(完整)抛物线及其性质知识点大全,推荐文档

(完整)抛物线及其性质知识点大全,推荐文档
(完整)抛物线及其性质知识点大全,推荐文档

(整理)抛物线的概念性质几何意义

抛物线的概念、性质、几何意义 【教学内容】 抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。 【教学目标】 1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。 2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。 3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴 上。另外,对于抛物线y 2=2ax (a ≠0),焦点坐标为(2a ,0),准线方程为2a x -=; 对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2 a y -=。这一 结论对a >0及a <0均成立。 4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。 【知识讲解】 例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3, 2),∴22=-2p(-3)即342=p ,则抛物线方程为x y 3 4 2-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2), ∴22)3(2?=-p ,即292=p 综上所述,抛物线的方程为x y 342-=

高二数学教案:抛物线教案人教版

人教版抛物线教案 一.教学目的: 1.掌握抛物线的概念. 2.掌握抛物线的标准方程及其应用. 3.理解并应用抛物线的几何性质. 二.重点难点: 1.重点:抛物线的标准方程及其应用.抛物线的几何性质. 2.难点:抛物线的几何性质. 三.教学过程: 引入新课:与一定点的距离和一条定直线的距离比是常数e的点的轨迹,当e<1时,是椭圆,当e>1时,是双曲线。当e=1时,是什么曲线呢?(让同学们看课件抛物线的定义部分,然后让学生回答,给出抛物线的定义。) 如图平面内与一个定点F 和一条定直线L 的距离 相等的点的轨迹叫做抛物线. 结合课件,让学生推导抛物线的标准方程. 取过焦点F且垂直与准线L的直线为x轴,x轴与L相交于点K,以线段KF 的垂直平分线为y轴,如右图.设KF =p,则焦点F的坐标为F(2 p ,0),准线L 的方程为:x=- 2 p . 设抛物线上的点M(x,y)到L的距离为d.抛物线也就是集合P={MMF =d}. ∵MF =2 2y p x +??? ?? - , d=2 p x +, ∴2 2y p x +??? ?? - =2 p x + 将上式整理可得抛物线的标准方程:y2 =2px(p>0) 让学生自己总结,写出抛物线标准方程的其他几种形式.教师总结如下表:

最后让学生看课件抛物线的标准方程部分,加深印象. 接着让学生看e与图线形状之间的关系.让学生对抛物线、椭圆、双曲线有一个整体认识,为后面综合应用打好基础. 例题1:求下列抛物线的焦点坐标和准线方程: ⑴x2=2y: ⑵y2-6x=0: 例题2:拱形桥洞是一段抛物线,宽7m,高为0.7m,求这条抛物线的方程.

抛物线的简单几何性质教案 (1)

抛物线的简单几何性质; ●教学目标 1.掌握抛物线的几何性质; 2.能根据几何性质确定抛物线的标准方程; 3.能利用工具作出抛物线的图形. ●教学重点 抛物线的几何性质 ●教学难点 几何性质的应用 ●教学方法 学导式 ●教具准备 三角板 ●教学过程 Ⅰ.复习回顾 简要回顾抛物线定义及标准方程的四种形式(要求学生回答) 师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课 1. 范围 当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线). 2.对称性 抛物线关于x 轴对称. 我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1. 说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程. 师:下面,大家通过问题来进一步熟悉抛物线的几何性质. 例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形. 师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P . 解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =

因为点M 在抛物线上,所以22)22(2?=-p ,即2=p 因此所求方程是.42x y = 下面列表、描点、作图: 说明:①利用抛物线的对称性可以简化作图步骤; ②抛物线没有渐近线; ③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通 径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段. 师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程. Ⅲ.课堂练习 课本P 122练习1,2. ●课堂小结 师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式. ●课后作业 习题8.6 1,2,5. ●板书设计 ●教学后记

抛物线及其性质知识点大全

抛物线及其性质 1 .抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 3 ?抛物线寸 2 px( p 0)的几何性质: (1)范围:因为p>0,由方程可知x> 0,所以抛物线在y轴的右侧,当x的值增大时,|y|也增大,

说明抛物线向右上方和右下方无限延伸.

y kx b y 2 2px k 2x 2 2(kb p)x b 2 (2)对称性:对称轴要看一次项,符号决定开口方向. ⑶顶点(0,0),离心率: e 1,焦点F(E,0),准线x —,焦准距p. 2 2 2 ⑷ 焦点弦:抛物线 y 2px(p 0)的焦点弦 AB , A(x i , yj , B(X 2,y 2),则 | AB | X i X 2 p . 弦长|AB|=x 1+X 2+P ,当X i =X 2时,通径最短为 2p 。 4.焦点弦的相关性质: 焦点弦AB , A(x i ,y i ), B(x 2,y 2),焦点F(-,0) 2 2 (1)若AB 是抛物线y 2 2pXp 0)的焦点弦(过焦点的弦),且A^,%) , B(x 2, y 2),则:xp 2 —, 4 2 yy 2 p 。 焦点弦中通径最短长为 2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5)两个相切:①以抛物线焦点弦为直径的圆与准线相切 ?②过抛物线焦点弦的两端点向准线作垂线, 以两 垂足为直径端点的圆与焦点弦相切。 5 ?弦长公式:A(x 1, y 1) , B( x 2, y 2)是抛物线上两点,则 AB .(X 1 X 2)2 (y 1 y 2)2 、1 k 2 |x 1 X 2 | . 1 1 I y 1 y 2 I 6. 直线与抛物线的位置关系 直线」-,抛物线? 丫 一:", 厂 y -kx¥b ,消 y 得.E +2礙宀 0 (1) 当k=0时,直线I 与抛物线的对称轴平行,有一个交点; (2) 当k 工0时, △ > 0,直线I 与抛物线相交,两个不同交点; △ =0,直线l 与抛物线相切,一个切点; △ v 0,直线l 与抛物线相离,无公共点。 (3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 7. 关于直线与抛物线的位置关系问题常用处理方法 直线 l : y kx b 抛物线- / , (p 0) ①联立方程法: 若AB 是抛物线 寸 2p"p 0)的焦点弦,且直线 AB 的倾斜角为a,贝U AB 已知直线AB 是过抛物线y 2 2px(p 0)焦点F ,丄 AF 1 BF AF BF AF ?BF 2 P (aM 0)。 sin 2 AB 2 AF ?BF p

抛物线专题复习总结模板计划模板讲义及重点学习的练习.doc

抛物线专题复习讲义及练习 ★知识梳理 ★ 1. 抛物线的标准方程、类型及其几何性质 ( p 0 ) : 标准方程 y 2 2 px y 2 2 px x 2 2 py x 22py 图形 ▲ ▲ y ▲ ▲ y y y x x x x O O O O 焦点 p p ,0) F ( 0, p F (0, p F ( ,0) F ( ) ) 2 2 2 2 准线 p p p p x x y y 2 2 2 2 范围 x 0, y R x 0, y R x R, y 0 x R, y 0 对称轴 x 轴 y 轴 顶点 (0, 0) 离心率 e 1 2. 抛物线的焦半径、焦点弦 ① y 2 2 px( p 0) 的焦半径 PF x P ; x 2 2 p y( p 0) 的焦半径 PF y P ; 2 2 ② 过焦点的所有弦中最短的弦,也被称做通径 . 其长度为 2p. ③ AB 为抛物线 y 2 2 px 的焦点弦,则 x A x B p 2 , y A y B p 2 , | AB |= x A x B p 4 ★重难点突破 ★ 重点 :掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质 难点 : 与焦点有关的计算与论证 重难点 :围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识 问题 1:抛物线 y=4 x 2 上的一点 M 到焦点的距离为 1,则点 M 的纵坐标是 ( ) A. 17 B. 15 C. 7 D. 0 16 16 8 点拨:抛物线的标准方程为 x 2 1 y ,准线方程为 y 1 , 由定义知,点 M 到准线的距 离 4 16

高中数学抛物线的简单几何性质教案

《抛物线的简单几何性质》教案 《抛物线的简单几何性质》教案及教材分析 教材:《全日制高级中学课本(必修)数学》第二册(上) 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几 何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p 的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它 们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ) 0(22>=p px y

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

抛物线及其性质知识点大全

抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p几何意义参数p表示焦点到准线的距离,p越大,开 口越阔. 开口方 向 右左上下 标准方 程 22(0) y px p =>22(0) y px p =->22(0) x py p =>22(0) x py p =-> 焦点位 置 X正X负Y正Y负 焦点坐 标(,0) 2 p (,0) 2 p -(0,) 2 p (0,) 2 p - 准线方 程 2 p x=- 2 p x= 2 p y=- 2 p y= 范围0, x y R ≥∈0, x y R ≤∈0, y x R ≥∈0, y x R ≤∈对称轴X轴X轴Y轴Y轴顶点坐(0,0)

3.抛物线) 0(22 >=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2p x -=,焦准距p . (4) 焦点弦:抛物线) 0(22 >=p px y 的焦点弦AB , ) ,(11y x A ,),(2 2 y x B ,则p x x AB ++=21 ||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。

4.焦点弦的相关性质:焦点弦AB ,),(1 1 y x A ,),(2 2 y x B ,焦点(,0)2 p F (1) 若AB 是抛物线2 2(0) y px p =>的焦点弦(过焦点的弦), 且1 1 (,)A x y ,2 2 (,)B x y ,则: 2 124 p x x = ,2 12 y y p =-。 (2) 若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。 (3) 已知直线AB 是过抛物线 22(0) y px p =>焦点 F ,112AF BF AB AF BF AF BF AF BF p ++===?? (4) 焦点弦中通径最短长为2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 5.弦长公式:),(1 1 y x A ,),(2 2 y x B 是抛物线上两点,则 221212()()AB x x y y =-+-||1 1||12 12 2 12 y y k x x k -+=-+= 6.直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 7.关于直线与抛物线的位置关系问题常用处理方法

高中数学双曲线及抛物线

双曲线及抛物线(讲义) 知识点睛 一、双曲线 1. 双曲线的标准方程 我们把平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于12||F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 设()M x y ,是双曲线上任意一点,双曲线的焦距为2(0)c c >, 那么焦点1F ,2F 的坐标分别为(0)c -,,(0)c ,. 又设M 与1F ,2F 的距离的差的绝对值等于常数2a . 12{|||||||2}P M MF MF a =-=. 因为12|| ||MF MF == 所以 2a =±. ① 类比建立椭圆标准方程的化简过程,化简①,得 22222222()()c a x a y a c a --=-, 两边同除以222()a c a -,得 22 2221x y a c a -=-. 由双曲线的定义可知,22220c a c a c a >>->,即,所以. 类比椭圆标准方程的建立过程,我们令222c a b -=,其中0b >,代入上式,得 22 221(00)x y a b a b -=>>,. 双曲线的标准方程:22 221(0 0)x y a b a b , -=>>.

2.双曲线的几何性质 二、抛物线 1.抛物线的标准方程 我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的

轨迹叫做抛物线. 点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 设||(0)KF p p =>,那么焦点F 的坐标为(0)2p ,,准线l 的方程为2 p x =-. 设()M x y ,d . 由抛物线的定义,抛物线就是点的集合 {|||}P M MF d ==. 因为||||2 p MF d x == +,所以 ||2 p x =+. 将上式两边平方并化简,得 22(0)y px p =>. 抛物线的标准方程:22(0)y px p =>. 2. 抛物线的几何性质

高二数学抛物线公式总结

高二数学抛物线公式总结 同学们进入高二要求背诵的公式也逐渐增多,为此查字典数学网整理了高二数学抛物线公式总结,请参考。 1.抛物线的定义摘 定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l 叫抛物线的准线。 需强调的是,点F不在直线l上,否则轨迹是过点F且与l 垂直的直线,而不是抛物线。 2.抛物线的方程 对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。 3.抛物线的几何性质 以标准方程y2=2px为例 (1)范围:x (2)对称轴:对称轴为y=0,由方程和图像均可以看出; (3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心); (4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;

(6)焦半径公式: 抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0): (7)焦点弦长公式: 对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有 ①|AB|=x1+x2+p 以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用弦长公式来求。 (8)直线与抛物线的关系: 直线与抛物线方程联立之后得到一元二次方程: ax2+bx+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。 (9)抛物线y2=2px的切线: ①如果点P(x0,y0)在抛物线上,则y0y=p(x+x0); (10)参数方程 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边

3.3.2 抛物线的简单几何性质

3.3.2抛物线的简单几何性质 基础过关练 题组一抛物线的几何性质及其运用 1.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为() A.(-1,0) B.(0,-1) C.(1,0) D.(0,1) 2.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于() A.2 B.1 C.4 D.8 3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为() B.1 C.2 D.4 A.1 2 4.已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,O为坐标原点,当 |AF|=4时,∠OFA=120°,则抛物线的准线方程是() A.x=-1 B.y=-1 C.x=-2 D.y=-2 5.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当 △FPM为等边三角形时,其面积为() A.2√3 B.4 C.6 D.4√3 6.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过点A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为.

题组二直线与抛物线的位置关系 7.已知直线l:y=x-1与抛物线C:y2=4x相交于A、B两点,则|AB|为() A.5 B.6 C.7 D.8 8.已知直线y=kx-k及抛物线y2=2px(p>0),则() A.直线与抛物线有一个公共点 B.直线与抛物线有两个公共点 C.直线与抛物线有一个或两个公共点 D.直线与抛物线可能没有公共点 9.过点(0,1)且与抛物线y2=4x只有一个公共点的直线有() A.1条 B.2条 C.3条 D.0条 10.(2020山东菏泽高二上期末)已知斜率为k的直线l与抛物线C:y2=4x交于A、B 两点,线段AB的中点为M(2,1),则直线l的方程为() A.2x-y-3=0 B.2x-y-5=0 C.x-2y=0 D.x-y-1=0 11.已知抛物线C:y2=4x的焦点为F,直线l:y=x-2与抛物线C交于A,B两点. (1)求弦AB的长; (2)求△FAB的面积.

抛物线的性质

?抛物线的性质(见下表): 抛物线的焦点弦的性质:

?关于抛物线的几个重要结论: (1)弦长公式同椭圆. (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线 外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是 抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为 F,又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。 利用焦点弦求值: 利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。 抛物线中的几何证明方法: 利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

高考数学讲义抛物线之对称与比例问题

2014年二轮复习抛物线之对称与比例问题

内容 明细内容 要求层次 了解 理解 掌握 圆锥曲线 椭圆的定义与标准方程 √ 椭圆的简单几何意义 √ 抛物线的定义及其标准方程 √ 抛物线的简单几何意义 √ 双曲线的定义及标准方程 √ 双曲线的简单几何性质 √ 直线与圆锥曲线的位置关系 √ 北京三年高考两年模拟统计 中点弦 垂直角度 弦长面积范围 定点定值 共线比例 其它 高考试题 4 1 1 模拟试题 7 8 11 14 4 4 共计 7 8 15 14 5 5 抛物线之对称与比例 高考大纲 自检自查必考点

抛物线22y px =与直线y kx m =+联立 2 2y kx m y px =+???=?? 消去x ,得22y y k m p =?+ 2 02k y y m p -+= 设1122(,),(,)A x y B x y ,则 12 12 210(*)22km p p y y k pm y y k ?=->?? ? +=?? ?=?? V 推出2 2221 2 12222( ) 22(2)pm y y m k x x p p p k =?== 题型一:对称问题 圆锥曲线上存在关于某条直线对称的两个点求参数取值范围的问题,充分运用“垂直平分”这两个特征:(1)连线段的中点在对称轴上;(2)两点的斜率与对称轴的斜率互为负倒数;有以下四种解法: 1. 判别式法 设1122(,),(,)P x y Q x y 是曲线C 上关于直线:l y kx m =+对称的两点,又设PQ 的方程为:1 'y x m k =-+, 代入曲线C 的方程,得到关于x (或y )的一元二次方程,其中,P Q 点的坐标即为方程的根,利用韦达定 理和PQ 方程求得PQ 中点M 的坐标,由M 在l 上,得到一个关系式代回曲线方程,0>V 可求得参数的取值范围。 2. 点差法 设1122(,),(,)P x y Q x y 是曲线C 上关于直线:l y kx m =+对称的两点,00(,)M x y 是PQ 的中点,用“点差法”(或弦中点斜率公式)并结合M 在l 上,求出PQ 中点坐标(含所求参数),再利用点斜式写出PQ 的 方程,代入曲线C 的方程,得到关于x (或y )的一元二次方程,由0>V 可求得参数的取值范围。(或:若能求得此一元二次方程的实数根,说明曲线C 上存在对称的两个点;若无实数根,说明不存在对称的两个点)。 3. 内部法 同上用“点差法”结合中点在对称轴上求出PQ 中点的坐标。由弦中点须在曲线内部(指包含焦点的区域)得出关于参数的不等式,解此不等式求出参数的取值范围。 4. 求对称曲线法 求出曲线C 关于直线l 的对称曲线'C 的方程,若C 和'C 有两个不同的交点,这两个交点关于直线l 对称,问题转化为确定两曲线C 与'C 有两个不同的交点问题(联立方程组应有两个不同的实数解),此法运算较繁,当对称轴为较特殊直线时可考虑用此法。 自检自查必考点 O y x B A

抛物线的简单几何性质练习题

课时作业(十三) [学业水平层次] 一、选择题 1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( ) A .2 B .1 C .4 D .8 【解析】 抛物线y 2=2px (p >0)的准线为x =-p 2,因为P (6,y ) 为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所 以6+p 2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C. 【答案】 C 2.(2014·成都高二检测)抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( ) A .2 3 B .4 C .6 D .43 【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |, ∴PM ⊥抛物线的准线.设P ? ?? ??m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=1+12+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D. 【答案】 D 3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准

线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:????? y 21=2px 1, ①y 22=2px 2, ② ①-②得, (y 1+y 2)(y 1-y 2)=2p (x 1-x 2). 又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2 =k =1,∴p =2. ∴所求抛物线的准线方程为x =-1. 【答案】 B 4.(2014·课标Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) B .6 C .12 D .73 【解析】 焦点F 的坐标为? ?? ??34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33? ?? ??x -34, 即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0,

(完整版)抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

圆锥曲线讲义(带答案)

个性化辅导授课教案 学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题 圆锥曲线专题 课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段 年 月 日 时间段 教 学 内 容 圆锥曲线知识点总结 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<< 3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12 F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

相关文档
最新文档