高考数学复习专题函数的图像

高考数学复习专题函数的图像
高考数学复习专题函数的图像

第6炼 函数的图像

一、基础知识

1、做草图需要注意的信息点:

做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点

(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线

特点:两点确定一条直线 信息点:与坐标轴的交点

(2)二次函数:()2

y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性

信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1

y x

=

,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注:

(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常数

C ,则称直线y C =为函数()f x 的水平渐近线

例如:2x

y = 当x →+∞时,y →+∞,故在x 轴正方向不存在渐近线 当x →-∞时,0y →,故在x 轴负方向存在渐近线0y =

(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a →时,()f x →+∞(或-∞),那么称x a =为()f x 的竖直渐近线

例如:2log y x =在0x =处无定义,当0x →时,()f x →-∞,所以0x =为2log y x =的一条渐近线。

综上所述:在作图时以下信息点值得通过计算后体现在图像中:与坐标轴的交点;对称轴与对称中心;极值点;渐近线。 例:作出函数()1

f x x x

=-

的图像 分析:定义域为()(),00,-∞+∞U ,且()f x 为奇函数,故

先考虑x 正半轴情况。

()'21

10f x x =+

>故函数单调递增,()''32

0f x x

=-<,故函数为上凸函数,当x →+∞时,

()f x →+∞无水平渐近线,0x →时,()f x →-∞,所以y 轴为()f x 的竖直渐近线。零

点:()1,0,由这些信息可做出正半轴的草图,在根据对称性得到()f x 完整图像: 2、函数图象变换:设函数()y f x =,其它参数均为正数 (1)平移变换:

()f x a +:()f x 的图像向左平移a 个单位 ()f x a -:()f x 的图像向右平移a 个单位 ()f x b +:()f x 的图像向上平移a 个单位 ()f x b -:()f x 的图像向下平移a 个单位

(2)对称变换:

()f x -:与()f x 的图像关于y 轴对称 ()f x -:与()f x 的图像关于x 轴对称

()f x --:与()f x 的图像关于原点对称

(3)伸缩变换:

()f kx :()f x 图像纵坐标不变,横坐标变为原来的1101k k k >??

<

:拉伸

()kf x :()f x 图像横坐标不变,纵坐标变为原来的101k k k >??

<

拉伸

倍:收缩

(4)翻折变换:

()f x :()()()

,0

,0f x x f x f x x ≥??=?

-

()f x :()()()()(),0

,0

f x f x f x f x f x ≥??=?

-

3、二阶导函数与函数的凹凸性:

(1)无论函数单调增还是单调减,其图像均有3种情况, 若一个函数的增减图像为 则称函数为下凸函数

若一个函数的增减图像为 则称函数为上凸函数

(2)上凸函数特点:增区间增长速度越来越慢,减区间下降速度越来越快 下凸函数特点:增区间增长速度越来越快,减区间下降速度越来越慢 (3)与导数的关系:设()'

f

x 的导函数为()''f x (即()f x 的二阶导函数)

,如图所示:增长速度受每一点切线斜率的变化情况的影响,下凸函数斜率随x 的增大而增大,即()'

f x 为增

函数()''

0f

x ?≥;上凸函数随x 的增大而减小,即()'f x 为减函数()''0f x ?≤;

综上所述:函数是上凸下凸可由导函数的增减性决定,进而能用二阶导函数的符号进行求解。 二、方法与技巧:

1、在处理有关判断正确图像的选择题中,常用的方法是排除法,通过寻找四个选项的不同,再结合函数的性质即可进行排除,常见的区分要素如下:

(1)单调性:导函数的符号决定原函数的单调性,导函数图像位于x 轴上方的区域表示原函数的单调增区间,位于x 轴下方的区域表示原函数的单调减区间

(2)函数零点周围的函数值符号:可通过带入零点附近的特殊点来进行区分 (3)极值点

(4)对称性(奇偶性)——易于判断,进而优先观察

(5)函数的凹凸性:导函数的单调性决定原函数的凹凸性,导函数增区间即为函数的下凸部分,减区间为函数的上凸部分。其单调性可由二阶导函数确定 2、利用图像变换作图的步骤:

(1)寻找到模板函数()f x (以此函数作为基础进行图像变换) (2)找到所求函数与()f x 的联系

(3)根据联系制定变换策略,对图像进行变换。 例如:作图:()ln 1y x =+

第一步寻找模板函数为:()ln f x x = 第二步寻找联系:可得()1y f x =+

第三步制定策略:由()1f x +特点可得:先将()f x 图像向左平移一个单位,再将x 轴下方图像向上进行翻折,然后按照方案作图即可 3、如何制定图象变换的策略

(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换

例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤

()2y f x =-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换

(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:

① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化

例如:()()21y f x y f x =→=+可有两种方案

方案一:先平移(向左平移1个单位),此时()()1f x f x →+。再放缩(横坐标变为原来的

12

),此时系数2只是添给x ,即()()121f x f x +→+ 方案二:先放缩(横坐标变为原来的1

2

),此时()()2f x f x →,再平移时,若平移a 个单

位,则()()()()2222f x f x a f x a →+=+(只对x 加a ),可解得12a =,故向左平移

1

2

个单位

③ 纵坐标的多次变换中,每次变换将解析式看做一个整体进行 例如:()()21y f x y f x =→=+有两种方案

方案一:先放缩:()()2y f x y f x =→=,再平移时,将解析式看做一个整体,整体加1,即()()()

221y f x y f x =→=+

方案二:先平移:()()1y f x y f x =→=+,则再放缩时,若纵坐标变为原来的a 倍,那么

()()()11y f x y a f x =+→=+,无论a 取何值,也无法达到()21y f x =+,所以需要对

前一步进行调整:平移1

2

个单位,再进行放缩即可(2a =) 4、变换作图的技巧:

(1)图像变换时可抓住对称轴,零点,渐近线。在某一方向上他们会随着平移而进行相同方向的移动。先把握住这些关键要素的位置,有助于提高图像的精确性

(2)图像变换后要将一些关键点标出:如边界点,新的零点与极值点,与y 轴的交点等 三、例题精析:

例1:己知函数()3

2

f x ax bx c =++,其导数()'

f

x 的图象如图所示,则函数()f x 的极大

值是( )

A. a b c ++

B. 84a b c ++

C. 32a b +

D.c 思路:由图像可知:()0,2x ∈时,()'

0f

x >,()f x 单调递增,

()2,x ∈+∞时,()'0f x <,()f x 单调递减,所以()f x 的极大值为()284f a b c =++

答案:B

小炼有话说:观察导函数图像时首要关注的是函数的符号,即是在x 轴的上方还是下方,导函

数的符号决定原函数的单调性

例2:设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x '=的图像可能为( )

思路:根据原函数的图像可得:()f x 在(),0-∞单调递增,在正半轴先增再减再增,故()

'

f x 在负半轴的符号为正,在正半轴的符号依次为“正负正”,观察四个选项只有D 符合 答案:D

小炼有话说:本题可直接由导函数的符号来排除其他选项,若选项中也有符合D 中“ 负半轴的符号为正,在正半轴的符号依次为‘正负正’”,那么可观察第二条标准:从图上看在x 负半轴中,函数增长的速度越来越快,则说明切线斜率随x 的增大而增大,进而导函数在x 负半轴也单调递增,依次类推可得到正半轴的情况,D 选项依然符合特征 例3:函数()2

1x f x e x =-的部分图象为( )

思路:()()()'

2222x x f

x e x e x x x e =+=+,可得()f x 在()(),2,0,-∞-+∞单调递增,在

()2,0-单调递减,且可估计当x →-∞,2

20x

x x x e e

-=→即()1f x →-,所以1y =-为函

数()f x 的渐近线,当,x y →+∞→+∞由此可判断出图像A 正确

x

y

O

图1

x

y

O A

x

y

O

B

x

y

O C

y

O D

x

答案:A

小炼有话说:(1)本题考查的是通过分析函数性质作图,单调性是非常重要的一个要素,通过单调性也可排除其他三个选项

(2)关于渐近线的判断:对于x→-∞,

2

20

x

x

x

x e

e-

=→可这样理解,x→+∞时,2,x

x e-均趋向正无穷,但x

e-的速度更快,进而伴随着x→+∞,x

e-将远远大于2x,进而比值趋于0,当x→+∞,增长速度的排名为:直线(一次函数)<二次函数<指数函数

例4:函数()

ln||

||

x x

f x

x

=的图像可能是( )

思路:观察解析式可判断出()

ln

x x

f x

x

=为奇函数,排除A,C. 当0

x>时,()0ln

f x x

>=,

故选择B

答案:B

小炼有话说:()

ln||

||

x x

f x

x

=有两点可以优先观察:一个是奇偶性,则图像具有对称性,只需考虑正半轴的情况即可;二是含有绝对值,可利用x的符号去掉绝对值,进而得到正半轴的解析式。

例5(2015 浙江文):函数()()

1

cos,0

f x x x x x

x

ππ

??

=--≤≤≠

?

??

的图像可能为()

思路:观察4个选项的图像,其中A,B图像关于y轴对称,C,D图像关于原点中心对称。所以先判断函数奇偶性,可判断出()()()

11

cos cos

f x x x x x f x

x x

????

-=-+-=--=-

? ?

????

A B D

C

y

O

x

1

1

-

y

O

x

1

1

-

y

O x

1

1

-

y

O x

1

1

-

所以()f x 为奇函数,排除A ,B ,再观察C,D 的区别之一就是()f π的符号,经过计算可得

()11cos 0f ππππππ?

?=-=-< ??

?,所以排除C

答案:D

例6:已知()21sin ,42f x x x π??

=

++ ???

()f x '为()f x 的导函数,则()f x '的图像是( )

思路:()2211

sin cos 424

f x x x x x π??=

++=+ ???,()1'sin 2f x x x =-,可判断()'f x 为奇函数,图像关于原点中心对称,排除,B D 。因为'

11sin 10626626f ππππ????

=?-=-< ? ?????

,排除C 。故A 正确。 答案:A 小炼有话说:()'

1

sin 2

f

x x x =

-可优先判断出奇偶性,进而排除一些选项,对于,A C 选项而言,其不同之处有两点,一点是从0x =处开始的()'

f

x 符号,解析的思路也源于此,但需

要代入特殊角进行判断,A 选项的图中发现在x 轴正半轴中靠近y 轴的函数值小于零,从而选择最接近0的特殊角

6

π,除此之外,,A C 图像的不同之处还在于从0x =开始时()'

f x 的单调性,所以也可对()'

f

x 求导,()''1cos 2f x x =

-,则0,3x π??

∈ ???

时,()''0f x <,即()'f x 应先减再增。所以排除C

例7:下面四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确.....的序号是( )

A .①②

B .③④

C .①③

D .①④

思路:如图所示:在图①、②在每个区间上函数的单调性与对应的导数的符号是正确的,即单调增区间导数大于零,单调减区间上导数小于零;在③中显示在区间()0,b 上导函数的值为负值,而该区间上的函数图象显示不单调,二者不一致,所以③不正确;在④图象显示在区间(),a b 上导函数的值总为正数,而相应区间上的函数图象却显示为减函数,二者相矛盾,所以不正确.故选B. 答案:B

小炼有话说:要注意导函数图像与原函数图像的联系:导函数的符号与原函数的单调性相对应,导函数的增减与原函数的凹凸性相对应。

例8:已知R 上可导函数()f x 的图象如图所示,则不等式()()2

'

230x x f

x -->的解集为

( )

A.()(),21,-∞-+∞U

B. ()(),21,2-∞-U

C. ()()(),11,02,-∞--+∞U U

D. ()()(),11,13,-∞--+∞U U

思路:由图像可得:()(),1,1,x ∈-∞-+∞时,()'0f x >,()1,1x ∈-时,()'0f x <,所以

所解不等式为:()2'2300x x f x ?-->??>??或()

2'230

0x x f x ?--

答案:D

例9:函数()32

f x x bx cx d =+++的大致图象如图所示,则2212x x +等于(

)

A.

89 B. 109 C. 169 D. 45

思路:由图像可得:12,x x 为()f x 的极值点,1,0,2x x x =-==为函数的零点

()'232f x x bx c =++,即12,x x 是方程2320x bx c ++=的两个根,122,3

b

x x ∴+=-

123

c x x =,()2222

12121242293b c x x x x x x ∴+=+-=-, 由()()()1010120842020000f b c d b f b c d c d d f -=?-+-+==-?????

=?+++=?=-??????===???

()

22

221

2

12124216

2939

b c x x x x x x ∴+=+-=-=

答案:C

小炼有话说:在观察一个函数图像时,有几个地方值得关注: 极值点——单调区间的分界点,导函数的零点;

零点——函数符号的分界点; 单调性——决定导函数的符号。 例10:(2015 安徽)函数()()

2

ax b

f x x c +=

+的图像如图所示,则下列结论成立的是( )

A. 0,0,0a b c >><

B. 0,0,0a b c <>>

C. 0,0,0a b c <><

D. 0,0,0a b c <<< 思路:观察函数图像突出的特点便可确定,,a b c 的符号:特点1:渐近线在x 正半轴,从解析式可知()f x 的竖直渐近线为0x c +=即x c =-,所以00c c ->?<

特点2: x →-∞时,()f x 仍大于0,通过解析式可得()f x 的符号由ax b +决定,所以从“x →-∞时,()f x 仍大于0”中可推断出0a < 特点3:图像与y 轴交点纵坐标为正,()200b

f c

=>,所以0b > 综上所述,选项0,0,0a b c <>< 答案:C

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函 数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a≠1)的反函数称为对数函数,并记为y=log a x(a >0,a≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单: .......... 函数s i n ()y A x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x =????→图例变化为 ②sin()y A x ω?=+(A >0,ω>0)相应地, ①的单调增区间2,22 2 k k ππππ??-++?? ? ? ??? →变为 222 2 k x k π π πω?π- +++≤≤ 的解集是②的增区间. 注:⑴)sin(?ω+=x y 或cos()y x ω?=+(0≠ω )的周期ω π 2= T ; ⑵sin()y x ω?=+的对称轴方程是2 x k π π=+ (Z k ∈),对称中心(,0)k π; cos()y x ω?=+的对称轴方程是x k π=(Z k ∈) ,对称中心1(,0) 2 k ππ+; )tan(?ω+=x y 的对称中心( 0,2πk ). 课前预习 1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1 π2sin()23 y x =+ 的最小正周期T = 4π . 3.函数sin 2 x y =的最小正周期是2π

4.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是]6 5, 3 [ ππ 5.函数22cos()( )3 6 3 y x x π π π=- ≤≤的最小值是1 6.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3 π 个单位长度 7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移 3 π 个单位,所得图象的解析式是y=sin( 2 1x+ 6 π ). 8. 函数sin y x x =+ 在区间[0, 2 π ]的最小值为___1___. 9.已知f (x )=5sin x cos x -35cos 2 x + 3 2 5(x ∈R ) ⑴求f (x )的最小正周期;y=5sin(2x-3π ) T=π ⑵求f (x )单调区间;[k 12 π π- ,k π+ 12 5π], [k 12 5ππ+ ,k π+ 12 11π]k Z ∈ ⑶求f (x )图象的对称轴,对称中心。x=1252ππ+k ,( 0,6 2π π+ k ) k Z ∈ 典型例题 例1、三角函数图像变换 将函数1 2cos()3 2 y x π=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 例2、已知简谐运动π π()2sin 32f x x ????? ?=+< ? ???? ?的图象经过点(01),,则该简谐运动的最 小正周期T 和初相?分别为6T =,π6 = 例3、三角函数性质 求函数34sin(2)2 3 y x ππ= + 的最大、最小值以及达到最大(小)值时x 的值的集合.; 变式1:函数y =2sin x 的单调增区间是[2k π-2 π ,2k π+ 2 π ](k ∈Z ) 变式2、下列函数中,既是(0, 2 π)上的增函数,又是以π为周期的偶函数是( B) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知? ? ???? ∈2, 0πx ,求函数)12 5cos( )12 cos( x x y +--=ππ 的值域y=2sin (x+ 6 π )?? ? ??2,22 变式4、已知函数12 ()log (sin cos )f x x x =- y=log 2 1()4 sin(2π -x ) ⑴求它的定义域和值域;(2k 4 52,4 πππ π+ + k ) k ∈Z ?? ? ?? ?+∞- ,21

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数; 当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高考数学重点难点讲解之三角函数的图像和性质

难点15 三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用. ●难点磁场 (★★★★)已知α、β为锐角,且x(α+β-2π)>0,试证不等式f(x)=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立. ●案例探究 [例1]设z1=m+(2-m2)i,z2=cos θ+(λ+sin θ)i,其中m,λ,θ∈R ,已知z1=2z2,求λ的取值范围. 命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目. 知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题. 技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题. 解法一:∵z1=2z2, ∴m+(2-m2)i=2cos θ+(2λ+2sin θ)i,∴ ???+=-=θλθ sin 222cos 22m m ∴λ=1-2cos2θ-sin θ=2sin2θ-sin θ-1=2(sin θ-41)2-89 . 当sin θ=41时λ取最小值-89 ,当sin θ=-1时,λ取最大值2. 解法二:∵z1=2z2 ∴ ???+=-=θλθsin 222cos 22m m

∴??????? --==222sin 2cos 2 λθθm m , ∴4)22(42 22λ--+m m =1. ∴m4-(3-4λ)m2+4λ2-8λ=0,设t=m2,则0≤t ≤4, 令f(t)=t2-(3-4λ)t+4λ2-8λ,则 ???????? ?≥≥≤-≤ ≥?0 )4(0)0(424300 f f λ或f(0)·f(4)≤0 ∴??? ??? ??? ≤≥≤≤≤≤--≥02204345 89λλλλλ或或 ∴-89 ≤λ≤0或0≤λ≤2. ∴λ的取值范围是[-89 ,2]. [例2]如右图,一滑雪运动员自h=50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v0不为,并以倾角θ起跳,落至B 点,令OB=L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目. 知识依托:主要依据三角函数知识来解决实际问题. 错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题. 解:由已知条件列出从O 点飞出后的运动方程:

高考数学难点突破_难点10__函数图象

难点10 函数图象与图象变换 函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ●难点磁场 (★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围. ●案例探究 [例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和. 命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题. 错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化. (1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称. (2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8. [例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

相关文档
最新文档