概率论-边缘分布

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率论与数量统计-公式

第1章随机事件及其概率 (1)排列组合公式 从m 个人中挑出n 个人进行排列的可能数。 从m 个人中挑出n 个人进行组合的可能数。 (2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题 (4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有, ,则称事件A 与事件B 等价,或称A 等于B : A=B 。 A、B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也 可表示为A-AB 或者 ,它表示A 发生而B 不发生的事件。 A、B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发 生,称事件A 与事件B 互不相容或者互斥。基本事件是互不相容的。

概率论与数理统计复习资料要点总结

《概率论与数理统计》复习资料 一、复习提纲 注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。 1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义 2、能较熟练地求解古典概率;了解概率的公理化定义 3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式 4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。 5、理解随机变量的概念,了解(0—1)分布、二项分布、泊松分布的分布律。 6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。 7、掌握指数分布(参数 )、均匀分布、正态分布,特别是正态分布概率计算 8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。 9、会求分布中的待定参数。 10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、

条件密度函数,会判别随机变量的独立性。

11、掌握连续型随机变量的条件概率密度的概念及计算。 12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。 13、了解求二维随机变量函数的分布的一般方法。 14、会熟练地求随机变量及其函数的数学期望和方差。会熟练地默写出几种重要随机变量的数学期望及方差。 15、较熟练地求协方差与相关系数. 16、了解矩与协方差矩阵概念。会用独立正态随机变量线性组合性质解题。 17、了解大数定理结论,会用中心极限定理解题。 18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握 2分布(及性质)、t分布、F 分布及其分位点概念。 19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。 20、掌握极大似然估计法,无偏性与有效性的判断方法。 21、会求单正态总体均值与方差的置信区间。会求双正态总体均值与方差的置信区间。

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

边缘分布

11.边缘分布 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》 第三章第§2边缘分布 【教材分析】:前一节我们已经研究了二维随机变量的一些有关概念、性质和计算,二维联合分布函数(二维联合分布律,二维联合密度函数也一样)含有丰富的信息,如每个分量的分布,即边缘分布等。本节的目的是将这些信息从联合分布中挖掘出来,主要从离散型随机变量出发讨论边缘分布。 【学情分析】: 1、知识经验分析 学生已经学习了一维随机变量的分布函数、分布律、概率密度函数的概念、性质和相应的计算。已经有了一定的理论基础和计算技能。 2、学习能力分析 学生虽然具备一定的基础知识,但解决问题的能力不高,知识没有融会贯通。 【教学目标】: 1、知识与技能 理解并掌握边缘分布的概念,能熟练求解随机变量的边缘分布函数和边缘分布律。 2、过程与方法 根据本节课的知识特点和学生的认知水平,教学中采用类比的方法,讲、将一维随机变量的相关知识引入课题,层层设问,经过思考交流、概括归纳,得到边缘分布的概念,使学生对问题的理解从感性认识上升到理性认识。 3、情感态度与价值观 培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新发现的思维品质. 【教学重点、难点】: 重点:理解二维随机变量(,)X Y 关于X Y 和的边缘分布函数和边缘分布律的概念。并会求随机变量的边缘分布律。 难点:求离散型型随机变量的边缘分布律。 【教学方法】:讲授法 启发式教学法 【教学课时】:1个课时 【教学过程】:

一、 问题引入(复习) 第二章中我们已经学习了随机变量的分布(分布函数、分布律和概率密度)。 定义1 设X 是一个随机变量, x 是任意实数,函数 )()()(+∞<<-∞≤=x x X P x F 称为X 的分布函数。有时记作)(~x F X 或)(x F X 。 定义2 一般,设离散型随机变量X 的分布律为 (),1,2,.....k k P X x p k === 定义3 如果对于随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有 .)(}{)(? ∞ -= ≤=x dt t f x X P x F 则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数。 【设计意图】:通过复习一维随机变量的分布,加深学生对一维随机变量和它的分布的理解,将二维随机变量的分布转化成一维的情形研究,进而得到边缘分布。 二、边缘分布函数 (,)(,),(,){,}. ,{}{,}(,)(,). F x y X Y F x y P X x Y y y P X x P X x Y F x X Y X =≤≤→∞≤=≤<∞=∞定义 设为随机变量的分布函数则令称为随机变量关于的边缘分布函数 ()(,).X F x F x =∞记为 ,x →∞同理令 ()(,){,}{}Y F y F y P X Y y P Y y =∞=<∞≤=≤为随机变量 ( X ,Y )关于Y 的边缘分布函 数。 在三维随机变量(,,)X Y Z 的联合分布函数(,,)F x y z 中,用类似的方法可得到更多的边缘分布函数。 例1 设二维随机变量(,)X Y 的联合分布函数为 1,0,0, (,)0,x y x y xy e e e x y F x y λ-----?--+>>=?? 其他 这个分布被称为二维指数分布,求其边缘分布。 解 :由联合分布函数(,)F x y 容易X Y 与的边缘分布函数 1,0,()(,)0,x X e x F x F x -?->=∞=? ?其他,1,0, ()(,)0,y Y e y F x F y -?->=∞=??其他 注 X 与Y 的边缘分布都是一维指数分布,且与参数0λ>无关。不同的0λ>对应不

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.360docs.net/doc/c915482489.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点 第二章知识点: 1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 2.常用离散型分布: (1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为 12{},{}1(01) P X x p P X x p p ====-<<, 则称X 服从 12 ,x x 处参数为p 的两点分布。 两点分布的概率分布:12{},{}1(01) P X x p P X x p p ====-<< 两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =- (2)二项分布: 若一个随机变量X 的概率分布由式 {}(1),0,1,...,. k k n k n P x k C p p k n -==-= 给出,则称X 服从参数为n,p 的二项分布。记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,. k k n k n P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =- (3)泊松分布: 若一个随机变量X 的概率分布为{},0,0,1,2,... ! k P X k e k k λ λλ-==>=,则称X 服从参 数为λ的泊松分布,记为X~P (λ) 泊松分布的概率分布:{},0,0,1,2,... ! k P X k e k k λ λλ-==>= 泊松分布的期望: ()E X λ=;泊松分布的方差:()D X λ= 4.连续型随机变量: 如果对随机变量X 的分布函数F(x),存在非负可积函数 ()f x ,使得对于任意实数x ,有 (){}()x F x P X x f t dt -∞ =≤=? ,则称X 为连续型随机变量,称 ()f x 为X 的概率密度函数, 简称为概率密度函数。 5.常用的连续型分布:

概率论与数理统计知识点总结(详细)

概率论与数理统计知识点总结 (详细) 《概率论与数理统计》 第一章概率论的基本概念 § 2 ?样本空间、随机事件 1?事件间的关系A B 则称事件B包含事件A,指事件A发生必然导致事件B发生 B ={xx€ A或X E B}称为事件A与事件B的和事件,指当且仅当 A , B中 至少有一个发生时,事件A B发生 A C B ={xx€ A且x€B}称为事件A与事件B的积事件,指当 A , B同时发生 时,事件A「B发生 A — B = { x x € A且x更B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A — B发生 A ' B二■■,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的 B = S且A ' B --:,则称事件A与事件B互为逆事件,又称事件A与事件B

互为对立事件 2?运算规则交换律A B二B A A f B二B ' A 结合律(A_. B)_. C = A_. (B_. C)(A^ B)C = A(B C) 分配律A _( B「C)二(A 一 B)一(A 一 C) A「(B _? C)二(A 一B)(A「C) 徳摩根律A B 二 A - B A ' B 二 A B § 3 .频率与概率 定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A「n称为事件A发生的频率

概率:设E 是随机试验,S 是它的样本空间,对于 E 的每一事件A 赋予一个实数,记为 P (A ),称为事件 的概率 1 ?概率P(A)满足下列条件: (1)非负性:对于每一个事件 A 0乞P(A)乞1 (2 )规范性:对于必然事件 S P(S) =1 n n (3)可列可加性:设A I ,A 2,…,A n 是两两互不相容的事件, 有P(U A k )=送P(A k ) ( n 可以取co ) k 二 k4 2.概率的一些重要性质: (i ) P( ) =0 (ii )若A I ,A 2,…,代 是两两互不相容的事件,则有 (iii) 设 A ,B 是两个事件若 A B ,贝U P(B - A)二 P(B) - P(A),P(B)_P(A) (iv) 对于任意事件 A ,P(A) _1 (v) P(A) =1 -P(A) (逆事件的概率) (vi )对于任意事件 A ,B 有 P(A B) =P(A) P(B) - P(AB) § 4等可能概型(古典概型) 等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件 A 包含 k 个基本事件,即 A =31]}卩{岂} U …Ug 』,里 i i , i 2,…,i k 是1,2,…n 中某k 个不同的数,则有 p (A J P {e }二兰二A 包含的基本事件数 '丿二'卫 n S 中基本事件的总数 n n P( A k )八 P(A k ) ( n 可以取二)

最新概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章概率论的基本概念 § 2 ?样本空间、随机事件 1?事件间的关系A B 则称事件B包含事件A,指事件A发生必然导致事件B发生 A」B ={x x^A或X E B}称为事件A与事件B的和事件,指当且仅当A , B中至少有一个发生时,事件A B发生 A c B ={x X W A且X E B}称为事件A与事件B的积事件,指当A , B 同时发生时,事件AB发生 A — B ={x x乏A且x世B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生 A' B =:,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的 A B = S且A?B二?,则称事件A与事件B互为逆事件,又称事件 A与事件B互为对立事件 2?运算规则交换律A B = B A A - B = B * A 结合律(A B) 一C = A 一(B 一C) (A - B)C = A(B - C) 分配律A _( B ' C)二(A 一B厂(A 一C) A 一( B C) =(A 一B)(A 一C) 徳摩根律A = A - B A - B = A B § 3 .频率与概率 定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A:n称为事件A发生的频率 概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P( A), 称为事件的概率 1 ?概率P(A)满足下列条件: (1)非负性:对于每一个事件 A 0乞P(A)乞1

(2)规范性:对于必然事件S P(S) =1

概率论与数理统计

概率论与数理统计 概率论与数理统计是研究随机现象数量规律的一门学科。 ◆第一章概率论的基本概念 ? 1.1 随机试验 ? 1.2 样本空间 ? 1.3 概率和频率 ? 1.4 等可能概型(古典概型) ? 1.5 条件概率 ? 1.6 独立性 ◆第二章随机变量及其分布 ? 2.1 随机变量 ? 2.2 离散型随机变量及其分布 ? 2.3 随机变量的分布函数 ? 2.4 连续型随机变量及其概率密度 ? 2.5 随机变量的函数的分布 ◆第三章多维随机变量及其分布 ? 3.1 二维随机变量 ? 3.2 边缘分布 ? 3.3 条件分布 ? 3.4 相互独立的随机变量 ? 3.5 两个随机变量的函数的分布 ◆第四章随机变量的数字特征 ?4.1 数学期望 ?4.2 方差 ?4.3 协方差及相关系数 ?4.4 矩、协方差矩阵 ◆第五章大数定律和中心极限定理 ?5.1 大数定律

? 5.2 中心极限定理 ◆第六章数理统计的基本概念 ? 6.1 总体和样本 ? 6.2 常用的分布 ◆第七章参数估计 ? 7.1 参数的点估计 ? 7.2 估计量的评选标准 ? 7.3 区间估计 ◆第八章假设检验 ? 8.1 假设检验 ? 8.2 正态总体均值的假设检验 ? 8.3 正态总体方差的假设检验 ? 8.4 置信区间与假设检验之间的关系 ? 8.5 样本容量的选取 ? 8.6 分布拟合检验 ? 8.7 秩和检验 概率论 第一章概率论的基本概念 关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性 概率统计中研究的对象:随机现象的数量规 律

确定性现象:结果确定 不确定性现象:结果不确定 对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: ?可以在相同条件下重复进行 ?事先知道可能出现的结果 ?进行试验前并不知道哪个试验结果会发生 §2 样本空间?¤随机事件 (一)样本空间 定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e}, 称S中的元素e为基本事件或样本点. (二) 随机事件 一般我们称S的子集A为E的随机事件A,当且仅当A 所包含的一个样本点发生称事件A发生。 (三)事件的关系及运算 事件的关系(包含、相等) 例: ?记A={明天天晴},B={明天无雨}

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

相关文档
最新文档