工主要工程数量表 ]

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

北京地铁终极规划图,看完以后我崩溃了

北京地铁终极规划图,看完以后我崩溃了北京地铁终极规划图,看完以后我崩溃了 1号线(一线) 线路标识色:正红色 北京地铁1号线北京地铁1号线,又称一线,全长30.44千米,设53#站(101)、52#站(102)、苹果园站(103)、古城站(104)、八角游乐园站(105)、八宝山站(106)、玉泉路站(107)、五棵松站(108)、万寿路站(109)、公主坟站(110)、军事博物馆站(111)、木樨地站(112)、南礼士路站(113)、复兴门站(114)、西单站(115)、天安门西站(116)、天安门东站(117)、王府井站(118)、东单站(119)、建国门站(120)、永安里站(121)、国贸站(122)、大望路站(123)、四惠站(124)、四惠东站(125)共25座车站。(52#、53#站不运营)。地铁1号线和地铁八通线顺利贯通后,这条轨道线路成为世界上最长的城市铁道。 1号线未开放车站 黑石头站(54#站)、高井站(53#站,101)、福寿岭站(52#站,102)作为地铁1号线一期工程就已建成的车站,自建成日起至今尚未对公众开放。 福寿岭站(地铁技校站)编号为52#,102。其中102为地铁系统的编号,52#是军用铁路系统编号(一说地铁修建时

期的旧编号)。由于正式名称未对公众公布,也有人将这站称为地铁技校站。位于苹果园站西北方向福寿岭村,与地铁技校临接。本站作为地铁技校通勤车的停靠站,每个工作日早晚各有一班通勤车停靠。车站构造与古城站和苹果园站基本相同,目前地面出入口仅有一个尚可使用,其他三个入口中有两个被水泥和各种杂物封死,另外一个被从内部锁住。站内墙壁留下了很多地铁技校学生的涂鸦。入口处虽固定着非工作人员严禁入内的警示牌,但除学生外,时常有以城市冒险为目的的组织或个人进入,目前尚未有因该行为违法而被处罚的实例。 高井站(北京军区站)编号为53#,101。由于该站的正式名称尚未公布,因此也有人将此车站臆称为北京军区站。本站坐落于西山中,一说已属于北京军区的管辖区内。由于进入的方法复杂并且较为危险,目前仅能从几张照片来了解站内设施及构造。该站与客运站的构造完全不同。站台比较狭窄,站内墙壁上涂抹白灰,顶部较低矮,照明设施也较为简陋。 黑石头站编号为54#。在地铁系统中没有编号,因此也被认为不包含在北京的地铁系统之内。本站为一地上车站,位于北京西山中的黑石头村附近,因此被大多数人称为黑石头站。 1号线现有换乘车站:

地铁车站和区间隧道的设计和选型

一、地铁车站的建筑设计 1地铁车站的分类 1.1 按照车站埋深分:浅埋车站、深埋车站 1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站 1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他 1.4 按车站站台形式分:岛式、侧式、岛侧混合式 2 地铁车站建筑及平面布局 2.1 地铁车站的组成 地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。 车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。 2.2车站总体平面布置 按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。 3 车站建筑设计 3.1 车站设计 3.1.1 设计原则 (1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。 (2)车站一般宜设在直线上。 (3)车站公用区间划分为付费区和非付费区。 (4)隔、吸声措施。 (5)无障碍通行。 3.1.2 平剖面设计 (1)车站规模确定。确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。 (2)车站功能分析。确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

(3)站厅设计。主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。 (4)站台设计。确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。 (5)主要房间布置。包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。 (6)车站主要设施布置。包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。 3.1.3 消防、安全与疏散 主要考虑建筑防火与防水淹问题。 3.2 车站出入口及出入口通道 3.2.1 普通出入口的设计 (1)出入口数量的确定。一般情况,浅埋地下车站的出入口不少于4个,深埋车站不少于2个。 (2)主要尺寸的确定。出入口的宽度总和应大于该站远期预测超高峰小时客流量所需的总和,可按照公式计算。 3.2.2 出入口通道 包括出入口通道宽度的设计、埋深、楼梯踏步和自动扶梯的设置等,出入口通道地面坡度等。 3.3 车站通风道 3.3.1 车站通风道 确定地铁车站内的通风方式、环控设备的布置等来确定车站内通风道的布置。 3.3.2 地面通风亭 根据风量及风口数量确定通风亭的大小,根据实际环境和设备的条件确定通风亭的位置。 3.4 残废人设施 考虑残废人专用电梯和站内盲道的设置。

地铁站台空间的人性化设计_以北京地铁为例

艺术空间作家杂志Writer Magazine 2010No.5 王欣 地铁具备快捷、安全、高效、环保等诸多优势,已经成为解决现代城市交通问题的主要手段。地铁站台作为特定的公共空间,位于相对封闭的地下,乘客周围非但没有明媚的阳光、清新的空气和缤纷的街景,反而还充斥着冰冷的机器 设备、 人群散发的气味、列车行驶的噪音……这种环境的局限对于人的生理和心理都有负面的影响,但随着地铁开发规模的扩大和层次的深化,站台空间的人性关怀和内在品质问题受到越来越多的重视。在站台空间的环境设计中体 现人性化的设计原则,不仅要注重以安全、 便捷来满足交通出行的需求,还应多层面多方位地满足人们的精神文化需求,营造舒适美观、富有特色的地铁站台环境。 一满足交通功能需求1空间形式 地铁车站由地面出入口、站厅、通道、站台等几个部分组成。站台是乘客候车和上下车的平台,按照空间形式分为 侧式站台和岛式站台。 站台中乘客的流动是大量的、集体性的,以快速通行为主,短暂停留为辅。 因此,站台空间应该具备简洁清晰、开放高效的特点。国外发达城市的地铁站台一般为侧式设计,双向列车轨道在中间,去往不同方向的乘客在两边通行。这种形式的优点是在人群进入站台之前就做 好导向和分流,动线流畅、 井然有序,更能体现人性化的要求。但是国内现有地铁包括新建地铁大多依然是采用中间双向人流混合、两边为列车车轨的岛式站台设计,去往相反方向、进出站台的大量人群集中在一起,很容易出现动线交叉、拥挤混乱的状况。另外,岛式站台中间排布两列高大粗壮的结构柱,既阻碍视线又容易形成空间死角。这些因素都降低了单位时间内的人群流量,妨碍了人流速度。 2安全因素首先,要保证站台硬件设施的性能安全。作为地下公共空间,站台装修材料的选用、安装一定要特别注意安全性, 使用防火防滑、 无毒无味、不易霉变、稳固耐用的材料。地下人工照明要达到一定的照度,并尽可能地强化与地上自然光源感受的相似性。层次清晰、明快敞亮的环境可以减轻对地下空间灰暗、压抑的联想,引发人们心理上的安全感以及空间可控感。 其次,安全保障不能停留在表层,应该深入乘客使用站台空间及其设施的每一个环节。例如北京地铁铁轨上带高压电,然而多条运营线路的站台边缘除了一条黄色警戒线外没有其他的安全维护设施,这与北京地铁日均约500万 人次的庞大客流量不相匹配,人群拥挤时乘客不慎跌落站 台的危险性很大。 同时,考虑到弱势群体也要安全地乘坐地铁,为他们提供的无障碍服务应该落实到细微之处。无障碍通行性能是地铁站台空间人性化的重要指标,无障碍设计不仅仅针对残障人士,还包括老年人、病人、孩子连同携带较大行李的乘客都能够没有阻碍地安全通行。这就要求将地面上较小的高差尽量设计成和缓的坡道以保障人们顺畅地通过。在级数较多的楼梯梯段设置栏杆扶手,为行动不 便、 步履缓慢的人们提供保护。在垂直电梯、盲道等残障人士经常使用的设施周围,必须使用无滑倒、碰撞、擦伤危险 的材料,并且从声音提示、 安全疏散等方面进行综合考虑。3导向标识 地铁站台位于相对封闭的地下,各个车站内部的空间形式及尺度也非常相似,人们难以参照外部环境来辨别信息,方向感和定位能力变弱。这就要求设计明确、完善的信 息导向标识来帮助人们理解地铁空间,如地图、 列车行驶线路图、 出口及换乘方向、服务设施位置等等。这些信息为人们勾勒出各个空间组成部分相互衔接的脉络并明确行进的方向,从而提高交通效率,减少由于迷路和不熟悉引起的焦虑情绪。导向标识的设置应注意以下三个方面:第一,导向标识应形成一个与空间设计结合良好的完整的系统,引导乘客顺利地完成整个使用过程。第二,信息设施要布局合理、规范,使人们在匆匆一瞥的短时间内能够对信息快速识别和清晰掌握。第三,导向标识应造型简洁、设计精美、便于维护,传达信息的同时还可以丰富站台景观。 4配套服务设施 人们在站台候车时,也会短时间地休息、等人、交谈、东 张西望、 翻看报纸杂志、打电话等等。使用人群行为的多样性决定了地铁空间中必须具备细致周到的配套服务设施,尽量为人们创造舒适便利的环境条件。北京地铁五号线全 线的配套服务设施采取通盘设计,电子时钟、 休息座椅、垃圾桶、公用电话统一使用不锈钢材质、流线造型,点缀紫色 标识色,突出了简约流畅、 充满活力的现代气息,取得了很好的效果。 二满足精神文化需求1突出车站文化特色地铁不仅是交通性、技术性的空间,而且是文化性、标志性的空间。地铁代表着城市的整体服务水平,也是一个城市的“名片”,引领人们去认识、感受城市的人文风貌,产生 摘要现如今,地铁已经成为解决现代城市交通问题的主要手段,影响着人们的交通出行和日常生活。站台空 间是地铁建设的重要环节,在设计中应给予更多的人性关怀,立足于人们的交通出行需求和精神文化需求,提升空间的细节品质,营造高质量、人性化、美观和富有特色的地铁站台环境。关键词:地铁站台人性化设计中图分类号:TU984文献标识码:A 地铁站台空间的人性化设计 ———以北京地铁为例 257

城市地铁区间隧道施工中问题及解决办法

城市地铁区间隧道施工中问题及解决办法 【摘要】城市地下空间的利用已经越来越重要,地下空间已被确定为重要的自然资源。开发地下空间,充分利用好城市地下空间的资源,它可以更加有效的解决城市发展与土地资源的紧张状况,极大提高土地利用效率。对于从事地下空间工程的施工人员,,能够迅速掌握地下空间施工技术,并将这些新的技术和相关专业知识,运用到具体的实践当中去,将对该产业产生推波助澜的作用。对于地下空间施工,要有认真、细致严谨的工作态度,严把质量关。 【关键词】地铁区间隧道;施工问题;解决办法 1地铁区间隧道结构 地铁线路在城市中心区通常设在地下,在其他地区,条件许可时可设在高架桥和地面上。地铁的地下线路通常铺设在地下的隧道当中,在连接两个地下铁道的车站之间的区间隧道中,区间隧道的走向和埋深,受工程地质和水文地质条件,地面和地下环境影响,施工方法等因素制约,直接关系到造价的高低和施工的难易。 由于施工方法不同,地铁区间隧道的断面形式,结构支护衬砌类型,适用范围各异。施工方法大致分为:明挖法、矿山法、盾构法、顶管法、沉管法等等,按断面形式又分为:矩形和直墙拱形,拱形、直墙拱形和圆形,圆形,圆形或矩形,矩形,圆形、直墙拱形、矩形。 2区间隧道施工中的问题及解决办法 2.1纵坡和平竖曲线 隧道内曲线最小坡度不宜小于3‰,困难地段,可设在2‰或不大于5‰。的坡道上。两相邻坡段的坡度代数差等于或大于2‰时,应设竖曲线连接,竖曲线的曲线半径一般情况5000m。困难情况下3000m。圆形隧道纵向排水坡度为3‰-5‰。若有特殊要求,可减小到2‰-3‰。隧道平面轴线尽可能选用直线。地铁等大直径的区间隧道(直径大于6m)曲率半径不宜小于300m。 2.2衬砌形式 隧道衬砌分为单层和双层装配式衬砌,一般情况下,在含地下水丰富的软土地层内的隧道,大都选用双层衬砌,即在隧道衬砌的内侧再附加厚250-300mm 的现浇钢筋混凝土内衬,主要解决隧道防水和金属连接件防腐蚀间题,也能使隧道内壁光洁,减少空气流动阻力。 衬砌环宽应与衬砌拼装方式,盾构千斤顶行程相适应。尽可能取宽一些,常用的为750-1000mm,地铁区间隧道环宽一般取1000mm。在曲线段应考虑

地铁盾构区间隧道的矿山法施工

地铁盾构区间隧道的矿山法施工 【摘要】盾构法隧道施工经常会遇到上软下硬不均匀地层,此时倘若隧道下穿既有线或建筑物不具备开舱换刀条件,将会导致盾构机无法正常掘进。在深圳地铁5号线盾构区间上软下硬地层中,局部改用矿山法开挖、初期支护后由盾构机拼装管片通过的施工方法,其经验可供地铁隧道施工参考。 【关键词】矿山法;台阶法;盾构区间隧道;上软下硬地层;长管棚;超前小导管; 1、引言 矿山法是传统的地下巷道施工方法,其主要特点是以钻眼爆破方式开挖土石。20世纪50年代,奥地利学者拉布西维兹提出了岩体自身具有承载能力的理论,给传统矿山法赋予了新的理念,逐步形成了以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术。现代矿山法[1],即新奥法具有施工技术简单、工程造价低等特点,被广泛应用于山岭隧道工程[2~4]。 21世纪以来,随着城市轨道交通的发展,我国进入了地下铁道建设的高峰期。地铁工程一般覆盖层较浅,大多处于淤泥质、粉质粘土地层或砂卵石地层中(尤其是在上海、广州、深圳等地),地下水位通常较高,地层自稳能力差,周边环境复杂。为了确保施工安全、减少地表沉降、加快施工速度,地铁工程大多采用盾构法施工。但在复杂的地层环境中,盾构施工经常会遇到上软下硬等不均匀地层,在这样的地层中掘进会引起刀具严重磨损不能正常使用,假如此时地铁下穿既有线或其他建筑物、不具备开舱换刀条件,将会导致盾构机无法正常掘进。如何解决盾构区间隧道上软下硬地层中下穿既有线或其他建筑物的掘进问题,深圳地铁5号线所采用的矿山法为工程界提供了一个先例。 2、工程概况 2.1工程概况 深圳地铁5号线民治—五和区间线路整体呈东西走向,区间起点位于民治大道东侧、平南铁路南侧的既有道路下方,出民治站后与平南铁路平行前进,经坂田火车站后向北偏转,四次下穿平南铁路后进入五和站,终点位于五和南路。左右两线总长4 061.59 m,线间距11.9~15.5 m。 隧道顶部覆土厚11.5~33.0 m。隧道主要穿越砾质粘土、砾砂、全风化花岗岩及少量强风化与中风化花岗岩。地下水主要为松散岩类孔隙水及基岩裂隙水。孔隙水主要赋存于冲洪积砂层、圆砾层、坡积层、残积层、全风化花岗岩中。基岩裂隙水主要赋存于花岗岩强—中风化层中,略具承压性。地下水埋深1.22~17.8 m。区间隧道采用土压平衡式盾构施工,盾构机外径6.28 m。隧道衬砌采用6块管片错缝拼装而成,管片环宽1.5 m,外径6.0 m,厚度0.3 m,隧道内径5.4 m。 2.2工程难点 线路条件复杂,隧道上覆地层薄,最小仅11.5 m,同时下穿运营铁路,地表沉降要求高,施工难度大。 隧道断面范围内地质复杂,存在上软下硬地层,尤其是在右线DK23+241.5~+292.4(50.9 m)段,有微风化岩层侵入隧道断面内2.8 m,岩石单轴饱和抗压强度达到160 MPa,盾构机难以掘进,故区间隧道施工的难点是盾构机如何穿越硬岩侵入段。 3、施工方案 在饱和软土地区开挖隧道,采用盾构法施工具有安全、快速、对环境影响小等优点[4]。但是,对于硬岩及软硬差异大的上软下硬地层,采用盾构法施工会造成刀具严重磨损、需要多次更换刀具的现象[6]。该段隧道硬岩侵入断面2.8 m,侵入长度达50余米,若采用盾构法掘进,需要多次更换刀具,但由于隧道下穿运营中的平南铁路,不具备开舱换刀条件,因此采用盾构法无法掘进。 现代矿山法是以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术,该法与相应的地层预支护手段相结合可以灵活地应用于各种地层。综合考虑隧道穿越硬岩侵入段的环境条件、施工安全及技术经济因素,拟采用矿山法开挖,初期支护后盾构机拼装管片通过。

相关文档
最新文档