化工原理考研各知识点分章总结

化工原理考研各知识点分章总结
化工原理考研各知识点分章总结

一、流体力学及其输送

1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)

7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3

1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg

(1)被测流体的压力 > 大气压 表压 = 绝压-大气压

(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压

10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置

离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。

气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体

12. 往复泵的流量调节

(1)正位移泵

流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特

性称为正位移性,这种泵称为正位移泵。

往复泵是正位移泵之一。正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏。

(2)往复泵的流量调节

第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的。

第二,改变曲柄转速和活塞行程。使用变速电机或变速装置改变曲柄转速,达到调节流量,使用蒸汽机则更为

方便。改变活塞行程则不方便。

13.流体输送机械分类

222'2e 2e 2u d l l u d l l u d l h h h f f f ???

? ??++=???? ??+=??? ??+=+=∑

∑∑∑∑∑ζλλζλ

14.离心泵特性曲线:

15.流体输送机械特点:

? 速度式流体输送机器的特点

? (1)由于速度式流体输送机械的转动惯量小,摩擦损失小,适合高速旋转,所以速度式流体输送机械转速高、流

量大、功率大。

? (2)运转平稳可靠,排气稳定、均匀,一般可连续运转1~3年而不需要停机检修。

? (3)速度式流体输送机械的零部件少,结构紧凑。

? (4)由于单级压力比不高,故不适合在太小的流量或较高的压力(>70MPa )下工作。

? 2.容积式流体输送机械的特点

? (1)运动机构的尺寸确定后,工作腔的容积变化规律也就确定了,因此机械转速改变对工作腔容积变化规律不发

生直接的影响,故机械工作的稳定性较好。

? (2)流体的吸入和排出是靠工作腔容积变化,与流体性质关系不大,故容易达到较高的压力。

? (3)容积式机械结构复杂,易于损坏的零件多。而且往复质量的惯性力限制了机械转速的提高。此外,流体吸入

和排出是间歇的,容易引起液柱及管道的振动。

16.

流体体积随压力变化而改变的性质称为压缩性。

二、非均相机械分离

1.颗粒的沉降:层流沉降速度Vt=(ρp -ρ)gdp2/18μ,(ρp -ρ:颗粒与流体密度差,μ:流体粘度);重力沉降(沉降室,H/v=L/u ,多层;增稠器,以得到稠浆为目的的沉淀);离心沉降(旋风分离器)。

2.过滤:深层过滤和滤饼过滤(常用,助滤剂增加滤饼刚性和空隙率);分类:压滤、离心过滤,间歇、连续;滤速的康采尼方程:u=(Δp/Lμ)ε3/5a2(1-ε)2,(ε:滤饼空隙率;a :颗粒比表面积;L :层厚)。

3.过滤介质:过滤过程所用的多孔性介质称为过滤介质,过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度。

4.助滤剂:若滤浆中所含固体颗粒很小,或者所形成的滤饼孔道很小,又若滤饼可压缩,随着过滤进行,滤饼受压变形,都使过滤阻力很大而导致过滤困难。可采用助滤剂以改善滤饼的结构,增强其刚性。常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等

5. 过滤速率基本方程 恒速过滤,恒压过滤

6.过滤设备:板框压滤机(间歇操作,构造简单,过滤面积大而占地省,过滤压力高(可达1.5MPa 左右),便于用耐腐蚀性材料制造,便于洗涤。它的缺点是装卸、清洗劳动强度较大。

)、叶滤机(叶滤机也是间歇操作设备,具有过滤推动力大、单位地面所容纳的过滤面积大、滤饼洗涤较充分等优点。其生产能力比板框压滤机大,而且机械化程度高,劳动力较省,密闭过滤,操作环境较好。其缺点是构造较复杂、造价较高。)、厢式压滤机、转筒真空过滤机(操作连续、自动)

7.自由沉降:单个颗粒在流体中的沉降过程称。干扰沉降:若颗粒数量较多,相互间距离较近,则颗粒沉降时相互间会干扰,称为干扰沉降。

8.影响因素:当颗粒浓度增加,沉降速度减少。容器的壁和底面,沉降速度减少。非球形的沉降速度小于球形颗粒的沉降速度。

图2-10 离心泵的工作

qv

g z A ρ+?=φμr p K ?=2)(2e q q K d dq u +==ττK qq q e =+22τ222KA VV V e =+

9. 流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作。分三个阶段:(1)固定床阶段:流体通过颗粒床层的表观速度u 较低,使颗粒空隙中流体的真实速度u1小于颗粒的沉降速度ut ,则颗粒基本上保持静止不动,颗粒层为固定床。流化床阶段 :在一定的表观速度下,颗粒床层膨胀到一定程度后将不再膨胀,此时颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床。(散式流态化,聚式流态化)。(3)颗粒输送阶段:如果继续提高流体的表观速度u ,使真实速度u1大于颗粒的沉降速度ut ,则颗粒将被气流所带走,此时床层上界面消失,这种状态称为气力输送。

10. 气力输送的优点

(1)系统封闭,避免物料飞扬,减少物料损失,改善劳动条件。

(2)输送管路不限制,即使在无法铺设道路或安装输送机械的地方,使用气力输送更加方便。

(3)设备紧凑,易于实现连续化、自动化操作,便于同连续化工生产相衔接。

(4)在气力输送过程中可同时进行粉料的干燥、粉碎、冷却、加料等操作。

三、传热

1.传热方式:热传导(傅立叶定律)、对流传热(牛顿冷却定律)、辐射传热(四次方定律);热交换方式:间壁式传热、混合式传热、蓄热体传热(对蓄热体的周期性加热、冷却)。

2.傅立叶定律:dQ= -λdA ,(Q :热传导速率;A :等温面积;λ:比例系数; :温度梯度);

λ与温度的关系:λ=λ0(1+at),(a :温度系数)。

3.不同情况下的热传导:单层平壁:Q=(t1-t2)/[b/(CmA)]=温差/热阻,(b :壁厚;Cm=(λ1-λ2)/2);

多层平壁:Q=(t1-tn+1)/ [bi /(λiA)];单层圆筒:Q=(t1-t2)/[b/(λAm)],(A :圆筒侧面积,C= (A2-A1)/ln(A2/A1));

多层圆筒:Q=2πL(t1-t n+1)/ [1/λi [ln(ri+1/ri) ]。

4.对流传热类型:强制对流传热(外加机械能)、自然对流传热、(温差导致)、蒸汽冷凝传热(冷壁)、液体沸腾传热(热壁),前两者无相变,后两者有相变;牛顿冷却定律:dQ=hdAΔt ,(Δt >0;h :传热系数)。

5.吸收率A+反射率R+透射率D=1;黑体A=1,镜体R=1,透热体D=1,灰体A+R=1;

总辐射能E=Eλdλ,(Eλ:单色辐射能;λ:波长);

四次方定律:E=C(T/100)4=εC0(T/100)4,(C :灰体辐射常数;C0:黑体辐射常数;ε=C/C0:发射率或黑度);

两物体辐射传热:Q1-2=C1-2φA[(T1/100)4-(T2/100)4],(φ:角系数;A :辐射面积;C1-2=1/[(1/C1)+(1/C2)-(1/C0)])

6.总传热速率方程:dQ=KmdA ,(dQ :微元传热速率;Km :总传热系数;A :传热面积);

1/K=1/h1+bA1/λAm+A1/h2A2,(h1,h2:热、冷流体表面传热系数)。

7.换热器:夹套换热器、蛇管式换热器、套管式换热器、列管式换热器。

8、(1)强化传热 为了使物料满足所要求的操作温度进行的加热或冷却,希望热量以所期望的速率进行传递;

(2)削弱传热 :为了使物料或设备减少热量散失,而对管道或设备进行保温或保冷。

9.热传导 物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为热传导,又称导热。

10.对流传热:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程 。

11.

12.传热的基本方式:(1)热传导(2)对流传热—热对流 (3)辐射传热

13.影响冷凝传热的因素和冷凝传热的强化① 流体物性:冷凝液ρ↑ 、λ↑、μ↓→ α↑ ;潜热r ↑ → α↑ ② 温差:液膜层流流动时,?t=ts -tW ↑,δ↑,α↓ ③ 不凝气体:不凝气体的存在会导致α↓↓(1%不凝气可使α↓60%),所以应该定期排放④ 蒸汽流速与流向(u>10m/s):蒸汽与液膜同向时u ↑→δ↓,α↑;反向时u ↑→δ↑,α↓;u ↑↑时α↑(无论方向)。因此蒸汽进口一般设在换热器上部,以避免蒸汽与液膜逆向流动使α↓。⑤ 蒸汽过热:包括冷却和冷凝两个过程。⑥ 冷凝面

?????????????????????????????????????????????????管内冷凝管外冷凝冷凝传热管内沸腾大容器沸腾沸腾传热有相变混合对流传热有限空间自然对流大空间自然对流自然对流传热外部流动内部流动强制对流传热无相变对流传热

的形状和位置:以减少冷凝液膜的厚度并↑α作为目的。垂直板或管:可开纵向沟槽;水平管束:可采用错列。

14. 导热系数λ的物理意义:表示温度梯度为1K/m 或1℃/m 时,单位时间通过单位面积的热量。即:单位温度梯度下的热通量。 λ0为固体在0℃时的导热系数,k 为温度系数,1/℃, 对大多数金属材料为负值,对大多数非金属固体材料为正值。

15.在物体边界上,传热边界条件可分为以下三类:(1)已知物体边界壁面的温度,称为第一类边界条件;(2)已知物体边界壁面的热通量值,称为第二类边界条件;已知物体壁面处的对流传热条件,称为第三类边界条件。 16.准数的定义与物理意义:努塞尔准数(Nusselt ), Nu : 对流传热与厚度为L 的流体层内的热传导之比。 努塞尔数越大,对流传热的传热强度也越大。它反映了固体壁面处的无因次温度梯度的大小。 雷诺准数(Reynold ), Re : 惯性力与粘性力之比。雷诺数小,表示流体的粘性力起控制作用,抑制流层的扰动,随着雷诺数的增大,流体中流体微团的扰动加剧,壁面处的温度梯度增大,对流传热系数增大。 普朗特准数(Prandtl ), Pr : 动量扩散与热量扩散之比。它表征了流体的动量传递能力与热量传递能力的 格拉晓夫准数(Grashof ), Gr :

浮升力与粘性力之比 。

它反映了由于流体中温度差引起密度差所导致的浮升力对对流传热的影响。它在自然对流中的作用与强制对流中雷诺数的作用相当。

17.蒸汽与低于饱和温度的壁面接触时有膜状冷凝和珠状冷凝两种

18. 影响沸腾传热的因素及强化途径:① 液体的性质:② 温差:③ 操作压强:④ 加热面:

19.辐射:物体通过电磁波来传递能量的过程。热辐射:物体由于热的原因以电磁波的形式向外发射能量的过程。

20.热辐射=反射+吸收+穿透 (黑体,白体,透热体,灰体) 21.物体的黑度ε:指同温度下物体与黑体辐射能力之比。 仅与自身特性有关。 22. 斯蒂芬—波尔茨曼定律 σ0──黑体辐射常数,=5.67× 10-8W/(m2 .K4); 克希霍夫定律 : C0──黑体辐射系数,=5.67W/(m2 .K4)

角系数 23.气体的热辐射具有以下两个主要特点:

(1)气体的辐射和吸收对波长具有强烈的选择性(2)气体的辐射和吸收是在整个容积内进行

24.传热三步: (1)热流体以对流传热方式将热量传给固体壁面;(2)热量以热传导方式由间壁的热侧面传到冷侧面;

(3)冷流体以对流传热方式将间壁传来的热量带走。

25.

热量衡算方程反映了冷、热流体在传热过程中温度变化的相互关系。根据能量守恒原理,在传热过程中,若忽略热损失,单位时间内热流体放出的热量等于冷流体所吸收的热量。

热量衡算方程 26.传热过程的平均温差计算:恒温差传热,变温差传热

27.按照冷、热流体之间的相对流动方向,流体之间作垂直交叉的流动,称为错流;如一流体只沿一个方向流动,而另一流体反复地折流,使两侧流体间并流和逆流交替出现,这种情况称为简单折流。

28.不同流动排布型式的比较:进出口温度条件相同时,逆流的平均温差最大,并流的平均温差最小,对于其他的流动排布型式,其平均温差介于两者之间。在实际的换热器中应尽量采用逆流流动,而避免并流流动。但是在一些特殊场合下仍采用并流流动,以满足特定的生产工艺需要。采用折流和其他复杂流动的目的是为了提高传热系数,然而其代

价是减小了平均传热温差。 29.换热器传热效率e 的定义为实际传热速率Q 与理论上可能的最大传热速率Q max 之比

四、质量传递基础

1.质量传递(简称传质)是指物质从一处向另一处转移,包括相内传质和相际传质两类,前者发生在同一个相内,后者则涉及不同的两相。

2.(1)气(汽)-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程。解吸:为吸收的逆过程。

蒸馏:不同物质在气液两相间的相互转移。气体增(减)湿:湿分由液相(气相)向气相(液相)转移。

(2)液-液系统:萃取:溶质由一液相转入另一液相。这是在液体混合物中加入另一不相溶的液相物质,使原混合物组分在两液相中重新分配的过程。

(3)气(汽)-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程。解吸:为吸收的逆过程。

蒸馏:不同物质在气液两相间的相互转移。气体增(减)湿:湿分由液相(气相)向气相(液相)转移。

(4)气-固系统:干燥:加入热量使液体气化,从固体的表面或内部转入气相。吸附:物质由气相趋附于固体表面(主)1(0kt +=λλλαL νμρuL uL =a c p νλμ=23223νβμρβt gL tL g ?=?0E E =ε4

040)100(T C T E o ==σ)(11T f E E E b ===αα发出的总辐射能由表面发出的辐射能

上的由表面落到表面i i j ij A A A =?)

()(1221c c c h h h H H m H H m Q -=-=max Q Q =ε

要是多孔性固体的内表面),吸附平衡是过程进行的极限。

3.费可定律:实验表明,在二元混合物(A+B)中,组分的扩散通量与其浓度梯度成正比,这个关系称为费克(Fick)定律。

4.化学反应可分为两类:一类是在整个相内均匀发生的反应,称为均相反应;另一类则是局限在某个特定区域内的反应,它可以是在相的内部,也可以在边界上,称为非均相反应。

5.对流传质通常指运动流体与固体壁面(或两股直接接触的流体之间)间的质量传递,是相际传质的基础。一般情况下,传质设备中流体的流动形态多为湍流。

6.传质过程应用的设备有多种类型,其主要功能是给传质的两相(或多相)提供良好的接触机会,包括增大相界面面积和增强湍动强度,主要有填料塔和板式塔。

7.板式塔:有害因素:空间上的反向流动:泡沫夹带(增大板间距)、气泡夹带(增大降液管长度);空间上的不均匀流动:气体,液体。如何提高效率:《1》合理选择塔板孔径和开口率造成适宜气液接触状态《2》设置倾斜的进气装置

塔板压降:塔板上下对应位置的压力差(新型:泡罩塔板、浮阀塔板、筛孔塔板、舌型塔板、网型塔板、垂直塔板)

8.填料塔:主要特性数据:比表面积、孔隙率、添填料的几何形状(拉西环、鲍尔环、矩鞍型填料、阶梯环添料)

9.填料塔操作范围小,对液体负荷变化敏感;不易处理易聚合或含有固体悬浮物的物料;反应过程中需要冷却时,填料塔复杂,有侧线出料时,填料塔不如板式塔方便;板式塔设计简便安全;填料塔小时结构简单,造价低;易起泡物系、腐蚀性物系、热敏性物系,填料塔更合适;填料塔压降比板式塔小,真空操作方便。

五、气体吸收

1.吸收是将气体混合物与适当的液体接触,利用个组。分在液体中溶解度的差异而使气体中不同组分分离的操作。混合气体中,能够溶解于液体中的组分称为吸收质或溶质;不能溶解的组分称为惰性气体;吸收操作所用的溶剂称为吸收剂;溶有溶质的溶液称为吸收液或简称溶液;派出的气体称为吸收尾气。(分物理吸收——煤气脱苯,化学吸收——二氧化碳碳酸钾)

2.吸收操作是气体混合物的主要分离方法,化工生产。中它有以下几种具体的应用:1.化工产品2.分离气体混合物3.从气体中回收有用组分4.气体净化(原料气的净化和尾气、废气的净化)5.生化工程。一个完整地吸收分离过程一般包括吸收和解吸两部分。

3.溶剂的选择:(1)溶剂应对气体中被分离组分有较大溶解度;(2)溶剂对其他组分的溶解度要小(3)溶质在溶剂中的溶解度对温度变化敏感(4)容积蒸汽压低,减少回收时的损失(5)溶剂有较好的化学稳定性(6)溶剂有较低的粘度(7)溶剂价廉,无腐蚀性、无毒不易燃。吸收率η=(mA除/mA进)×100%≈[ (y1-y2)/y1]×100%,(y1,y2:进塔和出塔混合气中A的摩尔分数)。

4..稀溶液中亨利定律:c*A=HpA,(c*A:溶解度;H:溶解度系数;pA:气相分压);p*A=ExA,(xA:液相中溶质摩尔分数;E:亨利系数);y*=mx,(平衡常数m=E/p);E=ρs/HMs,(ρs,Ms:纯溶剂密度和相对分子质量)。

5. 费克定律:jA=-DABdcA/dz,(jA:扩散速率;DAB:组分A在组分B中的扩散系数;dcA/dz:组分A在扩散方向z上的浓度梯度);

等分子扩散速率:NA= jA=D(pA,1-pA,2)/RTz;单向扩散:NA=D(pA,1-pA,2)p/RTz pB,m,(p/pB,m:漂流因子,pB,m= (pB,2-pB,1)/ln(pB,2/pB,1),即对数平均值);同理,NA=D(cA,1-cA,2)c/zcB,m。

6. 吸收塔操作线方程:qn(L)/qn(V)=(y1-y2)/(x1-x2),(qn(V):二元混合气摩尔流量;qn(L):液相摩尔流量;x,y:任意一截面液气相摩尔流量);

最小液气比[qn(L)/qn(V)]min=(y1-y2)/(x*1-x2),qn(L)/qn(V)= (1.1—2.0) [qn(L)/qn(V)]min;

低浓度时填料塔高度h=qn(V) [dy/(y-y*)]/KyaS=qn(L) [dx/(x*-x)]/KxaS=NOGHOG=NOLHOL,(K:传质系数;S:塔截面积;a:单位体积填料有效接触面积;NOG= [dy/(y-y*)]:气相总传质单元数;HOG =qn(V)/KyaS:气相总传质单元高度);

相平衡线为直线时:NOG=ln[(1-S’)(y1-mx2)/(y2-mx2)+S’]/(1-S’),NOL=ln[(1-A)(y1-mx2)/(y2-mx2)+A]/(1-A),(吸收因数:A=1/S’= qm(V)/mqm(V))。

7.填料塔:液体上进下出,气体下进上出,其中设有液体在分布器,可使其均匀分布于填料表面,塔顶可按转除末器。填料塔是一种应用广泛的气液两相接触并进行传热、传质的塔设备,可用于吸收(解吸)、精馏和萃取等分离过程。填料塔不仅结构简单,而且具有阻力小和便于用耐腐蚀材料制造等优点,尤其适用于塔直径较小地情形及处理有腐蚀性的物料或要求压强较小的真空蒸馏系统,此外,对于某些液气比较大的蒸馏或吸收操作,也宜采用填料塔。(气液逆流流动,增加传质推动力)

表征填料特性的主要参数有:1.比表面积;2.空隙度;3.单位堆体积内的填料数目n;4.堆积密度;5.干填料因子及填料因子;6.机械强度及化学稳定性

8.

六、蒸馏

1.蒸馏分类:操作方式:连续蒸馏、间歇蒸馏;对分离的要求:简单蒸馏、平衡蒸馏(闪蒸)、精馏、特殊精馏(精馏还包括水蒸气精馏、间歇精馏、恒沸精馏、萃取精馏、反应精馏);压力:常压蒸馏、加压蒸馏、减压蒸馏;组分:双组分蒸馏和多组分蒸馏(精馏),常用精馏塔。精馏,加压提高蒸汽冷凝温度,降压降低沸点温度。

2.双组分溶液气液相平衡:液态泡点方程:xA=[p-pB(t)]/[pA(t)-pB(t)],(xA:液态组分A的摩尔分数;p (t):压强关于温度的函数);

气态露点方程:yA=pA/p=[pA(t)/p]×[p-pB(t)]/[pA(t)-pB(t)];

平衡常数KA=yA/xA ,理想溶液:KA=p°A/p,即组分饱和蒸气压和总压之比;

挥发度:υA=pA/xA,相对挥发度:αAB=υA/υB,最终可导出气液平衡方程:y=αx/[1+(a-1)x];

气液平衡相图:p-x图(等温) 、t-x(y)图(等压)、x-y图。

3.平衡蒸馏:qn(F),xF加热至泡点以上tF,减压气化,温度达到平衡温度te,两相平衡qn(D),yD和qn(W),xW;物料衡算:yD=qxW/(q-1)-xF/(q-1),(液化率:q=qn(W)/qn(F));

热量衡算:tF=te+(1-q)γ/Cp,m,(Cp,m:原液的摩尔定压热容;γ:原液的摩尔气化潜热);平衡关系:yD=αxW/[1+(α-1)xW]。

4.简单蒸馏:持续加热至釜液组成和馏出液组成达到规定时停止;

关系式:ln[n(F)/n(W)]= {ln(xF/xW)-αln[(1-xF)/(1-xW)]}/(α-1);

总物料衡算:n(F)=n(W)+n(D);易挥发组分衡算:n(F)xF =n(W)xW+n(D)xD;

推出:xD= [n(F)xF-n(W)xW]/[n(F)-n(W)]。

5.精馏:多次部分气化部分冷凝(连续、间歇),泡点不同采取不同的压力操作,塔板数从上至下记;

塔顶易挥发组分回收率:ηD=qn(D)xD/qn(F)xF×100%,

釜中不易挥发组分回收率:ηW=qn(W)(1-xW)/[qn(F)(1-xF)]×100%;

精馏段总物料衡算:qn(V)=qn(D)+qn(L);精馏段易挥发组分衡算:qn(V)yn+1=qn(D)xD+qn(L)xn;(V:各层上升蒸汽量;D:塔顶馏出液量;L:各板下降的液量;yn+1:第n+1块板上升的蒸汽中易挥发组分的摩尔分数;xn:第n块板下降的液体中易挥发组分的摩尔分数),

精馏段操作线方程:yn+1=Rxn/(R+1) +xD/(R+1),(回流比R= qn(L)/qn(D));

提馏段总物料衡算:qn(L’)=qn(V’)+qn(W);提馏段易挥发组分衡算:qn(L’)x’m=qn(V’)y’m+1 +qn(W)xW ;(W:釜液量),提馏段操作线方程:y’m+1= qn(L’)x’m/qn(V’)-qn(W)xW/qn(V’);

总的物料衡算:qn(F)+qn(V’)+qn(L)=qn(V)+qn(L’),乘上各焓值Hx即为热量衡算,qn(V)=qn(V’)+(1-q)qn(F),(精馏进料热状态参数q=(HV-HF)/(HV-HL),即单位原料液变为饱和蒸汽所需要的热量与单位原料液潜热之比);

进料方程:y=qx/(q-1)-xF/(q-1);理论塔板的计算逐板法和图解法,回流比R增大理论塔板数减小,解析法:全回流理论塔板数Nmin={lg[xD(1-xw)/[xw(1-xD)]]}/lgam-1,(am:全塔平均挥发度);

最小回流比Rmin=(xD-yq)/(yq-xq),(xq,yq:进料时),R实=(1.1—2.0) Rmin;

全塔效率ET为理论塔板数与实际塔板数之比;

间歇精馏:分批精馏,一次进料待釜液达到指定组成后,放出残液,再次加料,用于分离量少而纯度要求高的物料,每批精馏气化物质的量n(V )= (R+1)n(D),所需时间τ=n(V)/qn(V);

特殊精馏:恒沸精馏(加第三组分,形成新的低恒沸物,增大相对挥发度) 、萃取精馏(加第三组分,增大相对挥发度)、加盐萃取精馏、分子蒸馏(针对高分子量、高沸点、高粘度、热稳定性极差的有机物)。

6.根据溶液的蒸汽压偏离拉乌尔定律的方向,一般可将非理想溶液分成两大类:1、正偏差溶液,2、负偏差溶液

7.精馏回流中,下降也体重的轻组分向气相传递,上升正其中的重组分向液相传递,塔下半部分完成了重组分的提浓,叫做提馏段。完整的精馏塔包括精馏段和提馏段。增加回流量,提高了上升蒸汽的量,但增加了能耗,突出最小回流比,回流比是塔顶回流量比塔顶产品量的比值。板式塔加料位置在第五块板效率最高。只有提馏段没有精馏段的叫回收塔。

8.加入第三组分和原溶液中的某一组份形成最低恒沸物,以新恒沸物的形式从塔顶蒸出叫做恒沸蒸馏(糠醛-水),若加入的第三组分仅改变各组分的相对挥发度叫做萃取精馏(乙醇-水)。恒沸精馏的挟带剂要符合能与混合组分钟至少一个形成最低恒沸物,新形成的恒沸物要便于分离,恒沸物中挟带剂的含量要少。萃取精馏添加剂要选择性高、挥发性小,与原溶液可以很好的互溶。相比较,萃取精馏添加剂的选择范围广,不用形成汽化物从塔顶蒸出能耗少,但其需要连续不断的加入,不能用于间歇精馏。

9.多组分精馏,获得n个产物需要n+1个塔。

五、吸收

1.吸收剂的要求:对溶质的溶解度大,对其他成分溶解度小、易于再生、不易挥发、粘度低、无腐蚀性、无毒不易燃、价低,吸收率η=(mA除/mA进)×100%≈[ (y1-y2)/y1]×100%,(y1,y2:进塔和出塔混合气中A的摩尔分数)。

2.稀溶液中亨利定律:c*A=HpA,(c*A:溶解度;H:溶解度系数;pA:气相分压);p*A=ExA,(xA:液相中溶质摩尔分数;E:亨利系数);y*=mx,(平衡常数m=E/p);E=ρs/HMs,(ρs,Ms:纯溶剂密度和相对分子质量)。

六、干燥

1.绝对湿度δ=0.622pV/(p-pV),(pV:水蒸汽分压);相对湿度φ= pV/pS,(pS:水蒸汽饱和分压);湿焓I=Ig+δIv,(Ig:绝干空气的焓;Iv:水蒸汽的焓)。

2.物料的干基湿含量X=m水/m绝干,是基湿含量ω=m水/m总×100%,ω=X/(1+X);物料分类:非吸湿毛细孔物料、吸湿多孔物料和胶体无孔物料;物料与水分:总水分、平衡水分、自由水分、非结合水分、结合水分。

3.干燥过程物料衡算:qm,c(X1-X2)=qm,L(δ2-δ1)=qm,W,(qm,c:绝对干料的质量流量;qm,L:绝干空气质量流量;qm,W:干料蒸发出水分的质量流量),即湿物料减少水分等于干空气中增加的水分;

热量衡算:q=qD+qP=qm,L(I2-I0)+qm,c(I’2-I’1)+qL,(qD:单位时间干燥器热量;qP:单位时间预热气热量;qL:单位时间热损失;I2:出干燥器的空气的焓;I0:进预热器的空气的焓;I’2,I’1:进出干燥器物料的焓),qD=qm,L(I1-I0) =qm,L(1.01+1.88δ0) (t1-t0),qD=qm,L(I2-I1)+qm,c(I’2-I’1)+qL;

干燥器热效率:η=qd/qP×100%,(qd=qm,L(1.01+1.88δ0) (t1-t2))。

4.干燥速率U=h(t-tW)/rtw,(h:对流表面传热系数;t:恒定干燥条件下空气平均温度;tW:初始状态空气湿球温度;r:饱和蒸汽冷凝潜热);

恒速干燥阶段时间:τ1=qm,c(X1-Xc)/UcS,(Xc:临界湿含量;S:干燥面积),

降速干燥阶段时间:τ2=qm,c(Xc-X*)ln[(Xc-X*)/( X2-X*)]/UcS。

5.干燥器分类:厢式干燥器、隧道干燥器、转筒干燥器、带式干燥器、转鼓干燥器、喷雾干燥、流化床干燥器、气流干燥器、微波高频干燥。

七、新型分离技术

1.超临界萃取:以超临界流体作萃取剂(密度接近于液体,而粘度接近于气体,扩散系数位于两者之间),其具有很强的选择性和溶解能力,传质速率大;流程可分为:等温法、等压法和吸附吸收法。

2.膜分离技术:微滤、超滤、纳滤、反渗透、透析、电渗析、气膜膜分离、渗透气化(溶质发生相变化,再透过侧以气相状态存在)。

3.液液萃取(石油馏分氧化的稀醋酸提浓):与分离液体混合物的整流方法比较,下列情况采用是可取的:

(1)溶质A的浓度很小而稀释剂的浓度B易挥发组分时,直接用蒸馏的方法能耗是很大,这时可以先萃取,使溶质A富集于萃取剂S中,然后对萃取相进行蒸馏,如以氯仿为萃取剂从咖啡因水溶液中分离咖啡因。

(2)恒沸物或沸点相近组分的分离,此时普通整流方法不适用,如催化重整油中芳烃与烷烃的分离因沸点相近而需要塔板数太多,工业上常用环丁砜为萃取剂融解苯、甲苯、二甲苯以及其他芳烃衍生物。

(3)需分离的组分不耐热,蒸馏时易分解、聚合或发生其他变化,如从发酵液中提取青霉素时采用醋酸丁酯为萃取剂进行萃取。

溶剂需满足:溶剂不能与被分离混合物完全互溶,只能部分互溶;溶剂对A、B两种组分有不同的溶解能力,有选择性。对被分离组分A相对挥发度高。

混合液相对挥发度小,浓度稀,含热敏物质宜采用液液萃取。(两相接触方式分微分接触,级式接触)

(三角形图、溶解度曲线)主要设备:筛板塔、填料塔、脉冲填料塔脉冲筛板塔、转盘塔等。

八、结晶

1.由蒸汽、溶液或熔融物中析出固体晶态的操作叫结晶。

2.吸附多孔性固体表面的分子或原子因受力不均而具有剩余的表面能,当流体中的某些物质碰撞固体表面时,受到

这些不平衡力的作用就会停留在固体表面上。具有吸附作用的物质,称为吸附剂,被吸附的物质称为吸附质。常见的吸附剂有活性炭、磺化煤、焦碳、木炭、白土、炉渣及大孔径吸附树脂等。

3.吸附的应用(1)气体和液体的深度干燥;(2)食品、药品和有机石油产品的脱色、除臭;(3)有机烷烃的分离和精制;(4)气体的分离和精制;(5)从废水或废气中除去有害的物质。

4.膜分离是以对组分具有选择性透过功能的膜为分离截至,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的膜组分选择性地优先透过膜,从而达到混合物分离,并视线产物地提取、浓缩、纯化等目的的一种新型分离过程。

武汉工程大学817《化工原理》2020年考研专业课大纲

武汉工程大学2020年硕士研究生入学考试 《化工原理》考试大纲 考试时间:3小时 满分:150分 参考书目: 1.陈敏恒,丛德滋,方图南等编. 化工原理(上、下册).第四版.北京:化学工业出版社,2015年 2.《化工原理习题详解与应用》,丛德滋等编著,2002年,化学工业出版社 3.《化工原理学习指导》第二版,马江权等编著,2012年,华东理工大学出版社 (备注:1为主,2、3为辅) 考题类型: 客观题约50分,其中选择题约25分、填空题约25分;主观题约100分 考试内容: 绪论 1.化工过程与单元操作 2.课程的性质、任务、内容及其重要性 3.单位及单位换算 4.常用基本概念:物料衡算,热量衡算 第一章流体流动 1.静力学原理及其应用 2.流体流动的质量衡算和机械能衡算 3.牛顿粘性定律,圆管中流体的流速分布 4.流体流动的内部结构:流动的型态、湍流的基本特征、流动边界层及边界层 脱体 5.流体流动的机械能损失,因次分析法 6.管路计算、流速、流量的测量 基本要求 1.理解:流体的密度、比容、压力的意义及计算 掌握:流体静力学方程及应用 2.理解:流量、流速、稳定流动和不稳定流动 掌握:流体流动系统的物料衡算、机械能衡算及柏努利方程的物理意义和应用

3.理解:粘度、牛顿粘性定律、流体的流动形态、流体流动边界层 4.理解:阻力产生的原因及因次分析法 掌握:阻力计算通式,直管阻力和局部阻力的计算 5.理解:复杂管路中并联管路的计算 掌握:简单管路的计算,毕托管、孔板流量计和转子流量计的测量原理及应用 第二章流体输送机械 1.常用液体输送机械 2.离心泵的理论压头和实际压头(扬程),功率和效率 3.离心泵的气缚与汽蚀现象 4.泵的安装高度、流量调节、泵的选择 5.离心风机的性能与选择 基本要求: 1.了解:常用液体输送机械 2.掌握:离心泵工作原理、基本结构、主要性能参数、特性曲线的意义、用 途、测量方法 3.理解:离心泵产生气缚与汽蚀现象的原因及解决措施 4.掌握:离心泵的安装高度的计算、流量调节、泵的选择原则 5.掌握:离心风机的性能与选用 6.了解:其他气体输送机械 第四章流体通过颗粒层的流动 1.颗粒床层的特性 2.流体通过固定床层的压降 3.过滤原理及设备 4.过滤过程计算及强化过滤的途径 基本要求: 1.理解颗粒床层的特性,如:比表面积、球形度、空隙率等 2.理解流体通过固定床层压降的模型及康采尼方程 3.掌握板框过滤机、叶滤机、回转真空过滤机的基本原理 4.掌握板框压滤机及回转真空过滤机的恒压过滤计算 第五章流体的沉降和流态化 1.流体与单个固体颗粒的相对运动、沉降速度 2.重力沉降、离心沉降原理与设备

化工原理终极总结

第一章流体与输送机械 1、基本研究方法:实验研究法、数学模型法 2、牛顿粘性定理: 应用条件: 3、阻力平方区:管内阻力与流速平方成正比的流动区域; 原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。 4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。 流动边界层分离的弊端:增加流动阻力。 优点:增加湍动程度。 5、流体黏性是造成管内流动机械能损失的原因。 6、压差计: 文丘里 孔板 转子 7、离心泵工作原理: 离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能

量,使叶轮外缘的液体静压强提高。液体离开叶轮进入泵壳后,部分动能转变成为静压能。当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。 8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。 9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。 10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能) 11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。 12、大型泵的效率通常高于小型泵是由于:容积效率大。 13、叶轮后弯的优缺点 优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。 缺点:产生同样的理论压头所需泵的体积大。 14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关; b 压头仅取决于管路特性。(耐压强度) c 不能在关死点运转。 d 很好的自吸

化工原理主要知识点

化工原理(上)各章主要知识点 绪论「 三个传递:动量传递、热量传递和质量传递 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节流体静止的基本方程 、密度 1. 气体密度: m pM V RT 2. 液体均相混合物密度: 1 a 1 a 2 a n -(m —混合液体的密度, a —各组分质量分数, n — 各组 分密度) m 1 2 n 3. 气体混合物密度: m 1 1 2 2 n n ( m —混合气体的密度, —各组分体积分数) 4. 压力或温度改变时, 密度随之改变很小的流体成为不可压缩流体 (液体);若有显著的改变则称为可压缩流体 (气体)。 、.压力表示方法 1、常见压力单位及其换算关系: 1atm 101300 Pa 101.3kPa 0.1013MPa 10.33mH 2O 760mmHg 2 、压力的两种基准表示:绝压(以绝对真空为基准) 、表压(真空度)(以当地大气压为基准,由压力表或真空表测岀) 表压=绝压一当地大气厂 真空度=当地大气 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1) 从各方向作用于某点上的静压力相等; (2) 静压力的方向垂直于任一通过该点的作用平面; (3) 在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2 、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) P 1 g (z 1 Z 2) d (Z 1 Z 2) g z p (容器内盛液体,上部与大气相通, p/ g —静压头,"头"一液位高度,z p —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1 、 U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:P 1 p 2 ( 0 )gR g (z 2乙) 测量气体:p 1 p 2 0gR 2、双液体U 形管压差计 p 1 p 2 ( 2 第二节流体流动的基本方程 一、基本概念 3 1 1 、体积流量(流量 V s ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为 m s 2 、质量流量( m s ):单位时间内流过任意流通截面积的质量。单位为 kg s 1 m s V s P 2 P 1 g p g 1 )gR

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 += +ρ ρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 流量 质量流量 m S kg/s m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ 连续性方程及重要引论: 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρ ρ2222121121 21 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: η e N N = (运算效率进行简单数学变换) m S =GA=π/4d 2 G V S =uA=π/4d 2 u

青岛科技大学化工原理考研大纲

课程编号:0101102 化工原理Ⅱ Principles of Chemical Engineering 总学时:48 总学分:3 课程性质:技术基础课 开设学期及周学时分配:第5学期,每周3学时 适用专业及层次:化学工程与工艺、生物工程、轻化工程、药物制剂专业本科 相关课程:高等数学、物理化学、分离工程、传递过程原理等 教材:夏清、陈常贵编著,化工原理(下册),天津大学出版社,2005年 推荐参考书: [1]蒋维钧, 雷良恒, 刘茂林编著,化工原理,清华大学出版社, 1993 [2] 谭天恩、丁惠华等编著,化工原理,化学工业出版社,2000年 [3] 赵汝溥、管国锋编著,化工原理,化学工业出版社,1999年 [4] 陈敏恒、丛德滋等编著,化工原理,化学工业出版社,2001年 [5]贾绍义, 柴诚敬编著,化工传质与分离过程,化学工业出版社,2001 [6] J. C. Smith.,Unit Operations of Chemical Engineering, 6th ed. W. L. McCabe, New York: McGraw. Hill Inc., 2001 一、课程目的及要求 本门课程的目的是为学生今后学习相关的专业课程打好工程技术理论基础,并使他们受到必要的基本工程技能工程训练。 本门课程的任务是使学生初步掌握化工过程的基本原理,以三种传递原理为主线,以物料衡算、能量衡算、平衡关系、传递速率等基本概念为理论依据,使学生掌握典型单元操作通用的学习方法和分析问题的思路,培养理论联系实际的观点,进行典型单元操作设备的设计、操作及选型的计算,并进行基本实验技能和设计能力的训练,以增强学生解决工程实际问题的能力。 本门课程的要求是,通过该课程的学习,培养学生工程技术观点及独立分析和解决实际工程问题的能力。 二、课程内容及学时分配 第一章蒸馏(16学时) 第一节两组份理想物系的气液平衡(2学时) 相律和拉乌尔定律、理想溶液相图、相对挥发度、非理想溶液相图。 第二节蒸馏方式简介(2学时) 简单蒸馏、平衡蒸馏、精镏。 第三节精馏原理和流程(2学时)

化工原理知识点总结

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v:考虑流量泄漏所造成的能量损失;水力效率?H:考虑流动阻力所造成的能量损失;机械效率?m:考虑轴承、密

封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 ? (1)正位移泵 ? 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

化工原理(上)主要知识点

化工原理(上)各章主要知识点 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节 流体静止的基本方程 一、密度 1. 气体密度:RT pM V m = = ρ 2. 液体均相混合物密度: n m a a a ρρρρn 22111+++=Λ (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组 分密度) 3. 气体混合物密度:n n m ρ?ρ?ρ?ρ+++=Λ2211(m ρ—混合气体的密度,?—各组分体积分数) 4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。 二、.压力表示方法 1、常见压力单位及其换算关系: mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012===== 2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面; (3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) )(2112z z g p p -+=ρ )(2121z z g p g p -+=ρρ p z g p =ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1、U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体: gR p p 021ρ=- 2、双液体U 形管压差计 gR p p )(1221ρρ-=- 第二节 流体流动的基本方程 一、基本概念 1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为13 -?s m 2、质量流量(s m ):单位时间内流过任意流通截面积的质量。单位为1 -?s kg s s V m ρ=

化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流层厚度,体现不出粗糙度过对阻力 损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

835化工原理考试大纲

青岛科技大学硕士研究生入学考试化工原理考试大纲 一、?本化工原理考试大纲适用于报考青岛科技大学化工类专业的硕士研究生入学考试。 二、考试内容: (一)流体流动 1、流体静力学方程式 密度、压力、流体静力学基本方程式、静力学方程的应用(液柱压差计、液封、液面测量)。 2、流体流动基本方程 流量与流速、定态流动与非定态流动、连续性方程、柏努利方程、柏努利方程的应用。 3、流体流动现象 牛顿粘性定律、粘度、非牛顿型流体、流动型态和雷诺准数、管内层流与湍流的比较、边界层概念。 4、管内流动阻力损失 阻力计算通式、圆形直管内层流流动阻力损失、因次分析法、圆形直管内湍流流动损失、非圆形管内流动阻力、局部阻力。 5、管路计算 管路计算的类型和基本方法(设计型和操作型)、试差法、复杂管路计算(分支、并联)。6、流量测量 测速管、孔板流量计、转子流量计。 (二)流体输送机械 离心泵的工作原理及主要构件、基本方程式、主要性能参数、特性曲线、安装高度、工作点及流量调节、组合操作、类型与选用。 (三)机械分离和固体流态化 1、重力沉降 沉降速度、降尘室。 2、离心沉降 离心沉降速度、旋风分离器。 (四)传热 1、概述 2、热传导 付立叶定律、导热系数、平壁和圆筒壁的定态热传导。 3、对流传热 对流传热分析、传热边界层、对流传热系数的影响因数、因此分析在对流传热中的应用、流体作强制对流和自然对流时的对流传热系数、蒸汽冷凝和液体沸腾时的对流传热系数。 4、传热过程计算 总传热速率方程、热量衡算、总传热系数、平均温度差、传热面积、传热单元数法。 5、辐射传热 基本概念、物体的辐射能力、物体间的辐射传热、对流和辐射的联合传热。 6、换热器 换热器类型、换热器传热过程的强化途径、列管换热器的设计和选用。 (五)蒸馏 1、二元物系的气液平衡 相律和拉乌尔定律、理想溶液相图、相对挥发度。 2、蒸馏方式

《化工原理》公式总结

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ ρρ222212112121+ 5. 雷诺数:μρ du =Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211?? ? ??-=A A ξ流产突然缩小:??? ??-=2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 221r r t t l Q λπ-=或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λπ(由公式4推导)

6. 三层圆筒壁定态热传导方程:3 4123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数22 3μ ρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:2 1211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程: 212121211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:???? ??-=--2 2111112211ln p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:???? ??+=--2 2111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2 221ln p m c q KA t T t T =-- 第四章 蒸发 1. 蒸发水量的计算:110)(Lx x W F Fx =-= 2. 水的蒸发量:)1(1 0x x F W -= 3. 完成时的溶液浓度:W F F x -= 0 4. 单位蒸气消耗量:r r D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热

(完整版)化工原理基本知识点

第一章 流体流动 一、压强 1、单位之间的换算关系: 221101.3310330/10.33760atm kPa kgf m mH O mmHg ==== 2、压力的表示 (1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。 (2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。 表压=绝压-大气压 (3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少 真空度=大气压-绝压 3、流体静力学方程式 0p p gh ρ=+ 二、牛顿粘性定律 F du A dy τμ= = τ为剪应力; du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp 111Pa s P cP ==g 液体的粘度随温度升高而减小,气体粘度随温度升高而增大。 三、连续性方程 若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。 111222u A u A ρρ= 对不可压缩流体 1122u A u A = 即体积流量为常数。 四、柏努利方程式 单位质量流体的柏努利方程式: 22u p g z We hf ρ???++=-∑ 22u p gz E ρ ++=称为流体的机械能 单位重量流体的能量衡算方程: Hf He g p g u z -=?+?+?ρ22

z :位压头(位头);22u g :动压头(速度头) ;p g ρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η = 五、流动类型 雷诺数:Re du ρ μ = Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。 (1)层流: Re 2000≤:层流(滞流) ,流体质点间不发生互混,流体成层的向前流动。圆管内层流时的速度分布方程: 2 max 2(1)r r u u R =- 层流时速度分布侧型为抛物线型 (2)湍流 Re 4000≥:湍流(紊流) ,流体质点间发生互混,特点为存在横向脉动。 即,由几个物理量组成的这种数称为准数。 六、流动阻力 1、直管阻力——范宁公式 2 2 f l u h d λ= f f f p h H g g ρ?== (1)层流时的磨擦系数:64 Re λ=,层流时阻力损失与速度的一次方成正比,层流区又称为阻力一次方区。 (2)湍流时的摩擦系数 ①(Re,)f d ελ=(莫狄图虚线以下):给定Re ,λ随d ε增大而增大;给定d ε ,λ 随Re 增大而减小。(2f p u λ?∝,虽然u 增大时, Re 增大, λ减小,但总的f p ?是增大的) ②()f d ελ=(莫狄图虚线以上),λ仅与d ε 有关,2f p u ?∝,这一区域称为阻力 平方区或完全湍流区。 2、局部阻力 (1)阻力系数法

化工原理知识点总结整理

化工原理知识点总结整 理 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度; du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时 λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

浙江大学化工原理考研大纲

太原科技大学全国硕士研究生招生考试 业务课考试大纲(初试) 科目代码:837 科目名称:化工原理 1.前言 化工原理课程研究生入学考试主要测试考生化工单元操作的掌握情况。测试分两个方面:一是化工单元过程原理,测试考生基本概念,过程计算和熟悉程度;二是综合应用化工单元过程原理能力,从而对考生有较全面的评价。 2.题型说明 化工原理考试采用闭卷考试,试卷由以下三部分构成: (1)基本概念题:由选择题、填空题和解答题构成。 (2)计算题:包括过程计算、公式推导。 (3)实验题:包括实验设计、实验原理和实验现象解释。 3.考试内容 3.1绪论 (1)化学工程及其发展。 (2)化工原理课程的性质、内容和任务。 (3)四个基本关系:物料衡算、热量衡算、平衡关系及速率关系。 3.2流体流动 (1)流体静力学方程及其应用。 (2)流量与流速、定态与非定态流动、连续性方程式、能量衡算式、柏努利方程式的应用。 (3)牛顿粘性定律与流体的粘度、非牛顿型流体的概念、流动类型与雷诺准数、滞流与湍流、边界层的概念。 (4)流体在直管中的流动阻力、摩擦系数、因次分析、管路上的局部阻力、管路系统中的总能量损失。 (5)并联管路与分支管路。 (6)测速管、孔板与文丘里流量计和转子流量计。 3.3流体输送设备 (1)离心泵的工作原理和主要部件、离心泵的基本方程式、离心泵的性能参数与特性曲线、离心泵的性能改变和换算、离心泵的气蚀现象与允许吸上高度、离心泵的工作点与调节、离心泵的联用、离心泵的类型与选用。其它类型泵,如往复泵、旋转泵、漩涡泵的工作原理和适用范围。 (2)离心通风机的结构、性能参数和选择,离心鼓风机和压缩机、旋转鼓风机、真空泵。 3.4非均相物系的分离 (1)沉降速度、降沉室、沉降槽。 (2)过滤操作的基本概念、过滤基本方程式、恒压过滤、恒速过滤与先恒速后恒压过滤、过滤常数的测定、过滤设备、滤饼的洗涤、过滤机的生产能力。

化工原理少学时知识点定稿版

化工原理少学时知识点精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

1、吸收分离的依据是什么如何分类 答:依据是组分在溶剂中的溶解度差异。 (1)按过程有无化学反应:分为物理吸收、化学吸收 (2)按被吸收组分数:分为单组分吸收、多组分吸收 (3)按过程有无温度变化:分为等温吸收、非等温吸收 (4)按溶质组成高低:分为低组成吸收、高组成吸收 2、吸收操作在化工生产中有何应用? 答:吸收是分离气体混合物的重要方法,它在化工生产中有以下应用。 ①分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳烃等。 ②净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。 ③制备液相产品,如用水吸收氯化氢以制备盐酸等。 ④工业废气的治理,如工业生产中排放废气中含有NO SO等有毒气体,则需用吸收方法 除去,以保护大气环境。 3、吸收与蒸馏操作有何区别?

答:吸收和蒸馏都是分离均相物系的气—液传质操作,但是,两者有以下主要差别。 ①蒸馏是通过加热或冷却的办法,使混合物系产生第二个物相;吸收则是从外界引入另 一相物质(吸收剂)形成两相系统。因此,通过蒸馏操作可以获得较纯的组分,而在吸收操作中因溶质进入溶剂,故不能得到纯净组分。 ②传质机理不同,蒸馏液相部分气化和其相部分冷凝同时发生,即易挥发组分和难挥发 组分同时向着彼此相反方向传递。吸收进行的是单向扩散过程,也就是说只有溶质组分由气相进入液相的单向传递。 ③依据不同。 4、实现吸收分离气相混合物必须解决的问题? 答:(1)选择合适的溶剂 (2)选择适当的传质设备 (3)溶剂的再生 5、简述吸收操作线方程的推导、物理意义、应用条件和操作线的图示方法。 答:对塔顶或塔底与塔中任意截面间列溶质的物料衡算,可整理得 上式皆为逆流吸收塔的操作线方程。该式表示塔内任一截面上的气液相组成之间的关系。式中L/V为液气比,其值反映单位气体处理量的吸收剂用量,是吸收塔重要的操作参数。

化工原理考试大纲

复习要求: 1.熟练掌握最基本的单元操作的基本概念和基础理论,对单元过程的典型设备具备基础的判断和选择能力; 2.掌握本大纲所要求的单元操作的常规计算方法,常见过程的计算和典型设备的设计计算或选型; 3.熟悉运用过程的基本原理,根据生产上的具体要求,对各单元操作进行调节; 4.了解化工生产的各单元操作中的故障,能够寻找和分析原因,并提出消除故障和改进过程及设备的途径。 复习内容: 绪论 1.化工过程与单元操作的关系化工生产过程的特点单元操作的任务专2.课程的性质,内容基础理论典型单元操作 3.课程规律和重要基础概念物料衡算能量衡算单位换算和公式转换 基本要求:-了解《化工原理》课程的性质和学习要求。336260 37 重点:化工原理课程中三大单元操作的分类和过程速率的重要概念的内涵。难点:使学生通过对课程性质的了解,把基础课程的学习思维逐步转移到对专业技术课程的学习上,在经济效益观点的指导下建立起“工程”观念。辅导第一章流体流动 1.概述 流体的特性连续介质模型 2.流体静力学原理和应用 流体密度流体静压强流体静力学基本方程 U型压差计 3.流体流动中的守恒定律 流体流动的连续性方程及其应用定态流动 柏努利方程及其几何意义和应用流线与轨线 4.流体流动的阻力 管流现象流动型态——层流和湍流 雷诺数的物理意义和临界值流动阻力分析管流阻力计算 牛顿粘性定律管流速度分布边界层的发展和和分离 5.流体流动阻力的计算 直管阻力计算式层流时的摩擦系数湍流时的摩擦系数 海根-泊稷叶公式布拉修斯公式范宁公式 局部阻力系数法和当量长度法非圆管道的当量直径计算法 因次分析法 Moody图及其使用 6.管路计算 简单管路与复杂管路简单管路计算的方程组 管路的设计型计算管路的操作型计算 空气、水在管中的常用流速范围简单管路的典型试算法 7.流速和流量的测量 皮托管孔板流量计文丘里流量计转子流量计 基本要求: 熟练掌握流体静力学基本方程式,连续性方程式和柏努利方程式及其应用;正确理解流体的流动类型和流动阻力的概念;掌握流体流动阻力的计算,简单管

XXXX年华南理工大学化工原理考研大纲

851 化工原理考试大纲 一、课程的性质 本课程是化工及相关专业的一门专业基础课。通过本课程的教学使学生掌握流体流动、传热和传质基础理论及主要单元操作的典型设备的构造、操作原理;工艺设计、设备计算、选型及实验研究方法;培养学生运用基础理论分析和解决化工单元操作中的各种工程实际问题的能力。并通过实验教学,使学生能巩固加深对课堂教学内容的理解,强调理论与实际结合,综合分析问题、解决问题的能力。 二、课程的基本要求和内容 绪论本课程的性质、任务、研究对象和研究方法,本课程与其他有关课程的关系。 △物理量的因次、单位与单位换算:单位制与因次的概念。几种主要单位制 (SI . CGS制.MKS工程单位制)及我国的法定计量单位。单位换算的基本方式。 第一章流体流动 流体的性质:连续介质的假定、密度、重度、比重、比容、牛顿粘性定律与 粘度。 牛顿型与非牛顿型流体。 流体静力学:静压强及其特性;压强的单位及其换算;压强的表达方式;重力场中静止流体内压强的变化规律及其应用;离心力场中压强的变化规律。 流体流动现象:流体的流速和流量;稳定流动与不稳定流动;流体的流动型态;雷诺准数;当量直径与水力半径;滞流时流体在圆管中的速度分布;湍流时的时均速度与脉动速度;湍流时圆管中时均速度的分布;边界层的形成、发展及分离。 流体流动的基本方程:△物料衡算一一连续性方程及其应用;△能量衡算 方程;柏势利方程;△能量衡算方程和柏势利方程的应用。 流体阻力:△阻力损失的物理概念;边界层对流动阻力的影响;粘性阻力与惯性阻力; 湍流粘度系数;△沿程阻力的计算;滞流时圆管直管中沿程阻力计算;滞流时的摩擦系数;湍流时的摩擦系数;因次分析法:用因次分析法找出表示摩擦阻力关系中的数群;粗糙度对摩擦系数的影响;△局部阻力的计算。

北京化工大学2017年《化工原理》硕士考试大纲_北京化工大学考研网

北京化工大学2017年《化工原理》硕士考试大纲一.适用的招生专业 化学工程与技术:化学工艺、化学工程、工业催化。 二.考试的基本要求 1.掌握的内容 流体的密度和粘度的定义、单位及影响因素,压力的定义、表示法及单位换算;流体静力学方程、连续性方程、柏努利方程及其应用;流动型态及其判据,雷诺准数的物理意义及计算;流体在管内流动的机械能损失计算;简单管路的计算;离心泵的工作原理、性能参数、特性曲线,泵的工作点及流量调节,泵的安装及使用等。 非均相混合物的重力沉降与离心沉降基本计算公式;过滤的机理和基本方程式。 热传导、热对流、热辐射的传热特点;传导传热基本方程式及在平壁和圆筒壁定态热传导过程中的应用;对流传热基本原理与对流传热系数,流体在圆形直管内强制湍流时对流传热系数关联式及其应用;总传热过程的计算;管式换热器的结构和传热计算。 相组成的表示法及换算;气体在液体中溶解度,亨利定律各种表达式及相互间的关系;相平衡的应用;分子扩散、菲克定律及其在等分子反向扩散和单向扩散的应用;对流传质概念;双膜理论要点;吸收的物料衡算、操作线方程及图示方法;最小液气比概念及吸收剂用量的确定;填料层高度的计算,传质单元高度与传质单元数的定义、物理意义,传质单元数的计算(平推动力法和吸收因数法);吸收塔的设计计算。 双组分理想物系的气液相平衡关系及相图表示;精馏原理及精馏过程分析;双组分连续精馏塔的计算(包括物料衡算、操作线方程、q线方程、进料热状况参数q的计算、回流比确定、求算理论板层数等);板式塔的结构及气液流动方式、板式塔非理想流动及不正常操作现象、全塔效率和单板效率、塔高及塔径计算。 湿空气的性质及计算;湿空气的焓湿图及应用;干燥过程的物料衡算和热量衡算;恒速干燥阶段与降速干燥阶段的特点;物料中所含水分的性质。 液液萃取过程;三角形相图及性质。 柏努利演示实验;雷诺演示实验;流体阻力实验;离心泵性能实验;精馏实验;吸收(解吸)实验。 基本结构与计 基本结构与计 基本结构与计 基本结构与计 2.熟悉的内容 层流与湍流的特征;复杂管路计算要点;测速管、孔板流量计及转子流量计的工作原理、基本结构与计算;往复泵的工作原理及正位移特性;离心通风机的性能参数、特性曲线。 沉降区域的划分;降尘室生产能力的计算。 有相变对流传热过程及影响因素;复杂流动的平均温度差求算;列管式换热器的设计要点;传热过程强化措施。 各种形式的传质速率方程、传质系数和传质推动力的对应关系;各种传质系数间的关系;气膜控制与液膜控制;吸收剂的选择;吸收塔的操作型分析;解吸的特点及计算。 理论板层数简捷计算法;精馏装置的热量衡算;平衡蒸馏、简单蒸馏的特点及计算;塔板的主要类型、塔板负荷性能图的特点及作用。 空气通过干燥器时的状态变化;临界含水量的含义及影响因素;恒速干燥阶段干燥时间的计算方法;干燥过程的强化。 物料衡算与杠杆定律。

化工原理知识点总结复习重点完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 +=+ρρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s

m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηe N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000

相关文档
最新文档