频率合成器的主要指标(精)

无线电通信技术的迅速发展,对振荡信号源的要求在不断提高。不但要求它的频率稳定度和准确度高,而且要求能方便地改换频率。石英晶体振荡器的频率稳定度和准确度是很高的,但改换频率不方便,只宜用于固定频率;LC 振荡器改换频率方便,但频率稳定度和准确度又不够高。能不能设法将这两种振荡器的特点结合起来,兼有频率稳定度与准确度高,而且改换频率方便的优点呢? 频率合成技术,就能满足上述要求。

频电子线路》(第四版)张肃文主编

高等教育出版

为了正确理解、使用与设计频率合成器,首先应对它提出合理的质量指标。频率合成器的使用场合不同,对它的要求也不全相同。大体说来,有如下几项主要技术指标:频率范围、频率间隔、频率稳定度和准确度、频谱纯度(杂散输出或相位噪声)、频率转换时间,等等。合成器的体积、重量、功耗与成本等,就是由这些指标决定的。

1) 频率范围

这是指频率合成器的工作频率范围,视用途而定,有短波、超短波、微波等频段。

频电子线路》(第四版)张肃文主编 高等教育出版

2) 频率间隔 3) 频率稳定度和准确度 频率合成器的输出频谱是不连续的。两个相邻频率之间的最小间隔,就是频率间隔。频率间隔又称为分辨力。 频率稳定度是指在规定的时间间隔内,合成器频率偏离规定值的数值。频率准确度则是指实际工作频率偏离规定值的数值,即频率误差。 频电子线路》(第四版)张肃文主编

高等教育出版

4) 频率转换时间 5) 频谱纯度 指频率转换后,达到稳定工作所需要的时间。 )cos()(c c cm c θω+=t V t v )](cos[)](1[)(t t t V t θωα++=c cm c v 频电子线路》(第四版)张肃文主编

高等教育出版

对一个正常工作的合成器来说,寄生调幅比较小,危害不大,可以略去;而寄生调相则是产生频谱不纯的主要因素。 (1) 正弦波调相的情形 )](cos[)(t t V t θω+=c cm c v t t Ωθθcos )(m =)cos sin(sin )cos cos(cos t t V t t V ΩθωΩθωm c cm m c cm -=1<

cos t t V t V ΩωΩωθω-++-=c c m cm c cm 相位噪声 频电子线路》(第四版)张肃文主编

高等教育出版

(2) 随机函数的情形 )](cos[)(t t V t θω+=c cm c v ωωΦθθd d n n n ??∞∞→==002_2)()(1lim t t T T T 1)(<

实现直接数字频率合成器的三种技术方案

实现直接数字频率合成器的三种技术方 案 [日期:2004-12-7] 来源:电子技术应用作者:杭州商学院信息 与电子工程学院姜田华 [字体:大中 小] 摘要:讨论了DDS的工作原理及性能性点,介绍了目前实现DDS常用的三种技术方案,并对各方案的特点作了简单的说明。 关键词:直接数字频率合成器相位累加器信号源现场可编程门限列 1971年,美国学者J.Tierney等人撰写的“A Digital Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct Digital Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。 1 DDS基本原理及性能特点 DDS的基本大批量是利用采样定量,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图1来表示。 相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将控制字 k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。 用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。

频率合成器设计报告

频率合成器课程设计 总结报告 指导教师:曹俊友 组员:李刚、魏虹宇、张朋、蒙荣鸿 专业:电子信息科学与技术092 日期: 2012年1月1日

摘要:本设计是关于锁相环频率合成器的设计,设计主要由电源、自制压控振荡器(VCO)、锁相环频率合成器(PLL)、单片机控制(MCU)显示以及键盘操作五部分组成。电源部分采用稳压芯片获得稳定的3.3V以及5V的电压输出,压控振荡器采用MAX2620芯片外接电感电容并联谐振回路制成,锁相环频率合成器采用ADF4106制成,、采用AT89C52单片机作为系统的控制单元。基本要求:输出频率可改变,输出功率可调整。扩展要求:具有显示功能,具有键盘控制功能。 关键词:锁相环(PLL)、压控振荡器(VCO)、环路滤波(LPF)、单片机(MCU) Abstract:This design is about lock cirtle frequency synthesizer design, design mainly by power supply, self-control voltage control oscillation (VCO), and phase lock loop (PLL) frequency synthesizer and single-chip microcomputer control (MCU) display and keyboard five parts. The power supply voltage of the chip made steady 3.3 V and 5 V voltage output, controlled oscillator MAX2620 adopts chip made, lock cirtle frequency synthesizer made by ADF4106, by AT89C52 single chip microcomputer as system, the control unit. Basic requirements: output frequency can change, output power can be adjusted. Expand requirements: display function with the keyboard control function. Key words:Phase lock loop (PLL)、Voltage control oscillation (VCO)、LPF、SCM (MCU)

直接数字式频率合成器

实验八 直接数字式频率合成器(DDS )程序设计与仿真实验 1 实验目的 (1) 学习利用EDA 技术和FPGA 实现直接数字频率合成器的设计。 (2) 掌握使用Quartus Ⅱ原理图输入设计程序。 2 实验仪器 (1)GW48系列SOPC/EDA 实验开发系统 (2)配套计算机及Quartus II 软件 3 实验原理 直接数字频率合成技术,即DDS 技术,是一种新型的频率合成技术和信号产生方法。其电路系统具有较高的频率分辨率,可以实现快速的频率切换,并且在改变时能够保持相位的连续,很容易实现频率、相位和幅度的数控调制。 传统的生成正弦波的数字是利用—片ROM 和一片DAC ,再加上地址发生计数器和寄存器即可。在ROM 中,每个地址对应的单元中的内容(数据)都相应于正弦波的离散采样值,ROM 中必须包含完整的正弦波采样值,而且还要注意避免在按地址读取ROM 内容时可能引起的不连续点,避免量化噪音集中于基频的谐波上。时钟频率f clk 输入地址发生计数器和寄存器,地址计数器所选中的ROM 地址的内容被锁入寄存器,寄存器的输出经DAC 恢复成连续信号,即由各个台阶重构的正弦波,若相位精度n 比较大,则重构的正弦波经适当平滑后失真很小。当f clk 发生改变,则DAC 输出的正弦波频率就随之改变,但输出频率的改变仅决定于f clk 的改变。 为了控制输出频率更加方便,可以采用相位累加器,使输出频率正比于时钟频率和相位增量之积。图1所示为采用了相位累加方法的直接数字合成系统,把正弦波在相位上的精度定为n 位,于是分辨率相当于1/2n 。用时钟频率f P 依次读取数字相位圆周上各点,这里数字值作为地址,读出相应的ROM 中的值(正弦波的幅度),然后经DAC 重构正弦波。这里多了一个相位累加器,它的作用是在读取数字相位圆周上各点时可以每隔M 个点读一个数值,M 即力图1中的频率字。这样,DAC 输出的正弦波频率f sin 就等于“基频” f clk 1/2n 的M 倍,即DAC 输出的正弦波的频率满足下式: )2(sin n clk f M f (1) 这里,f clk 是DDS 系统的工作时钟,式(6-1-1)中的n 通常取值在24~32之间,由图1可知,

基于FPGA的直接数字频率合成器设计

1 JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计 学院:电气信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师:戴霞娟、陈海忠 时间: 2015.9.24

1 目录 绪论.......................................................................................... 错误!未定义书签。 一、背景与意义 (2) 二、设计要求与整体设计 (2) 2.1 设计要求 (2) 2.2 数字信号发生器的系统组成 (3) 2.3 DDS技术 (3) 三、硬件电路设计及原理分析 (4) 3.1 硬件电路设计图 (4) 3.2 设计原理 (5) 四、程序模块设计、仿真结果及分析 (5) 4.1顶层模块设计 (6) 4.2分频模块设计 (6) 4.3时钟模块设计 (11) 4.4数据选择模块设计 (12) 4.5正弦波产生模块设计........................................................ 错误!未定义书签。 4.6三角波产生模块设计 (15) 4.7方波产生模块设计............................................................ 错误!未定义书签。 4.8锯齿波模块设计 (18) 五、软硬件调试 (21) 5.1正弦波 (22) 5.2锯齿波 (22) 5.3方波 (23) 5.4三角 (23) 六、调试结果说明及故障分析 (24) 七、心得体会 (24) 八、参考文献 (25) 九、附录 (25)

数字频率合成器的外文翻译

英文原文 Modulating Direct Digital Synthesizer In the pursuit of more complex phase continuous modulation techniques, the control of the output waveform becomes increasingly more difficult with analog circuitry. In these designs, using a non-linear digital design eliminates the need for circuit board adjustments over yield and temperature. A digital design that meets these goals is a Direct Digital Synthesizer DDS. A DDS system simply takes a constant reference clock input and divides it down a to a specified output frequency digitally quantized or sampled at the reference clock frequency. This form of frequency control makes DDS systems ideal for systems that require precise frequency sweeps such as radar chirps or fast frequency hoppers. With control of the frequency output derived from the digital input word, DDS systems can be used as a PLL allowing precise frequency changes phase continuously. As will be shown, DDS systems can also be designed to control the phase of the output carrier using a digital phase word input. With digital control over the carrier phase, a high spectral density phase modulated carrier can easily be generated. This article is intended to give the reader a basic understanding of a DDS design, and an understanding of the spurious output response. This article will also present a sample design running at 45MHz in a high speed field programmable gate array from QuickLogic. A basic DDS system consists of a numerically controlled oscillator (NCO) used to generate the output carrier wave, and a digital to analog converter (DAC) used to take the digital sinusoidal word from the NCO and generate a sampled analog carrier. Since the DAC output is sampled at the reference clock frequency, a wave form smoothing low pass filter is typically used to eliminate alias components. Figure 1 is a basic block diagram of a typical DDS system design.The generation of the output carrier from the reference sample clock input is performed by the NCO. The basic components of the NCO are a phase accumulator and a sinusoidal ROM lookup table. An optional phase modulator can also be include in the NCO design. This phase modulator will add phase offset to the output of the phase accumulator just before the ROM lookup table. This will enhance the DDS system design by adding the

频率合成器的设计

前言 频率合成器是现代无线通信设备中一个重要的组成部分,直接影响着无线通信设备的性能。频率合成技术历经了早期的直接合成技术(DS)和锁相合成技术(PLL),发展到如今的直接数字合成技术(DDS)。直接数字合成技术具有分辨率高,转换速度快,相位噪声低等优点,在无线通信中发挥着越来越重要的作用。随着大规模集成电路的发展,利用锁相环频率合成技术研制出了很多频率合成集成电路。频率合成器是电子系统的心脏,是决定电子系统性能的关键设备,随着通信、数字电视、卫星定位、航空航天、雷达和电子对抗等技术的发展,对频率合成器提出了越来越高的要求。频率合成技术是将一个或多个高稳定、高精确度的标准频率经过一定变换,产生同样高稳定度和精确度的大量离散频率的技术。频率合成理论自20世纪30年代提出以来,已取得了迅速的发展,逐渐形成了目前的4种技术:直接频率合成技术、锁相频率合成技术、直接数字式频率合成技术和混合式频率合成技术。 本文是以如何设计一个锁相环频率合成器为重点,对频率合成器做了一下概述,主要介绍了锁相环这一部分,同时也对锁相环频率合成器的设计及调试等方面进行了阐述。

1 总体方案设计 实现频率合成的方法有多种,可用直接合成,锁相环式,而锁相环式的实现方法又有多种,例如可变晶振,也可变分频系数M,还可以用单片机来实现等等。下面列出了几种用锁相法实现频率合成的方案。 1.1方案一 图1.1 方案一原理框图 如图1.1所示,在VCO的输出端和鉴相器的输入端之间的反馈回路中加入了一个÷N的可变分频器。高稳定度的参考振荡器信号fR经R次分频后,得到频率为fr的参考脉冲信号。同时,压控振荡器的输出经N次分频后,得到频率为fd的脉冲信号,两个脉冲信号在鉴频鉴相器进行频率或相位比较。当环路处于锁定状态时,输出信号频率:fo=N*fd。只要改变分频比N,即可实现输出不同频率的fo,从而实现由fr合成fo的目的。其输出频率点间隔Δf=fr。 1.2方案二

外文翻译---关于直接数字频率合成器

All About Direct Digital Synthesis What is Direct Digital Synthesis? Direct digital synthesis (DDS) is a method of producing an analog waveform —usually a sine wave —by generating a time-varying signal in digital form and then performing a digital-to-analog conversion. Because operations within a DDS device are primarily digital, it can offer fast switching between output frequencies, fine frequency resolution, and operation over a broad spectrum of frequencies. With advances in design and process technology, today’s DDS devices are very compact and draw little power. Why would one use a direct digital synthesizer (DDS)? Aren’t there other methods for easily generating frequencies? The ability to accurately produce and control waveforms of various frequencies and profiles has become a key requirement common to a number of industries. Whether providing agile sources of low-phase-noise variable-frequencies with good spurious performance for communications, or simply generating a frequency stimulus in industrial or biomedical test equipment applications, convenience, compactness, and low cost are important design considerations. Many possibilities for frequency generation are open to a designer, ranging from phase-locked-loop (PLL)-based techniques for very high-frequency synthesis, to dynamic programming of digital-to-analog converter (DAC) outputs to generate arbitrary waveforms at lower frequencies. But the DDS technique is rapidly gaining acceptance for solving frequency- (or waveform) generation requirements in both communications and industrial applications because single-chip IC devices can generate programmable analog output waveforms simply and with high resolution and accuracy. Furthermore, the continual improvements in both process technolog y and design have resulted in cost and power consumption levels that were previously unthinkably low. For example, the AD9833, a DDS-based programmable waveform generator (Figure 1), operating Figure 1. The AD9833-a one-chip waveform generator.

直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

直接数字频率合成知识点汇总(原理_组成_优缺点_实现) 直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。 直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。 直接数字频率合成原理工作过程为: 1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。 2、两种方法可以改变输出信号的频率: (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。 (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。 3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。 直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。 直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽 输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。 (2)频率转换时间短

高性能频率合成器的电路图

高性能频率合成器的电路图 结合DDS+PLL技术,采用DDS芯片AD9851和集成锁相芯片ADF4113完成了GSM1800MHz 系统中高性能频率合成器的设计与实现。详细介绍系统中核心芯片的性能、结构及使用方法,并运用ADS和ADISimPLL软件对设计方案进行仿真和优化,特别是滤波器的选择与设计。测试结果表明,该频率合成器具有高稳定度、高分辨率、低相位噪声的特点,达到了设计指标要求。 频率合成器是决定电子系统性能的关键设备,随着通信、数字电视、卫星定位、航空航天、雷达和电子对抗等技术的发展,对频率合成器提出了越来越高的要求。频率合成理论自20世纪30年代提出以来,已取得了迅速的发展,逐渐形成了直接频率合成技术、锁相频率合成技术、直接数字式频率合成技术三种基本频率合成方法。直接频率合成技术原理简单,易于实现,频率转换时间短,但是频率范围受限,且输出频谱质量差。锁相频率合成技术(PLL)具有输出频带宽、工作频率高、频谱质量好的优点,但是频率分辨率和频率转换速度却很低。直接式数字频率合成技术(DDS)的频率分辨率高、频率转换时间快、频率稳定度高、相位噪声低,但目前尚不能做到宽带,频谱纯度也不如PLL。低相位噪声、高纯频谱、高速捷变和高输出频段的频率合成器已成为频率合成发展的主要趋势,传统的单一合成方式很难兼顾上述各项性能指标,达到现代通信系统对频率合成器的要求。本文采用DDS和PLL相结合的方法,设计一个应用于(GSM1800MHz系统中的频率合成器,其中输出频带为1805~1880MHz,分辨率为200kHz,相位噪声为-80dBc/Hz@1kHz,频率误差为5kHz,杂波抑制大于50 dB。 1电路设计 1.1设计原理DDS直接激励PLL的频率合成技术,与单纯的PLL技术相比,作为参考源的DDS具有很高的频率分辨率,可以在不改变PLL分频比的情况下,提高PLL的频率分辨率,而且采用DDS激励PLL设计方法的电路结构简单,所用硬件少,通过合理设计环路滤波器可以较好地改善因PLL倍频作用而恶化的相位噪声。系统原理框图如图1所示。 图1中,fref是参考信号,一般由高稳定度的晶体振荡器产生,用于保证DDS各个部件的同步工作。fDDS取代原有的晶振作为锁相环(PLL)的激励源,其输出fDDS频率取决于频率控制字K。频率合成器的输出由VCO提供,PLL芯片中电荷泵的输出由低通滤波器(LPF2)产生,用于控制VCO的输出频率。DDS中K和PLL的分频比可以通过单片机中的控制程序加以改变,从而实现频率合成。

锁相环CD4046设计频率合成器

通信专业课程设计——基于锁相环的频率合成器的设计 设 计 报 告 姓名:曾明 班级:通信工程2班 学号:2008550725 指导老师:粟建新

目录 一、设计和制作任务 (3) 二、主要技术指标 (3) 三、确定电路组成方案 (3) 四、设计方法 (4) (一)、振荡源的设计 (4) (二)、N分频的设计 (4) (三)、1KHZ标准信号源设计(即M分频的设计) (5) 五、锁相环参数设计 (6) 六、电路板制作 (7) 七、调试步骤 (8) 八、实验小结 (8) 九、心得体会 (9) 十、参考文献 (9) 附录:各芯片的管脚图 (10)

锁相环CD4046设计频率合成器 内容摘要: 频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。在通信、雷达、测控、仪器表等电子系统中有广泛的应用, 频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。 关键词:频率合成器CD4046 一、设计和制作任务 1.确定电路形式,画出电路图。 2.计算电路元件参数并选取元件。 3.组装焊接电路。 4.调试并测量电路性能。 5.写出课程设计报告书 二、主要技术指标 1.频率步进 1kHz 2.频率稳定度f ≤1KHz 3.电源电压 Vcc=5V 三、确定电路组成方案 原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。 晶体振荡器输出的信号频率f1, 经固定分频后(M分频)得到 基准频率f1’,输入锁相环的相 位比较器(PC)。锁相环的VCO

DDS 直接数字频率合成器 实验报告(DOC)

直接数字频率合成器(DDS) 实验报告 课程名称电类综合实验 实验名称直接数字频率合成器设计 实验日期2015.6.1—2013.6.4 学生专业测试计量技术及仪器 学生学号114101002268 学生姓名陈静 实验室名称基础实验楼237 教师姓名花汉兵 成绩

摘要 直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。经控制能够实现保持、清零功能。除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。 关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节 Abstract The Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last. Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment

频率合成器的设计与制作汇总

频率合成器的设计与制作 这次课程设计的主要内容是频率合成器的设计与制作,首先了解什么是频率合成器。它有哪几个部分组成,哪些参数对它的技术指标有影响,然后是选择元器件,搭试电路,排版安装,测试数据,分析结果。 随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。 频率合成器:通过对频率进行加、减、乘、除的运算,可从一个高稳定度和高准确度的标准频率源,产生大量的具有同一稳定度和准确度的不同频率。 频率合成的方法很多,大致可分为直接合成法和间接合成法俩种。直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。直接合成法的优点是频率转换时间短,并能产生任意小的频率增量。但它也存在一些不可克服的缺点,用这种方法合成的频率范围将受到限制。更重要的是由于大量的倍频,混频等电路,就要有不少滤波电路,使合成器的设备十分复杂,而且输出端的谐波、噪声及寄生频率难以抑制。而间接合成法就是利用锁相环路的窄带跟踪特性来得到不同的频率。频率合成器是从一个或多个参考频率中产生多种频率的器件。它在信息通信方面得到了广泛的应用,并有新的发展。

频率合成器的核心组成是锁相环路(PLL)。锁相的意义是一种相位负反馈控制系统,它利用相位的稳定来实现频率锁定,即“锁相”。控制电路是利用反馈原理实现对自身的调节与控制。AGC、AFC、PLL 分别对交流信号的三个参数振幅、频率、相位进行自动控制。能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。实现锁相的方法称为“锁相技术”。锁相环路广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。 这里首先对锁相环路作一个简单介绍。 9.1 锁相环路的基本组成及工作原理 9.1.1 锁相环路的基本组成 锁相环路的基本组成框图如图9.1.1所示。 锁相环主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,其中,PD和LF构成反馈控制器,而VCO就是它的控制对象。 鉴相器(PD)实现相位差——电压的转换。将鉴相器替代AFC系统中的鉴频器就得到锁相环路的方框图。 鉴相器(鉴相器)(PD)、压控振荡器(VCO)。低通滤波器三部分组成,如图1所示。 图1

数字PPL频率合成器的原理与使用

龙源期刊网 https://www.360docs.net/doc/c915846063.html, 数字PPL频率合成器的原理与使用 作者:伊力多斯·艾尔肯 来源:《中国科技博览》2013年第36期 中图分类号:TN742.1 文献标识码:A 文章编号:1009-914X(2013)36-0323-01 中波广播发射机载波频率振荡器能在531KHZ--1602KH频段内提供,1KHZ为间隔的1071个频率点。这些频点的载波振荡频率稳定度和精度都应满足系统的性能要求,并能迅速变换。显然常用的晶体振荡器无法满足上述要求,因为尽管晶体振荡器能提供高稳定的振荡频率,但其频率值单一,只能在很小的频率段内进行微调。频率合成技术则是能够实现上述要求的一种新技术,数字PLL频率合成器是目前应用最广泛的一种频率合成器,它与模拟PLL频率合成器的区别在于数字PLL中采用除法器(分频器),而不是用频率减法器来降低输入鉴相器频 率的。由于分频器可以很方便的用数字电路来实现,而且还具有可储存可变换的功能。因此它比一般的模拟PLL频率合成器更方便、更灵活。此外,数字电路易于集成和超小型化。 PLL即相位锁定环路,它是自动控制两振荡信号频率相等和相位同步的闭环系统,频率合成是指用可变分频器的方法将一个(或多个)基准频率信号转换为频率按比例降低或升高的另一个(或多个)所需频率信号的技术,采用PLL技术的频率合成器称为锁相环路频率合成 器,图(1)所示为数字PLL合成器的原理框图。它主要有鉴相器(PD),压控振荡器(VCO),基准晶体振荡器,基准分频器(1/R),前置分频器(1/K),可编程分频器也叫程控分频器(1/N),低通滤波器(LPF)等组成。可编程分频器的分频系数N由二进制码Po---Pn制定(如图1)。 其中鉴相器(PD)是完成压控振荡器(VCO)的输出信号U0(t),经前置分频和程控分频的信号Uf(T)与输入信号Ui(t)的相位比较,得到误差相位Φe(t)=Φf(t)-Φi(t),产生一个输出电压Ud(t),这个电压的大小直接反映两个信号相位差的大小,电压的极性反应输入信号Ui(t)超前或滞后于Uf(t)的相对相位关系。由此可见,PD在环路中是用来完成相位差电压转换作用,其输出误差电压是瞬间相位的函数。低通滤波器(LPF)滤除Ud (t)中的高频分量与噪声成分,得到控制信号Uc(t),压控振荡器(VCO)受Uc(t)控

24GHz射频前端频率合成器设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-24作者简介:饶睿楠(1977-),男,高级工程师。研究方向为频率综合器及微波电路技术。 24GHz 射频前端频率合成器设计 饶睿楠 王 栋 余铁军 唐 尧 (西安电子工程研究所西安710100) 摘要:随着微波射频集成电路集成度越来越高, 24GHz 频段的高集成雷达收发芯片逐渐大规模使用。其中英飞凌科技公司的24GHz 锗硅工艺高集成单片雷达解决方案就是其中具有代表性的一种,被大量应用在液位或物料检测、照明控制、汽车防撞、安防系统。FMCW 为此种应用最多采用的信号调制方式。本文采用锁相环频率合成方案,产生系统所需的FMCW 调制信号。关键词:24GHz 射频前端;FMCW ;频率综合器BGT24AT2ADF4159中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-066-04 引用格式:饶睿楠,王栋,余铁军,唐尧.24GHz 射频前端频率合成器设计[ J ].火控雷达技术,2019,48(1):66-69. DOI :10.19472/j.cnki.1008-8652.2019.01.014 Design of a Frequency Synthesizer for 24GHz RF Front Ends Rao Ruinan ,Wang Dong ,Yu Tiejun ,Tang Yao (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :With the increasing integration of microwave and radio-frequency integrated circuits ,highly integrated radar transceiver chips in 24GHz band have gradually found large-scale applications.Among those chips ,Infineon's 24GHz SiGe monolithic radar solution is a typical one.It has found wide applications in liquid (or material )detec-tion ,lighting control ,automotive collision avoidance ,and security systems.FMCW is the most widely used signal modulation method in these applications.This paper uses PLL frequency synthesis scheme to generate FMCW mod-ulation signals required by the system. Keywords :24GHz RF front end ;FMCW ;frequency synthesizer ;BGT24AT2;ADF4159 0引言 24GHz 频段雷达大量用于液位检测、照明控制、汽车防撞、安防等领域。近年来由于微波集成电路的高速发展,单芯片电路集成度越来越高,出现了一大批高集成、多功能的射频微波集成电路,以前需要几片或十几片芯片的电路被集成在一片集成电路之中。英飞凌公司推出的基于锗硅工艺的高集成单片雷达解决方案就是其中对具代表性的产品之一。FMCW 信号调制方式被广泛的应用于此类产品。本文采用英飞凌公司BGT24AT2单片信号源芯片与ADI 公司ADF4159锁相环芯片构成24GHz 射频前端频率合成器部分,产生了24GHz 24.2GHz FM-CW 发射信号。 1BGT24AT2锗硅24GHz MMIC 信号源芯片基本指标 BGT24AT2是一款低噪声24GHz ISM 波段多功能信号源。内部集成24GHzVCO 和分频器。3路独立的RF 输出可分别输出+10dBm 的信号,通过SPI 可对输出信号功率进行控制。发射信号的快速脉冲和相位反向可通过单独的输入引脚或通用的SPI 控制接口进行控制。片内集成输出功率及温度传感器,可对芯片工作情况进行监控。芯片工作的环境温度为-40? 125?,满足汽车级环境应用要求。封装为32脚VQFN 封装,单3.3V 电源供电,节省了大量板上空间。其原理框图如图1所示。

直接数字合成器通信原理课程设计

课程设计 课程名称:通信原理课程设计 设计名称:基于400MSPS 14-Bit,1.8VCMOS直接 数字合成器AD9951 专业:班级: 姓名:学号:

400 MSPS 14-Bit, 1.8 V CMOS 直接数字合成器AD9951 Abstract: The AD9951 is a direct digital synthesizer (DDS) featuring a 14-bit DAC operating up to 400 MSPS. The AD9951 uses advanced DDS technology, coupled with an internal high speed, high performance DAC to form a digitally programmable, complete high frequency synthesizer capable of generating a frequency-agile analog output sinusoidal waveform at up to 200 MHz. The AD9951 is designed to provide fast frequency hopping and fine tuning resolution (32-bit frequency tuning word). The frequency tuning and control words are loaded into the AD9951 via a serial I/O port. The AD9951 is specified to operate over the extended industrial temperature range of –40°C to +105°C.Synchronizing Multiple AD9951s , The AD9951 product allows easy synchronization of multiple AD9951s. There are three modes of synchronization available to the user: an automatic synchronization mode, a software controlled manual synchronization mode, and a hardware controlled manual synchronization mode. Applications, Agile LO frequency synthesis, Programmable clock generators, Test and measurement equipment ,Acousto-optic device drivers. T he AD9951 supports various clock methodologies. Support for differential or single-ended input clocks and enabling of an on-chip oscillator and/or a phase-locked loop (PLL) multiplier are all controlled via user programmable bits. 摘要: AD9951是一个直接数字频率合成器(DDS),其特色是有一个工作在400MSPS的14位数/模转换器(14-bit DAC). AD9951采用了先进的DDS技术,芯片内部有一个高速的,高性能的DAC,能够形成一个数位可编程的,完整的高频合成器DDS系统,有能力产生频率达200 MHz 的模拟正弦波。AD9951可提供快速频率跳变和高精度分辩率(32位频率控制字)。频率调谐和控制字经并行口或串行口输入到AD9951。 在工业应用中,AD9951的工作温度为–40°C到+105°C。同时并联发生AD9951,存在三种可能得到的同步方式电路∶自动同步方式,软件控制手控同步方式,硬件控制手控同步方式。AD9951可以应用于本机振荡频率合成,可编程时钟发生器,测试和测量装置,声光器件驱动装置。AD9951在不同的时钟脉冲下有不同的操作方法。适合于差动或单端输入时钟脉冲并启动芯片内部振荡器及锁相环路(锁相环)放大器全部控制经由用户可编程序的位。 Key words: automatic synchronization mode software controlled manual synchronization mode a hardware controlled manual synchronization mode Support for differential input clocks Common-mode noise increased signal-to-noise ratio 关键字:自动同步方式软件控制手控同步方式 硬件控制手控同步方式差动输入时钟脉冲 共模噪声信噪比

相关文档
最新文档