哈工大 计算机导论作业 嵌入式系统

哈工大  计算机导论作业 嵌入式系统
哈工大  计算机导论作业 嵌入式系统

嵌入式系统

姓名:冀文欣学号:1120310729 班号:1203107

关键词:嵌入式系统简介与应用实例

引言

随着现代社会信息化的步伐日益加快,人们对于计算机的期望也越来越高,无疑嵌入式系统是一种高效便捷的实现客户需求更好的拓展计算机功能的最佳途径。本文中将对嵌入式系统简要介绍其组成、特点及其应用。Foreword introduction

With the swifter pace of the informatization of modern society, people’s expectation of computer becomes higher. There is no doubt that embedded system is an efficient and convenient approach to meeting the need of client and expanding the function of computer. The following is the brief introduction in composition、feature and application of embedded system.

嵌入式系统简介

嵌入式系统(Embedded system)是一种以应用为中心以计算机技术为基础能够满足各方面要求的专用计算机系统【1】, 通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。它是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”,根据英国电器工程师协会(U.K. Institution of Electrical Engineer)的定义,嵌入式系统为控制、监视或辅助设备、机器或用于工厂运作的设备。简单地按我自己的理解来说,嵌入于某种设备中,高效准确地完成既定功能的系统

就是嵌入式系统。

嵌入式系统特点

1.针对性强。

嵌入式系统通常执行的是带有特定要求的预先定义的任务。所以它的个性化很强,其中的软件系统和硬件的结合非常紧密,一般要针对硬件进行系统的移植,即使在同一品牌、同一系列的产品中也需要根据系统硬件的变化和增减不断进行修改。同时针对不同的任务,往往需要对系统进行较大更改,程序的编译下载要和系统相结合。

2.系统精简,占用内核小。【2】

嵌入式系统一般没有系统软件和应用软件的明显区分,只针对一项特殊的任务,不要求其功能设计及实现上过于复杂,由于嵌入式系统通常进行大量生产,这样一来既控制了系统成本,也利于实现系统安全。此外嵌入式系统内核较之传统的操作系统要小得多,比如ENEA公司开发的OSE 分布式系统,内核仅有5KB,比我们平常熟悉的操作系统如Windows,Unix 都要小得多。

3.多任务的操作系统与高实时性(执行速度快)。

嵌入式系统的应用程序可以没有操作系统直接在芯片上运行,能够合理地调度多任务、充分利用系统资源、系统函数以及和专家库函数接口,保证程序执行的实时性、可靠性,并减少开发时间,保障软件质量。而且系统一般为固态存储,以提高速度,且拥有很高的质量和较好的可靠性。

4.强稳定性,弱交互性。

嵌入式系统一旦开始运行就不需要用户过多的干预。嵌入式操作系统

的用户接口一般不提供操作命令。

嵌入式系统的组成

一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,嵌入式计算机系统是整个嵌入式系统的核心,又由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。执行装置可以很简单,如手机上的一个微小型的电机,当手机处于震动接收状态时打开。也可以很复杂,如索尼智能机器狗,上面集成了多个微小型控制电机和多种传感器,从而可以执行各种复杂动作和感受各种状态信息。

下面对嵌入式计算机系统的组成进行具体介绍。(附示意图两张)

图一

图二

1.硬件层

硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口。在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM中。

2.中间层

硬件层与软件层之间为中间层,也称为硬件抽象层(Hardware Abstract Layer)或板级支持包(Board Support Package),它将系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据中间层提供的接口即可进行开发。该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。

3.系统软件层

系统软件层由实时多任务操作系统(Real-time Operation System)、文件系统、图形用户接口(Graphic User Interface)、网络系统及通用组件模块组成。实时多任务操作系统是嵌入式应用软件的基础和开发平台。

4.应用软件层

应用软件是针对特定实际需求领域,由开发者自己编写完成用户预期目标的软件。

嵌入式系统的应用及其产品

应用一:(19世纪60年代)

第一个被大家认可的现代嵌入式系统是麻省理工学院仪器研究室的查尔斯?斯塔克?德雷珀开发的阿波罗导航计算机。在两次月球飞行中他们在太空驾驶舱和月球登陆舱都是用了这种惯性导航系统。

以下是近五年的发展:

应用二:(2008年6月)国产新型ATM自动柜员机

PZ720工作原理图与实际外观图

2008年6月14日,长城信息产业及其子公司湖南长城信息金融设备有限责任公司研制完成了GWI PZ650/720两款自动柜员机。PZ650/720实现了多级密钥管理、交易确认控制、安全防范、全程视频监控等安全功能。其软件采用分层次模块化整体设计,实现了设备层软件的可卸载插件,保证了对不同设备部件的快速支持。该产品通过免拆式在线版本升级、一键关机控制、机内外设备状态实时指示、传感器实时状态检测等方法,提高了自动柜员机易用性和可维护性。

特色分析(个人观点):我们可以看到,它的关键技术还是在于它的软件系统,实际上它采用的就是较为先进的嵌入式系统,这种为银行业务服务的嵌入式系统的针对性很强,而且可实现远程对其源代码的控制,所以可以实现免拆在线升级,也为客户节省了一大笔维护费用,同时它的可靠性也是非常好的,这很好的满足了银行业这种有极高安全需求的行业。而且与同时期国内产品相比节省了大量人工手动维护费用,使用时间大大延长,执行速度更快且能够更新。

应用三:(2008年12月)Linux 2.6.28的正式发布

Linux 2.6内核配置界面

Linux2.6用户操作界面嵌入式Linux与其他嵌入式操作系统的比较如下:

1.更加成熟与稳定

2.精简的内核,最小的安装只需要2MB。与其同年代的Windows vista为14GB左右,Unix约为690MB。而目前Windows7也为2.4GB[32位]。

3.适用于不同的CPU,兼容性好,支持多种体系结构,如X86、ARM、MIPS、ALPHA,SPARC等。而与其同年份的windows vista即使用奔腾D 915处理器和AM2双核3600+处理器在内的众多在当时中等偏下水平双核处理器运行仍不太流畅。

4.提供嵌入式浏览器、邮件程序、MP3 播放器、MPEG播放器等应用程序。

5.嵌入式应用有用户定制的特点,硬件设计都针对特定应用开发,可提供图形化的定制和配置工具。这一点windows不具备

6.支持大量的周边硬件设备,驱动丰富。

7.针对嵌入人式的存储方案,提供最新产品版本和完善的嵌入式解决方案。

8.开放源码,丰富的软件资源,广泛的软件开发者的支持,价格低廉,结构灵活,适用面广。而windows源代码不开放,为黑箱状态,且同一年的正版windows vista官方最低价也要2060元。

9.此外,此版本拥有可抢占内核功能,极大地增强系统的用户交互性。应用四:(2009年)基于嵌入式系统的AFC车站终端设备

车站售票嵌入式系统(在地铁内的)工作原理图

售票机实物图

该种轨道交通自动售检票系统车站终端设备主要部分是基于国产实时嵌入式操作系统ReWorks的自动售票机软件,针对自动售票机应用需求。轨道交通自动售检票(Automatic Fare Collection,AFC)系统主要由中央计算机系统、车站计算机系统、车站终端设备和车票组成。该系统也被运用在铁路线上的部分无人售票站,解决了某些条件恶劣站点缺少工作人员的尴尬同时也代替了高昂的人工成本。

个人特色分析:该系统的关键技术仍然是其内含有的嵌入式系统,该种嵌入式系统针对交通售票需求,具有易于维护,效率高,多任务操作,人机交互性好的特点。那么我个人认为它的特色还是在于它的高效性,这是针对轨道交通或者说公共交通非常关键的,我们知道在中国每年春运时售票大厅通常是人满为患,排很久的队买不到票。网上购票对于很多农民工是不太现实的,而且网络系统经常会因登陆人数过多繁忙甚至崩溃,比如铁路的12306系统,如果采用此种自动售票系统再张贴适当操作说明就能够大大减少排队时间,节省公共服务成本。

应用五:(2010年)XBrust芯片

XBurst是北京君正针对移动多媒体便携产品推出的一种创新的32位嵌入式CPU技术,它重新定义了32位嵌入式微处理器核心的性能、多媒体能力、功耗和尺寸标准。XBurst各种性能指标远远领先于当时工业界32位CPU内核,在同样工艺下,XBurst运算性能提高80%以上,多媒体能力提高100%以上,功耗节省70%,尺寸节省50%。

XBurst与同时期产品相比具有以下四个方面突出优点:

1. 高性能:XBurst 在0.18微米工艺下可以提供360MHz以上的稳定工作频率,其他工业界内核往往在200MHz以内。另外它的主频可达1GHz,是A9的1.2倍,而65nm下Contex-A9的时钟主频是800MHz左右,在今天看来Xbrust也不算很落后。

2.多媒体性能:SIMD指令对视频解码效率提高100%,编码效率则提高150%以上。

3. 超低功耗:XBurst 的功耗是工业界同类产品的25-30%,XBurst CPU内核的功耗是同时期Cortex- A9 内核的20%。

4.超小尺寸:XBurst 的的硅片面积较小,也意味着它成本更低。在CPU面积方面,即成本上,君正XBurst的是Cortex-A9的40%。

而北京君正也凭借它的Xbrust于2011年与深圳艾诺合作推出世界上第一台Android 4.0平板电脑,这款新机型采用了主频为1GHz的XBurst 处理器,搭载了7寸触摸屏,而售价居然只有99美元。该机支持WiFi,提供有USB2.0和HDMI 1.3接口,还有microSD卡插槽,内置了3D加速芯片Vivante GC860 GPU,可以播放1080p全高清动画。如此优越的性能却有如此低的价格,与它的嵌入式系统Xbrust优越的品质有巨大关系。

其实我个人感觉这款产品特色最主要还是在于嵌入式系统的高效性和良好的实时性,再有我们都知道运算(处理)能力越高功耗也就越大,但是它如此强大的运算能力却做到只有很低的功耗。

应用六:因特尔(INTEL)嵌入式系列芯片

①2008年7月,英特尔推出最新嵌入式芯片组。英特尔公司推出新嵌入式芯片组 SOC(system-on-chip) EP8579集成处理器,它具有

1.功耗较低,比同时期AMD的Barcelona(功耗约为68-95W)功耗更低。

2.具备自定义功能,能有效的支持嵌入式语音,在存储和安全等领域能得到广泛应用。而AMD的Barcelona则不具备这些功能。而也要指出的是Barcelona的先进之处在于其是一款主频可达1.9-2.0GHz的真正意义上的四

核处理器。

②2012年7月,Intel正式发布了两款嵌入式Ivy Bridge处理器Core i3-3120ME与i3-3217UE。

对于嵌入式版本的第三代Core i系列处理器,Intel先后推出了“标准版四核心Core i7、低压版双核心Core i7、标准版四核心Core i5”如今迎来了Core i3系列,至此基本完成了新一代的布局。而INTEL也凭借着新款嵌入式处理器与新款四核处理器牢牢霸占近70%的市场份额,第二大份额是AMD基本占据剩余份额。

Core i3-3120ME和Core i3-3217UE都为为双核四线程型号。具有以下显著特点:

1.主频与三级缓存性能优良。前者主频

2.4GHz,后者主频为1.6GHz,三级缓存为3MB,比AMD的三级缓存高出1MB。

2.能耗低。前者删除了PCI-E

3.0、Intel Insider、WiDi、Anti-Theft、My Wi-Fi、4G WiMAX、VT-i等多项技术,后者多了一项My Wi-Fi,但又去掉了Clear Video for MID。因此前者热设计功耗为35W,后者仅为17W。都远低于AMD现在的皓龙四核处理器(50W)。

4.体积小,可靠性好,效率高,成本更低。且比同时期嵌入式处理器(主要指竞争对手AMD)性能提高60%以上。

5. 适用领域广,包括数字电子看板、数字保全与监视、工业、医学、以及零售市场等。

以上就是我个人搜集整理的近五年嵌入式系统的发展情况与最新应用。谢谢您的耐心阅读。

参考文献:

【1】李林功,李华玲,嵌入式系统的构成与特点,《电测与仪表》第449期,2003.5【2】西安电子科技大学长安学院科协,嵌入式系统的特点和分类,2008.8 (以下参考文献未直接出现原文但化用整合了其中部分[含图片]内容)【3】陈沨毛洋林潘志浩,基于嵌入式Linux的图形界面显示系统的设计,2004

【4】陈丹桂,嵌入式系统综述,《科技经济市场》,2007

【5】徐端全,嵌入式系统原理与设计,2005

【6】康宇峰,嵌入式系统开发面临的问题与集成开发环境的应用

【7】宁辉杜涛李平,嵌入式逻辑分析仪在FPGA测试中的应用,《今日电子》2008.5

【8】胡威,嵌入式逻辑分析仪在FPGA测试中的应用,2008.3

【9】THOMAS A. HENZINGER,Two challenges in embedded systems design: predictability and robustness,2008

哈工大结构动力学大作业2012春

结构动力学大作业 对于如下结构,是研究质量块的质量变化和在简支梁上位置的变化对整个系统模态的影响。 1 以上为一个简支梁结构。集中质量块放于梁上,质量块距简支梁的左端点距离为L. 将该简支梁简化为欧拉伯努利梁,并离散为N 个单元。每个单元有两个节点,四个自由度。 单元的节点位移可表示为: ]1122,,,e v v δθθ?=? 则单元内一点的挠度可计作: 带入边界条件: 1 3 32210)(x a x a x a a x v +++=0 1)0(a v x v ===3 322102)(L a L a L a a v L x v +++===1 10 d d a x v x ===θ2 321232d d L a L a a x v L x ++===θ1 0v a =

[]12 3 4N N N N N = 建立了单元位移模式后,其动能势能均可用节点位移表示。单元的动能为: 00111()222 l l T T T ke e e e e y E dx q N Ndxq q mq t ρρ?===??? 其中m 为单元质量阵,并有: l T m N Ndx ρ=? 带入公式后积分可得: 222215622541322413354 1315622420133224l l l l l l l m l l l l l l ρ-?? ??-??= ?? -?? ---? ? 单元势能可表示为 22 200 11()()22 2 T l l T T e pe e e e q y E EI dx EI N N dxq q Kq x ?''''== =??? 其中K 为单元刚度矩阵,并有 ()l T K EI N N dx ''''=? 2 23 2212 612664621261266264l l l l l l EI k l l l l l l l -????-??=??---??-?? 以上为单元类型矩阵,通过定义全局位移矩阵,可以得到系统刚度矩阵和系统质量矩 1 1θ=a )2(1)(3211222θθ+--=L v v L a )(1)(22122133θθ++-= L v v L a 1232133222231)(θ???? ??+-+???? ??+-=L x L x x v L x L x x v 2 2232332223θ??? ? ??-+???? ??-+L x L x v L x L x 2 4231211)()()()()(θθx N v x N x N v x N x v +++=

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

传热学习题及参考答案

《传热学》复习题 一、判断题 1.稳态导热没有初始条件。() 2.面积为A的平壁导热热阻是面积为1的平壁导热热阻的A倍。() 3.复合平壁各种不同材料的导热系数相差不是很大时可以当做一维导热问题来处理() 4.肋片应该加在换热系数较小的那一端。() 5.当管道外径大于临界绝缘直径时,覆盖保温层才起到减少热损失的作用。() 6.所谓集总参数法就是忽略物体的内部热阻的近视处理方法。() 7.影响温度波衰减的主要因素有物体的热扩散系数,波动周期和深度。() 8.普朗特准则反映了流体物性对换热的影响。() 9. 傅里叶定律既适用于稳态导热过程,也适用于非稳态导热过程。() 10.相同的流动和换热壁面条件下,导热系数较大的流体,对流换热系数就较小。() 11、导热微分方程是导热普遍规律的数学描写,它对任意形状物体内部和边界都适用。( ) 12、给出了边界面上的绝热条件相当于给出了第二类边界条件。 ( ) 13、温度不高于350℃,导热系数不小于0.12w/(m.k)的材料称为保温材料。 ( ) 14、在相同的进出口温度下,逆流比顺流的传热平均温差大。 ( ) 15、接触面的粗糙度是影响接触热阻的主要因素。 ( ) 16、非稳态导热温度对时间导数的向前差分叫做隐式格式,是无条件稳定的。 ( ) 17、边界层理论中,主流区沿着垂直于流体流动的方向的速度梯度零。 ( ) 18、无限大平壁冷却时,若Bi→∞,则可以采用集总参数法。 ( ) 19、加速凝结液的排出有利于增强凝结换热。 ( ) 20、普朗特准则反映了流体物性对换热的影响。( ) 二、填空题 1.流体横向冲刷n排外径为d的管束时,定性尺寸是。 2.热扩散率(导温系数)是材料指标,大小等于。 3.一个半径为R的半球形空腔,空腔表面对外界的辐射角系数为。 4.某表面的辐射特性,除了与方向无关外,还与波长无关,表面叫做表面。 5.物体表面的发射率是ε,面积是A,则表面的辐射表面热阻是。 6.影响膜状冷凝换热的热阻主要是。

哈工大结构风工程课后习题答案

结构风工程课后思考题参考答案 二、大气边界层风特性 1 对地表粗糙度的两种描述方式:指数律和对数律(将公式写上)。 2 非标准地貌下的风速换算原则(P)和方法(P公式)。1514 3 脉动风的生成: 近地风在流动过程中由于受到地表因素的干扰,产生大小不同的涡旋,这些涡旋的迭加作用在宏观上表现为速度的随机脉动。在接近地面时,由于受到地表阻力的影响,导致风速减慢并逐步发展为混乱无规则的湍流。 脉动风的能量及耗散机制:而湍流运动可以看做是能量由低频脉动向高频脉动过渡,并最终被流体粘性所耗散的过程。在低频区漩涡尺度较大,向中频区(惯性子区)、高频区(耗散区)漩涡尺度逐渐减小,小尺度涡吸收由惯性子区传递过来的能量,能量最终被流体粘性所耗散。 4 Davenport谱的特点:先写出公式 通过不同水平脉动风速谱的比较: (1)D谱不随高度变化,而其他谱(如Kaimal谱、Solari谱、Karman谱)则考虑了近地湍流随高度变化的特点;(D谱不随高度变化,在高频区符合-5/3律,没有考虑近地湍流随高度变化的特点;) (2)D谱的谱值比其它谱值偏大,会高估结构的动力反应,计算结果偏于保守。(3)S(0)=0,意味着L=0,与实际不符。uu5 湍流度随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而增大,随高度的增加而减小。 积分尺度随高度及地面粗糙程度的变化规律:大量观测结果表明,大气边界层中的湍流积分尺度是地面粗糙度的减函数,而且随着高度的增加而增加。 功率谱随高度及地面粗糙程度的变化规律:随着高度增大和粗糙度的减小,能量在频率上的分布趋于集中,谱形显得高瘦;随着高度减小和粗糙度的增大,能量在频率上的分布趋于分散,谱形显得扁平。 相干函数随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而减小,随高度的增加而增大。 6 阵风因子与峰值因子的区别:阵风因子G=U'/U,是最大风速与平均风速的比/ σ是最大脉动风速与脉动风速均方根的比值。g=u 值;峰值因子umax联系:二者可以相互换算:G=(U'+gσ)/U'=1+gσ/U'=1+gI。Uuu 三、钝体空气动力学理论 1 钝体绕流的主要特征有: )粘性效应:气体粘性随温度升高而增大,液体粘性随温度升高而减小。1((2)边界层的形成:由于粘性效应,使靠近物体表面的空气流动速度减慢,形 成气流速度从表面等于零逐渐增大到与外层气流速度相等,形成近壁面流动现象。 (3)边界层分离:如果边界层内的流体微粒速度因惯性力减小到使靠近表面的气流倒流,便出现了边界层分离。 (4)再附:在一定条件下,自建筑物前缘分离的边界层会偶然再附到建筑物表面,这时附面层下会形成不通气的空腔,即分离泡。每隔一段时间分离泡破裂产生较大的风吸值,产生一个风压脉冲。 (5)钝体尾流:对于细长钝体,漩涡脱落是在其两侧交替形成的。漩涡脱落时导致建筑物出现横向振动的主要原因。

传热学答案+第五版+章熙民(完整版)

绪论 1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ——与地面的导热量 f Q——与空 气的对流换热热量 注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的 总失热量减少。(T T? 外内 ) 冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分 热量,最终的总失热量增加。(T T? 外内 )。挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。 7.热对流不等于对流换热,对流换热 = 热对流 + 热传导热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。以热传导和热对流的方式。 9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数 降低,故能较长时间地保持热水的温度。 当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性

能变得很差。 10.t R R A λλ = ? 1t R R A λ λ = = 221 8.331012 m --=? 11.q t λσ =? const λ=→直线 const λ≠ 而为λλ=(t ) 时→曲线 12. i R α 1 R λ 3 R λ 0 R α 1 f t ??→ q 首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。) 13.已知:360mm σ=、0.61()W m K λ=? 1 18f t =℃ 2187() W h m K =? 2 10f t =-℃ 22124() W h m K =? 墙高2.8m ,宽3m 求:q 、1 w t 、2 w t 、φ 解:12 11t q h h σλ?= ++= 18(10) 45.9210.361 870.61124 --=++2W m

哈工大机械设计大作业一千斤顶

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业设计计算说明书 题目:设计螺旋起重器(千斤顶) 系别: 班号: 姓名: 日期:

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业任务书 题目:设计螺旋起重器 设计原始数据:题号3.1.1 起重量Fq=30 kN 最大起重高度H=180mm

一 选择螺杆、螺母的材料 螺杆采用45#调制钢,由参考文献[2]表10.2查得抗拉强度b 600 MPa σ=,s 355 MPa σ=。 螺母材料用铝黄铜ZCuAl10Fe3。 二 耐磨性计算 螺杆选用45# 钢,螺母选用铸造铝黄铜ZCuAl10Fe3,由参考文献[1]表 5.8 查得[]p =18~25MPa 从表 5.8 的注释中可以查得,人力驱动时[]p 值可以加大20%,则[]p =21.6~30MPa 取[]25MPa p = 。 按耐磨性条件设计螺纹中径2d ,选用梯形螺纹,则 2d ≥ 由参考文献[1]查得,对于整体式螺母系数2ψ==1.2—2.5,取2ψ=。 则 式中:Q F -----轴向载荷,N ; 2d -----螺纹中径,mm ; []p -----许用压强,MPa ; 查参考文献[2]表11.5取公称直径28d =mm ,螺距3P =mm ,中径226.5d =mm ,小径 324.5d =mm ,内螺纹大径428.5D =mm 。 三 螺杆强度校核 螺杆危险截面的强度条件为: 219.6d mm ≥==

e []σσ=≤ (2) 式中:Q F -----轴向载荷,N ; 3d -----螺纹小径,mm ; 1T -----螺纹副摩擦力矩,2 1tan(') 2Q d T F ψρ=+ (3) ψ为螺纹升角,ψ ; []σ-----螺杆材料的许用应力,MPa 。 查参考文献[1]表5.10得钢对青铜的当量摩擦因数'0.08~0.10f =,螺纹副当量摩擦角 'arctan 'arctan 0.08~arctan 0.10 4.5739~5.7106f ρ===,取'5.7106ρ=(由表5.10的注 释知,大值用于启动时,人力驱动属于间歇式,故应取用大值)。把数据代入(3)式中,得 把数据代入(2)式中,得 由参考文献[1]表5.9可以查得螺杆材料的许用应力 s []4σ σ= (4) 其中s 355 MPa σ=,则 []88.75a MP σ= 显然,e []σσ<,螺杆满足强度条件。 四 螺母螺牙强度校核 螺母螺纹牙根部的剪切强度条件为 4[]Q F Z D b ττπ= ≤ (5) 式中:Q F -----轴向载荷,N ; 4D -----螺母螺纹大径,mm ; 126.5 30000tan(2.0637 5.1427)502612T N mm =??+?= ?70.4e MPa σ==

哈工大结构力学题库七篇(I)

第七章影响线 一判断题 1. 图示梁AB与A0B0,其截面C与C0弯矩影响线和剪力影响线完全相同。(X) 题1图题2图 2. 图示结构Q E影响线的AC段纵标不为零。(X) 3. 图示梁K截面的M K影响线、Q K影响线形状如图a、b所示。 4. 图示梁的M C影响线、Q C影响线形状如图a、b所示。 5. 图示梁的M C影响线、M B影响线形状如图a、b所示。 6. 图示结构M B影响线的AB段纵标为零。 7. 图示梁跨中C截面弯矩影响线的物理意义是荷载P=1作用在截面C的弯矩图形。(X) 8. 用静力法作静定结构某量值的影响线与用机动法作该结构同一量值的影响线是不等价 的。(X) 9. 求某量值影响线方程的方法,与恒载作用下计算该量值的方法在原理上是相同的。(√) 10. 影响线是用于解决活载作用下结构的计算问题,它不能用于恒载作用下的计算。(X) 11. 移动荷载是指大小,指向不变,作用位置不断变化的荷载,所以不是静力荷载。(X) 12. 用静力法作影响线,影响线方程中的变量x代表截面位置的横坐标。(X) 13. 表示单位移动荷载作用下某指定截面的内力变化规律的图形称为内力影响线。(√) 14. 简支梁跨中截面弯矩的影响线与跨中有集中力P时的M图相同。(X) 15. 简支梁跨中C截面剪力影响线在C截面处有突变。(√) 16. 绝对最大弯矩是移动荷载下梁的各截面上最大的弯矩。(√) 17. 静定结构及超静定结构的内力影响线都是由直线组成。(X) 18. 图示结构Q C影响线的CD段为斜直线。 19. 图示结构K断面的剪力影响线如图b所示。(√) 题19图 20. 用机动法作得图a所示Q B左结构影响线如图b。 题20图题21图 21. 图示结构a杆的内力影响线如图b所示 22. 荷载处于某一最不利位置时,按梁内各截面得弯矩值竖标画出得图形,称为简支梁的弯

哈工大机械制造大作业

哈工大机械制造大作业

一、零件分析 题目所给的零件是CA6140车床的拨叉。它位于车床变速机构中,主要起换档,使主轴回转运动按照操作者的要求工作,获得所需的速度和扭矩的作用。零件上方的孔与操纵机构相连,二下方的Φ55叉口则是用于与所控制齿轮所在的轴接触,拨动下方的齿轮变速。 其生产纲领为批量生产,且为中批生产。

图1-1 CA6140拨叉零件图 二、零件的工艺分析 零件材料采用HT200,加工性能一般,在铸造毛坯完成后,需进行机械加工,以下是拨叉需要加工的表面以及加工表面之间的位置要求:

1、小头孔Φ25:该加工面为内圆面,其尺寸精度要求为; 2、叉口半圆孔Φ55:该加工面为内圆面,其尺寸精度要求为; 3、拨叉左端面:该加工面为平面,其表面粗糙度要求为,位置精度要求与内圆面圆心距离为; 4、叉口半圆孔两端面,表面粗糙度要求为,其垂直度与小头孔中心线的垂直度为; 5、拨叉左端槽口,其槽口两侧面内表面为平面,表面粗糙度要求为,其垂直度与小头孔中心线的垂直度为0.08mm。 6、孔圆柱外端铣削平面,加工表面是一个平面,其表面粗糙度要求为。 三、确定毛坯

1、确定毛坯种类: 零件材料为,查阅机械制造手册,有,考虑零件在机床运行过程中受冲击不大,零件结构又比较简单,故选择铸造毛坯。 图3-1 毛坯模型 2、毛坯特点: (1)性能特点: (2)结构特点:一般多设计为均匀壁厚,对于厚大断面件可采用空心结构。CA6140拨叉厚度较均匀,出现疏松和缩孔的概率低。 (3)铸造工艺参数: 铸件尺寸公差:铸件公称尺寸的两个允许极限尺寸之差成为铸件尺寸公差。成批和大量生产

结构动力学哈工大版课后习题集解答

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θ θ??-???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= , 因为ζ较小, 所以有 π δζ2= 。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

哈工大传热学作业答案

一维非稳态导热计算 4-15、一直径为1cm,长4cm 的钢制圆柱形肋片,初始温度为25℃,其后,肋基温度突然升高到200℃,同时温度为25℃的气流横向掠过该肋片,肋端及两侧的表面传热系数均为 100。试将该肋片等分成两段(见附图),并用有 限差分法显式格式计算从开始加热时刻起相邻4个时刻上的温度分布(以稳定性条件所允许的时间间隔计算依据)。已知=43W/(m.K),。(提示:节点4的离散方程可按端面的对流散热与从节点3到节点4的导热相平衡这一条件列出)。 解:三个节点的离散方程为: 节点2: 节点3: 节点4: 。 以上三式可化简为: 稳定性要求,即 。 ,代入得: , 如取此值为计算步长,则: ,。 于是以上三式化成为: )./(2 K m W λs m a /10333.12 5 -?=()()12223212222/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? ()()12224323333/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? () 22344/244k k k f t t d d h t t x ππλ????-=- ? ?????? 12132222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ????????????13243222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ??????????? ?()4322k k f xh t t xht λλ+?=+?2 3410a h x cd ττ ρ??- -≥?2341/a h x cd τρ???≤+ ????5 54332.25810 1.33310c a λρ-===??5253 1.33310410011/8.898770.020.013 2.258100.0999750.0124s τ-??????≤+== ???+??5221.333108.898770.29660.02a x τ-???==?5441008.898770.110332.258100.01h cd τρ???==??1132 20.29660.29660.1103k k f t t t t +?++=12430.29660.296620.1103k k k f t t t t ++?+=34 0.97730.0227k k f t t t +=

哈工大光电技术基础及应用大作业

《光电技术基础及应用》大作业 (2015年春季学期) 题目激光测距原理及军事应用 姓名崔晓蒙 学号1110811005 班级1108110班 专业机械设计制造及其自动化 报告提交日期2015年4月23日 哈尔滨工业大学

大作业要求 1.请根据课堂布置的4道大作业题,任选其一,题目自拟,拒绝雷 同和抄袭; 2.大作业最好包含自己的心得、体会或意见、建议等; 3.大作业统一用该模板撰写,字数不少于5000字,上限不限; 4.正文格式:小四号字体,行距为1.25倍行距; 5.图表规范,参考文献不少于8篇; 6.用A4纸单面打印;左侧装订,1枚钉; 7.大作业需同时提交打印稿和2003word电子文档予以存档,电子文 档由班长收齐,统一发送至:j_jyq@https://www.360docs.net/doc/c913792888.html,; 8.此页不得删除。 评语: 成绩(20分):教师签名: 2015年5月25日

《激光测距原理及军事应用》 摘要:本文简要介绍了脉冲激光测距原理及常见的激光测距光源,并对它们在军事上的应用作了相应的介绍。 关键词:激光测距,激光光源,军事应用 1.概述 1960年一种神奇的光诞生了,它就是激光。激光的英文名称是Laser,取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 激光与普通光源所发出的光相比,有显著的区别,形成差别的主要原因在于激光是利用受激辐射原理和激光腔滤波效应。而这些本质性的成因使激光具有一些独特的特点: 1.激光的亮度高。固体激光器的亮度更可高达1011W/cm2Sr这是因为激光虽然功率有限,但是由于光束极小,于是具有极高的功率密度,所以激光的亮度一般都大于我们所见所有光(包括可见光中的强者:太阳光),这也是激光可用于星际测量的根本原因所在; 2.激光的单色性好。这是因为激光的光谱频率组成单一。 3.激光的方向性好。激光具有非常小的光束发散角,经过长距离的飞行以后仍然能够保持直线传输; 4.激光的相干性好。我们通常所见到的可见光是非相干光,激光可以做到他们都做不到的事情,比如说切割钢材。 在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量)。测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。 激光测距是激光在军事上应用最早和最成熟的技术。自1960年第一台激光器--红宝石激光器发明以来,便有人开始进行激光测距的研究。和微波测距等其

结构动力学

结构动力学试题 2016年4月 重庆交通大学结构工程硕士研究生考试 1.试述结构动力问题和静力问题的主要区别(10分) 答:结构静力学相比,动力学的复杂性表现在: (1)动力问题具有随时间而变化的性质; (2)数学解答不是单一的数值,而是时间的函数; (3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分; (4)引入惯性力后涉及到二阶微分方程的求解; (5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。 2.什么是结构动力系统的阻尼?一般结构系统的阻尼有何特性?在结构分析中 阻尼问题的处理方法有哪些?(20分) 答:(1)结构在震动过程中的能量耗散作用称为阻尼; (2)阻尼的特性:a、阻尼耗能与质量(反映附属部分大小)和刚度(反映位移大小)有关。b、难以采用精确的理论分析方法; (3)对于多自由度体系:在结构动力分析中,通常从系统响应这个角度来考虑阻尼,而且能量的损耗是由外界激励来平衡的。一个振动系统可能存在多种不同类型的阻尼,一般来说,要用数学的方法来精确描述阻尼目前是比较困难的。因此,人们根据经验提出了一些简化模型,常用的阻尼模型有黏性阻尼和结构阻尼。黏性阻尼系统:黏性阻尼的特点是阻尼力和运动速度成真封闭。 在用振型叠加法进行分析时,能否将联立的运动方程化为解耦的一系列单自由度运动方程,将取决于阻尼矩阵的性质,即结构的振型是否关于阻尼阵满足正交条件。如果满足阻尼阵的正交条件,则采用振型叠加法分析时,就可以把多自由度体系的动力反应问题化为一系列单自由度问题求解;如果不满足阻尼阵的正交条件,则对位移向量用振型展开后,关于振型坐标的运动方程成为耦联的,必须联立求解,与解耦方程相比,增加了难度和计算量。 3.试述多自由度体系振型矩阵关于质量矩阵和刚度矩阵的正交性的意义,并写出广义正交性的表达式且加以证明。(20分) 答:(1)由振型关于质量、刚度正交性公式可知,i振型上的惯性力在j振型上作的虚功为0。由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕. (2)振型正交性的证明在Clough书中应用的是Betti互易定理,就像D’Alember 原理一样考虑了惯性力,是运动学中功的互等定理。实际振型正交性的证明可

传热学作业参考答案

第九章 4.一工厂中采用0.1MPa 的饱和水蒸气在—金属竖直薄壁上凝结,对置于壁面另一侧的物体进行加热处理。已知竖壁与蒸汽接触的表面的平均壁温为70 ℃,壁高1.2m ,宽300 mm 。在此条件下,一被加热物体的平均温度可以在半小时内升高30℃,试确定这一物体的平均热容量(不考虑散热损失)。 解:本题应注意热平衡过程,水蒸气的凝结放热量应等于被加热物体的吸热量。 P=0.1Mpa=105Pa,t s =100℃,r=2257.1kJ/kg, t m = 21( t s + t w )= 2 1 (100+70) ℃=85℃。 查教材附录5,水的物性为:ρ=958.4kg/m 3;λ=0.683 W /(m 2·℃);μ=282.5×10-6N·s/m 2 假设流态为层流: 4 1 3 2)(13.1? ? ? ???-=w s t t l r g h μλρ 41 6 3 3 2 )70100(2.1105.282102257683.081.94.95813.1?? ????-???????=- W /(m 2 ·℃) =5677 W /(m 2·℃) 3 6102257105.2822 .13056774)(4Re ??????=-= -r t t hl w s c μ=1282<1800 流态为层流,假设层流正确 Φ=ωl t t h w s )(- =5677×(100?70)×1.2×0.3W=61312W 凝结换热量=物体吸热量 Φ?τ=mc p ?t 61068.330 60 3061312?=??=?Φ?= t mc p τJ/℃ 16.当液体在一定压力下做大容器饱和沸腾时,欲使表面传热系数增加10倍,沸腾温 差应增加几倍?如果同一液体在圆管内充分发展段做单相湍流换热,为使表面传热系数增加10倍,流速应增加多少倍?维持流体流动所消耗的功将增加多少倍?设物性为常数。 解 ①由米洛耶夫公式: { 5 .033.22 25.033.211122.0122.0p t h p t h ?=?= 10)(33.21 212=??=t t h h 所以 69.21033.211 2 ==??t t 即当h 增大10倍时,沸腾温差是原来的2.69倍。 ②如为单相流体对流换热,由D-B 公式可知8 .0m u h ∝,即

哈工大材料力学大作业--matlab编程

H a r b i n I n s t i t u t e o f T e c h n o l o g y 材料力学上机作业 课程名称:材料力学 设计题目:应力状态分析 院系:机电学院 班级: 分析者: 学号: 指导教师:张桂莲 设计时间:2013年6月18日 哈尔滨工业大学

材料力学上机课设计说明书 一, 设计题目 题目7 应力状态分析 输入: 1. 平面应力状态输入: x y xy σστ(,,);某截面方位角α 2. 空间应力状态输入: ,x y z xy yz zx σσστττ(,,,,) 输出: 1. 输出主应力123σσσ(,,) 2. 最大切应力(13 max 132 σσττ-== ) 3. 如为平面应力状态则需要输出方位角α斜截面上的应力αα στ、及主方向角*σα 4. 画出应力圆示意图 二, 程序计算设计过程 1. 平面应力状态分析 对于任意平面应力状态,有 max min σσ = 2x y σσ+± 主应力为: 1max 23min ,0,σσσσσ=== 并且由 2tan 2xy x y στασσ=- 可求得主应力方向角 1 3 σσ αα、。 对于任意一个方位角α,有: = cos 2sin 222 sin 2cos 22 x y x y xy x y xy αασσσσσατα σστατα +++ +-=- +

从而,输入任意角α,即可求得该截面的应力状态 ααστ、 并且 ααστ、都是关于α的函数,上式即为应力圆的参数方程,参数为α。 将α从0到pi 取一系列的值,则可以求出一系列的ααστ、,在坐标系中找 到对应点,连接即可作出应力圆。 2. 三向应力状态分析 解特征方程 32 1230I I I σσσ-+-= 即可求出主应力123σσσ、、 其中: 123|||||||| x y z x yx y zy z xz xy y yz z zx x x yx zx xy y zy xz yz z I I I σσσστστσττστστσστττστττσ=-+??????=++ ? ? ? ???????? ?= ? ??? 再由 13 max 132 σσττ-== 可求得最大切应力。 求解三向应力圆: 三个圆121323C 、C 、C 的圆心分别为: 231312122313,0,0,0222C C C σσσσσσ+++?????? ? ? ??????? 、、 半径非别为: 23 13 12 122313r = ,r = ,r = 2 2 2 σσσσσσ--- 由此可以求出三个应力圆的方程,从而作出三向应力圆。 三, 程序代码 reg=input('选择应力状态方式(1或2):');%1表示平面应力状态,2表示空间应力状态 if reg==1 %选择平面应力状态分析 %输入已知量,应力单位为MPa ,转角单位为rad

哈工大结构动力学作业_威尔逊_θ法

结构动力学大作业(威尔逊- 法) : 学号: 班级: 专业:

威尔逊-θ法原理及应用 【摘要】在求解单自由度体系振动方程时我们用了常加速度法及线加速度法等数值分析方法。在多自由度体系中,也有类似求解方法,即中心差分法及威尔逊-θ法。实际上后两种方法也能求解单自由度体系振动方程。对于数值方法,有三个重要要求:收敛性、稳定性及精度。本文推导了威尔逊-θ法的公式,并利用MATLAB 编程来研究单自由度体系的动力特性。 【关键词】威尔逊-θ法 冲击荷载 阻尼比 【正文】威尔逊-θ法可以很方便的求解任意荷载作用下单自由度体系振动问题。实际上,当 1.37θ>时,威尔逊-θ法是无条件收敛的。 一、威尔逊-θ法的原理 威尔逊-θ法是线性加速度法的一种拓展(当1θ=时,两者相同),其基本思路和实现方法是求出在时间段[],t t t θ+?时刻的运动,其中1θ≥,然后通过插得到i t t +?时刻的运动(见图 1.1)。 图 1.1 1、公式推导 推导由t 时刻的状态求t t θ+?时刻的状态的递推公式: 对τ积分

{}{}{}{}{}{})(623 2 t t t t t t t y y t y y y y &&&&&&&-?+++=?++θτ θτττ {}{}{}{}{})2(6)(2t t t t t t t y y t y t y y &&&&&+?+?+=?+?+θθθθ {}{}{}{}{}t t t t t t t y y t y y t y &&&&&26 )()(62-?--?=?+?+θθθθ []{}{} {}[]{}{}{}[]{}{}{})223()26)(6( )(2t t t t t t t t t t y t y y t c y y t y t m P P P R &&&&&&?++?++?+?+-+=?+θθθθθ 2、MA TLAB 源程序: clc;clear; K=input('请输入结构刚度k(N/m)'); M=input('请输入质量(kg)'); C=input('请输入阻尼(N*s/m)'); t=sym('t');%产生符号对象t Pt=input('请输入荷载); Tp=input('请输入荷载加载时长(s)'); Tu=input('请输入需要计算的时间长度(s) '); dt=input('请输入积分步长(s)'); Sita=input('请输入θ'); uds=0:dt:Tu;%确定各积分步时刻 pds=0:dt:Tp; Lu=length(uds); Lp=length(pds); if isa(Pt,'sym')%荷载为函数 P=subs(Pt,t,uds); %将荷载在各时间步离散 if Lu>Lp P(Lp+1:Lu)=0; end elseif isnumeric(Pt)%荷载为散点 if Lu<=Lp

传热学-第一章习题答案

传热学习题答案 第一章 蓝色字体为注释部分 1-4、对于附图中所示的两种水平夹层,试分析冷、热表面间的热量交换方式有什么不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪种布置? 答:图(a)的热量交换方式为导热(热传导),图(b)的热量交换方式为导热(热传导)及自然对流。应采用图(a)的方式来测定流体的导热系数。 解释:因为图(a)热面在上,由于密度不同,热流体朝上,冷流体朝下,冷热流体通过直接接触来交换热量,即导热;而图(b)热面在下,热流体密度小,朝上运动,与冷流体进行自然对流,当然也有导热。 因为图(a)中只有导热,测定的传热系数即为导热系数;而图(b)有导热和自然对流方式,测定的传热系数为复合传热系数。 1-6、一宇宙飞船的外形如附图所示,其中外遮光罩是凸出于飞船船体之外的一个光学窗口,其表面的温度状态直接影响飞船的光学遥感器。船体表面各部分的表面温度与遮光罩的表面温度不同。试分析:飞船在太空中飞行时与外遮光罩表面发生热交换的对象可能有哪些?换热方式是什么? 答:可能与外遮光罩表面发生热交换的对象有两个:一个是外遮光罩表面与外太空进行辐射换热,另一个是外遮光罩表面与船体表面进行辐射换热。 解释:在太空中,只有可能发生热辐射,只要温度大于0K,两个物体就会发生辐射换热。 1-9、一砖墙的表面积为12m2, 厚260mm,平均导热系数为1.5W/(m.K),设面向室内的表面温度为25℃,外表面温度为-5℃,试确定此砖墙向外界散失的热

量。 解:()()()12 = 1.5122550.26 2076.92W λδΦ-=? ?--=w w A t t 此砖墙向外界散失的热量为2076.92W 。 1-12、在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径d =14mm ,加热段长80mm ,输入加热段的功率为8.5W 。如果全部热量通过对流传热传给空气,试问此时的对流传热表面传热系数多大? 解:此题为对流传热问题,换热面积为圆管外侧表面积,公式为: ()()πΦ=-=??-w f w f hA t t h dl t t ∴ ()() 2()8.53.140.0140.08692049.3325πΦ= ?-=???-=?w f h dl t t W m K 此时的对流传热表面传热系数49.3325W/(m 2.K) 1-18、宇宙空间可近似地看成为0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7,试计算航天器单位表面上的换热量。 解:此题为辐射换热问题,公式为: ()()4412842 0.7 5.67102500155.04εσ-=-=???-=q T T W m 航天器单位表面上的换热量为155.04W/m 2。

哈工大DSP大作业

DSP-F2812的最小系统设计 姓名 学号 班级 时间

一、设计目的: TMS320F2812DSP是TI公司一款用于控制的高性能、多功能、高性价比的32位定点DSP。它整合了DSP和微控制器的最佳特性,集成了事件管理器,A/D转换模块、SCI通信接口、SPI外设接口、eCAN 总线通信模块、看门狗电路、通用数字I/O口、多通道缓冲串口、外部中断接口等多个功能模块,为功能复杂的控制系统设计提供了方便,同时由于其性价比高,越来越多地被应用于数字马达控制、工业自动化、电力转换系统、医疗器械及通信设备中。 通过本课程的学习,我对DSP的各个模块有了较为深入的了解,希望可以通过对最小系统的设计,进一步加深对DSP的学习,能在实践中运用DSP,提高自己的动手实践能力。 二、设计思路 所谓最小系统就是由主控芯片加上一些电容、电阻等外围器件构成,其能够独立运行,实现最基本的功能。为了验证DSP的最基本的功能,我设计了如下单元:有源电路的设计、复位电路及JATG下载口电路的设计、外扩RAM的设计、串口电路的设计、外扩A/D模块电路的设计。 三、详细设计步骤和原理 1、电源电路的设计 TMS320F2812工作时所要求的电压分为两部分:3.3V的Flash电压和1.8V的内核电压。TMS320F2812对电源很敏感,所以在此推荐

选择电压精度较高的电源芯片TPS767D318。TPS767D318芯片输入电压为+5V,芯片起振,正常工作之后,能够产生3.3V和1.8V两种电压电压供DSP使用。如下图所示: 2、复位电路及JATG下载口电路的设计 考虑到TPS767D301芯片自身能够产生复位信号,此复位信号可以直接供DSP芯片使用,所以不用为DSP设置专门的复位芯片。 在实际设计过程中,考虑到JATG下载口的抗干扰性,在与DSP 相连接的接口均需要采用上拉设计。

2009传热学试卷(1)标准答案

2009传热学试卷(1)标准答案 一.填空题:(共20分)[评分标准:每小题2分] 1.按照导热机理,水的气、液、固三种状态中气态状态下的导热系数最小。 2.灰体是指吸收率与投入辐射的波长无关的物体。 3.对服从兰贝特定律的物体,辐射力E 与定向辐射强度L 之间的关系式为 E=πL 。 4.何为热边界层?固体壁面附近流体温度剧烈变化的薄层。 5.沸腾的临界热流密度是核态沸腾转变为过渡沸腾时的热流密度。 6.设计换热器时,温差修正系数ψ应大于0.9,至少不能小于0.8, 否则应改选其它流动型式。 7.热热流量φ为正表明该表面对外放热。 8.辐射网络图分析时,由于绝热面热流密度为零,所以J R =E bR ,该表面热 阻可以不画出来。 9.Nu=hL/λ,Bi=hL/λ,二者λ的的差异是Nu 中的λ为流体的导热系数, Bi 中的λ为固体的导热系数。 10.肋片在垂直于气流速度方向上开若干切口可以强化对流换热,其原因是减薄边界层厚度。 二.问答及推导题:(共50分) 1. 名词解释:(10分) ① 辐射力:单位表面积物体在单位时间内向半球空间发射得全部波长的能量. ② 速度边界层:把贴壁处速度剧烈变化的薄层称为速度边界层。 ③ 导温系数:c a ρλ= 表示物体内部温度扯平的能力. ④ 饱和沸腾:流体的主体温度达到了饱和温度,壁面温度大于饱和温度时发生的沸腾称为饱和沸腾。 ⑤太阳常数:大气层外缘与太阳射线相垂直的单位表面积所接受的太阳辐射能为1367W/m 2

2.厚度为δ,导热系数为λ,初始温度均匀并为t 0的无限大平板,两侧突然暴露在温度为t ∞,表面换热系数为h 的流体中。试定性画出当Bi=h δ/λ→0、Bi=h δ/λ→∞和Bi=h δ/λ为有限大小时平壁内部和流体中的温度随时间的变化示意曲线。(10分) 3. 根据大容器饱和沸腾曲线,饱和沸腾曲线可分为几个区段?其中那个区段具有温压小,换热强的特点?为什么在沸腾换热中必须严格监视并控制热通量在临界热通量以内?(10分) 答:分为四个区段:自然对流、核态沸腾、过渡沸腾和膜态沸腾。 核态沸腾具有温压小,换热强的特点。———————(5分) 对于依靠控制热流密度来改变工况的加热设备,一旦q >q max ,工况将沿q max 虚线跳至稳定膜态沸腾线,使△t 猛增,导致设备的烧毁。对于控制壁温的设备,可使q 大大减小。———————(5分) 4.已知空心球壁的内外半径为r 1和r 2,球壁的内外表面分别保持恒定的温度t 1和t 2。球壁的导热系数λ为常数。试用傅立叶定律,积分求证空心球壁的导热计算公式为: Q=4πλ(t 1-t 2)/(1/r 1-1/r 2) (10分) 解:由傅立叶定律, 2 121121 22211) (4)(4)11(442121 r r t t Q t t r r Q dt r dr Q dr dt r Q r r t t --=-=-==??πλπλπλλ π

相关文档
最新文档