影响水泥与外加剂相容性的因素【最新版】

影响水泥与外加剂相容性的因素【最新版】
影响水泥与外加剂相容性的因素【最新版】

影响水泥与外加剂相容性的因素

随着预拌混凝土行业的飞速发展,混凝土配合比设计除了考虑混凝土强度、耐久性之外,更注重其工作性能,水泥与减水剂的相容性是影响混凝土工作性的重要因素。水泥与外加剂相容性不好可能是外加剂的原因,可能是水泥品质的原因,也可能是使用方法不当造成的,或几种因素共同起作用引起的。在实际工作中,若不能分析出确切原因,容易引起各方的争议。本文从水泥熟料的矿物组成、烧成温度和烧成速度、冷却制度,以及混合材种类和品质、碱含量和f-CaO 含量;石膏的种类和存在形式,水泥比表面积和颗粒分布,水泥新鲜度、温度等方面对水泥与减水剂间相容性问题进行分析,并提出改善水泥与外加剂间相容性的一些方法和思路。

(一)水泥熟料矿物组成及工艺制度的影响

(1)熟料4 种主要矿物含量的影响

4 种矿物对减水剂吸附量由大到小的顺序为C3A>C4AF>C3S>C2S 。尤其C3A 的吸附量远远大于其他3种熟料矿物。这是因为减水剂主要吸附在水化产物上,吸附量与其水化产物的数量和表面性质有关,凡水化快、水化产物比表面积大的熟料矿物,吸附量就大,而使溶液中的减水剂大大减少。C3A 的水化速度最快。

C4AF 、C3S 次之,C2S 最慢。C3A 的水化产物比表面积大,所以含C3A 多的水泥,减水剂的适应性差。

(2)熟料烧成温度和烧成速度

高温烧成的熟料与低温烧成的熟料表现出的性能不同,高温快烧的熟料,硅酸盐矿物固熔较多其他组分( 如C3S 固熔Al2O ,、Fe2O ,、MgO等形成A矿),这增加了硅酸盐矿物的含量及性能,提高了水化活性,并使C3A 与C4AF 含量减少。其固熔量随温度的升高及烧成速度的加快而增大。故高温快烧的熟料,A矿发育良好,尺寸适中,边棱清晰,水泥强度较高,与外加剂相容性好。低温烧成的熟料,硅酸盐矿物活性较差,水泥强度较低,并且由于C2S 固熔Al2O3、Fe 2O 减少,熟料矿物中析晶出来C3A 与C4AF 较多,水泥标准稠度用水量大,与外加剂相容性差。

(3)冷却制度的影响

熟料在较高温度范围(1450 ℃~1200℃的快速冷却,有利于A矿保持良好的晶型,C2S 粉化,硅酸盐矿物活性较高:溶剂矿物多以玻璃体存在,大量减少C3A 与C4AF 的析晶,因而对快冷熟料,即使C3A 与C4AF 计算含量较高,由于大部-分以玻璃体存在,所磨制的水泥仍与外加剂相容性好。

凝结时间正常,水泥强度较高。慢速冷却时,熟料中β-C2S 转变为γ-C2S ,矿物活性降低,C3A 与C4AF 大量析晶,水泥与外加剂相容性差。

(二)混合材料种类和品质的影响

混合材对减水剂具有吸附作用。由吸附量实验得知,作为水泥混合材的吸附量由大到小,一般为煤矸石>粉煤灰>矿渣。掺矿渣的水泥适应性优于掺煤矸石的。一般来说火山灰质混合材具有较大的内表面积,故吸附量大,不同品质的粉煤灰适应性差异很大。优质的粉煤灰、超细粉煤灰适应性好;粗粉煤灰、含碳量大的吸附量大、适应性差。

粉煤灰: 粉煤灰为多孔性的中空圆球体,优质的粉煤灰含有大量球形度良好的玻璃体,由于球形玻璃体的“滚珠效应”,可以改善水泥的流变性能,提高水泥与外加剂的适应性。粗粉煤灰和含碳量大的粉煤灰中含有较多未燃尽的碳,而未燃烬的碳具有多孔结构,能吸附大量的减水剂和水分,这种“吸附效应”使水泥与减水剂的相容性变差。

矿粉: 粒化高炉矿粉除具有胶凝性和火山灰性,还具有微填充效

应。混凝土体系可理解为连续级配的颗粒堆积体系。粗集料间隙由细集料填充,细集料间隙由水泥颗粒填充,水泥颗粒之间的间隙则由更细的集料填充,矿渣微粉的细度比水泥颗粒细,在取代了部分水泥以后,这些小颗粒填充在水泥颗粒间的空隙中,置换期间的填充水,因而使拌和物的表面水相应大量增加,促进了混凝土流动性的改善。同时,由于磨细矿渣的需水性低于硅酸盐水泥,因而替代部分水泥后所形成的胶凝体系的总需水量下降,富余的水分有利于提高混凝土的流动性。这就是矿渣的微填充效应,它有助于提高水泥与外加剂的相容性。

(三)水泥碱含量和f-CaO 含量的影响

(1)水泥碱含量

水泥的碱含量主要是指水泥中Na 2O 和K2O 的含量。碱含量对水泥与减水剂的适应性会产生很大的影响。碱的存在使水泥标准稠度用水量增大,使水泥水化速度加快,减水剂的塑化效果变差,含碱量越高,水泥与减水剂的适应性越差,还将导致混凝土的坍落度经时损失增大。目前国内最普遍使用的是萘系高效减水剂,而碱含量是控制萘系减水剂与水泥相容性良好的关键因素之一。2000年在法国召开的第六届国际化学外加剂会议上,我国留学生姜施平博士等发表的文章指出:水泥的可溶性碱含量,细度,C3A 含量和石膏类型,是控制

掺萘系减水剂水泥浆和混凝土流变性能的关键参数。最佳可溶性碱含量在0.4%~0.6%当量的Na2O 。萘系减水剂在水泥颗粒上的吸附率和水泥水化速率受这些参数影响,它们控制混凝土流动度的损失速率。使用可溶性碱含量低的水泥时,不仅当减水剂剂量不足时坍落度损失较快,且当剂量稍高于饱和点时,又会出现严重的离析和泌水现象。

(2)水泥f-CaO 含量

水泥f-CaO 含量高明显影响与外加剂的适应性。这一点国内资料报道得少,据国外及生产实践经验得知,这一影响不可忽视。

(四)作为水泥调凝剂石膏品种和掺加量的影响

(1)石膏的种类对其与减水剂相容性的影响也很大,因为不同种类石膏的溶解速度和溶解度差别较大,他们对水泥的缓凝作用不同,而对水泥与减水剂相容性影响也不同。天然二水石膏与高效减水剂适应性好,硬石膏有不利的影响应限制,工业副产品石膏中的某些微量成分可能使水泥与高效减水剂的相容性变差。

(2)水泥中SO 3含量及石膏的形态影响与外加剂的适应性。在水泥凝结时间可以接受的范围内,适当提高水泥中SO 3含量有利于

改善水泥与高效减水剂相容性,适宜的SO 3含量应根据水泥中C 3A 、碱含量和比表面积来确定。

(五)水泥比表面积和颗粒分布的影响

水泥颗粒对减水剂分子的吸附与水泥的比表面积有关。在掺加减水剂的水泥浆体中,水泥颗粒越细,意味着其比表面积越大,减水剂在相同掺量情况下,细度大的水泥,其塑化效果要差一些;同时,比表面积越高时,水泥与水接触的面积越大,水泥颗粒表面形成水膜所需水量就大,相同水灰比条件下,颗粒之间的自由水相应减少,水泥浆体流动性变差,水泥与减水剂适应性不好;另外,水泥比表面积越大,意味着水泥细颗粒多。水泥与水早期反应速度加快,水化产物絮状结构形成快,水泥浆体流动性差,水泥与减水剂相容性不好。

水泥的颗粒分布对水泥与减水剂的适应性影响包括两方面。一方面,水泥均匀性系数大时,颗粒分布范围窄,其堆积空隙率大,需要更多水来填充这些空隙,自由水相应减少,外加剂掺量大,水泥与外加剂适应性差;均匀性系数小时,情况正好相反。另一方面,水泥颗粒平均粒径小时,水泥中细粉较多,比表面积较大,水泥与外加剂相容性不好。

(六)水泥新鲜度的影响

水泥的新鲜度是一个与水泥储存时间、环境的温度、湿度有关的概念。储存时间长,储存环境的温度、湿度高,水泥与高效减水剂的相容性提高。这是因为新鲜水泥干燥度高,正电性较强,对减水剂吸附大,降低了减水剂对其的塑化效果,使水泥浆体流动性大大降低。这一点对配制高强度等级混凝土尤其明显。

(七)水泥温度的影响

水泥粉磨温度高,二水石膏脱水成半水石膏和硬石膏,而半水石膏和硬石膏较二水石膏溶解度下降,不能有效阻止水泥快速水化生成絮凝结构,减水剂对其的塑化作用差,混凝土坍落度损失也快,水泥与高效减水剂相容性差。控制粉磨温度为110 ℃~120℃为宜,出厂水泥温度高,水泥水化反应速度快,水泥与减水剂适应性差。

我们可采取以下方法提高水泥与外加剂的相容性: 合理选择熟料矿物组成,提高烧成温度和速度,熟料采用急冷;选择品质好的水泥混合材和石膏;在满足早期强度要求下,降低水泥比表面积,选择合理的颗粒分布;降低水泥碱含量和f-CaO含量;延长水泥储存时间,降低水泥新鲜度;降低水泥粉磨和出厂(使用)时的温度。

《水泥与减水剂相容性试验办法》行业标准介绍

《水泥与减水剂相容性试验方法》行业标准介绍 0引言 为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核,水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验,从而进行生产控制和指导水泥的使用。这样做,虽然解决了试验方法的问题,但由于没有统一的评价基准,导致结果没有可比性。 同时,当出现相容性问题时,没有评判依据。为此,2006年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。经过大量的工作,该标准于2007年8月通过了水泥标准化技术委员会的审议,并建议2008年6月1日实施。为 1 ;而相容 被征服, 2 如下: 同时 ,由于 ”。3 经过试验研究表明(见表1):不同的水泥具有不同的饱和掺量点;不同的水泥在饱和掺量点时的Marsh时间和经时损失不同;不同的水泥在减水剂掺量相同时Marsh时间和经时损失不同。

另外,在保证一 ,以失3个参数 在3 (见图1),

经过研究,水泥浆体的流动性和经时损失率在减水剂饱和掺量点之后趋于稳定。经试验,大多数水泥的饱和掺量点小于0.8%,个别的大于0.8%,因此选择了0.8%的减水剂掺量作为水泥浆体的流动性和经时损失率的评价基准点。 4关于方法问题 根据资料[1~4],水泥与减水剂相容性试验方法有净浆流动度法、Marsh筒法和胶砂坍落度法几种,而且不同的文献对这几种方法给出了不同的评价。 考虑经济因素,排除了胶砂坍落度法,并对净浆流动度法和Marsh筒法进行了对比研究,结果表明: 1)两者的原理有所侧重,但基本一致,特别是Marsh筒法的高水灰比与混凝土的实际情况接近; 2)用 3)用 关性; 6)Marsh筒法试验误差影响因素少,重复性误差小于净浆流动度法。 考虑到净浆流动度法的应用历史和普遍性,以及与GB8076的兼容性,本标准将两个方法并列,供标准使用方选择。但有争议时,以Marsh筒法为准。 同时,作为标准起草单位,为了方便试验操作、减小试验误差,和河北科析仪器设备有限公司联合开发了自动Marsh时间测定仪,供大家选择。 5关于基准减水剂问题

外加剂与水泥适应性的定义与试验方法

外加剂与水泥适应性的定义与试验方法 外加剂和水泥的相容性应该是“双向适应”,实际上还是单纯强调外加剂对水泥的适应性,即混凝土外加剂如何去适应水泥。关于混凝土外加剂与水泥的适应性有多种描述。 《混凝土外加剂应用技术规范》GB50119 - 2003附录A 规定了混凝土外加剂对水泥的适应性检测方法。其主要内容是:对某种水泥需选择外加剂时,每种外加剂应分别加入不同掺量;对某种外加剂选择水泥时,每种水泥应分别加入不同掺量的外加剂。对不同品种外加剂,不同掺量应分别进行试验。绘制掺量为横坐标,流动度为纵坐标的曲线。其中饱和点(外加剂掺量与水泥净浆流动度变化曲线的拐点) 外加剂掺量低、流动度大,流动度损失小的外加剂对水泥的适应性好。 ①按照混凝土外加剂应用技术规范,将经检验符合有关标准要求的某种外加剂,掺入到按规定可以使用该种外加剂且符合有关标准要求的水泥中,外加剂在所配制的混凝土(或砂浆) 中若能产生应有的作用效果,则称该外加剂与水泥相适应;若外加剂的作用效果明显低于使用基准水泥的检验结果,或者掺入水泥中出现异常现象,则称该外加剂与水泥适应性不良或不适应。 ②按照混凝土外加剂应用技术规范,将经检验符合有关标准的某种外加剂掺加到用按规定可以使用该品种外加剂的水泥所配制的混凝土(或砂浆) 中,若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂不适应。 ③水泥与减水剂的适应性影响到混凝土硬化前,硬化过程中和硬化后的性能。涉及电化学、表面化学、水泥化学和高分子化学诸方面相互影响,十分复杂。大体上可用 3 项指标衡量,即:初始流动度,是否有明晰的饱和点和流动度损失大小。国内用水泥净浆流动度方法进行检测。 ④作者认为,应从实际应用来考虑,以在外加剂和水泥系统中,掺入某种功能性外加剂能否达到预期的效果来表示外加剂与水泥是否适应。GB50119 -2003 的方法有时会出现误判。最直观地应进行混凝土试验,通过新拌混凝土的坍落度及坍落度损失、保水性、粘聚性等及硬化混凝土的强度和耐久性来综合评定。快速测定方法建议采用《混凝土外加剂匀质性试验方法》GB/ T8077 - 2000 测定胶砂的减水率或流动度;或者水泥净浆流动度及损失来判定。

水泥与混凝土外加剂相容性的试验研究

水泥与混凝土外加剂相容性的试验研究 水泥与外加剂相容性是生产优质混凝土的重要影响因素,本文通过检测水泥净浆流动度,对比不同矿物组成的熟料及不同条件下的水泥与外加剂相容性的差异,为高性能水泥生产提供参考。 1 试验用材料 1)水泥、熟料:选择江山南方水泥生产过程中有代表性的样品及小磨制备对比样品。 2)混凝土外加剂:不同时间用户提供的多种外加剂。 2 试验方法 检测水泥、熟料掺入外加剂后的净浆流动度,外加剂掺量按用户提供的推荐掺量加入。 3 试验结果及分析 3.1 熟料矿物组成对净浆流动度的影响 表1 熟料净浆流动度试验记录 试样编号 熟料矿物组成(%) 水泥净浆流动 度 (mm) 窑型 外加剂 C 3S C 2S C 3A C 4AF f-CaO A0 57.57 18.76 6.77 9.73 0.94 238 5000t/d 江山南方 温州用户提 供 聚羧酸1.0% A1 56.77 19.87 7.27 9.46 0.89 257 A2 58.44 18.65 7.75 9.50 0.88 240 A3 51.54 22.45 8.17 9.83 1.06 249 A4 53.57 20.73 8.43 9.90 1.07 244 A5 56.88 17.83 8.86 9.96 1.10 238 B0 56.29 19.31 7.05 9.28 1.27 233 2500t/d 江山南方 B1 47.52 26.68 7.96 9.65 1.54 244 B2 50.08 25.96 7.98 9.44 0.98 238 B3 43.61 31.18 8.43 9.75 1.18 247 B4 56.25 16.88 9.12 10.12 1.75 255 C0 51.23 25.29 7.96 9.94 / 249 5000t/d 常山南方 C1 55.64 20.61 8.24 9.15 / 247 从表1熟料净浆流动度试验结果看: 江山南方5000t/d 和2500t/d 两条生产线熟料,其C 3A 含量从6.77%逐步增加至9.12%,C 3S 含量在43.61%至58.44%之间变动,检测熟料净浆流动度结果比较接近,熟料矿物组成与净浆流动度之间没有形成一定的规律性,与常山南方5000t/d 的熟料相比,其净浆流动度结果也未有明显差异。 3.2 水泥混合材料对净浆流动度的影响 3.2.1试验用材料 1)熟料:江山南方5000t/d 生产线生产的熟料; 2)矿渣:本地钢铁厂矿渣;

(整理)怎样调整外加剂与水泥的适应性

怎样调整外加剂与水泥的适应性 冯浩 摘要:本文提出一种外加剂与水泥适应性的系统试验方法,解析该方法六个实验步骤及相关注意。 关键字:外加剂水泥混凝土适应性 今天本人要与诸位探讨如何进行混凝土外加剂与水泥适应性试验的方法。 外加剂与水泥产生不适应的情况时有发生,尤其在使用泵送减水剂时发生更频繁。 不相适应的表现首先是新拌混凝土坍落度偏小,扩展度更小,可此时减水剂用量已经相当大了,通俗说法就是“打不开”;其次是坍落度损失大,有时甚至出现假凝,即在搅拌开始时水泥浆很稀,可是迅速发粘、变干,出机后混凝土和易性很差;其三是虽然坍落度和扩展度都不小,但是混凝土泌水、也有时滞后1—3小时泌水并且量大;还有时是砂浆包裹不住石子,发生离析但却并未伴大量泌水,如此这般。更有时新拌混凝土中未观察到明显不适应,可硬化后强度偏低。特定外加剂与特定的水泥发生不适应的原因可能来自三方面:水泥特性引起;混凝土组成材料、特别是其中的砂及掺合料引起;外加剂本身匹配不当所引起。究竟哪个是主要原因,就需要经过试验和分析,怎样调整到相适应,就必须进行实验。 于是、从何处着手开始试验,就摆到我们面前了。 第一步宜从检测打算使用的水泥PH值开始,也就是水泥的碱度。用PH试纸就可以完成这项工作,当然用PH计更好。可以用三份水溶解一份水泥,充分搅

拌后沉淀澄清,取清液一滴置于广泛PH试纸上,观察试纸背面变色程度以确定水泥的碱性。一般PH值应在12以上,但也有的普硅水泥只有9-10,个别还更低。试验结果让我们能初步判断:水泥中可溶性碱量大还是小;水泥中的混合材是否含偏酸性的材料或石粉类惰性材料使PH值偏低。 第二步是考察。考察的第一部分是要尽量设法取得该种水泥的熟料分析结果。水泥厂每班做一次熟料的萤光快速分析,每个月有一个平均值,虽然不可能写在水泥合格证上,但也不是一个保密资料。如果我们能得到近期任何一日的熟料分析结果也可以。根据分析的数据可以计算出水泥中的四种矿物:铝酸 三钙C 3A,铁铝酸四钙C 4 AF,硅酸三钙C 3 S和硅酸二钙C 2 S的数量。影响水泥适应 性的矿物是铝酸三钙、硅酸三钙和铁铝酸四钙。这些数据可以帮助我们选择缓凝剂的品种。另外根据熟料分析中的碱和硫含量数据,我们能计算出塑化度值SD,作为复配外加剂时要适当加硫酸盐还是加碱的参考依据。 虽然熟料分析单中的碱是总碱量而非单纯的可溶性碱量,但对我们快速认定SD值仍有重要的参考价值。而将水泥溶于水后,溶液的碱含量是包括混合材在内的可溶性碱含量,对我们调整适应性的试验可能更有意义。 考察的第二部分是了解熟料磨成水泥时加多少什么种类的混合材。这对分析诸如混凝土泌水,凝结时间异常(过长、过短)的成因都很有帮助。粉磨熟料时混合材只是矿渣(水渣)或粉煤灰,则出来的成品水泥对外加剂尤是缓凝剂的适应性好,但以水渣作混合材的水泥有时泌水,这是因水渣硬度大于熟料,不易磨得与熟料同样细的缘故。混合材是煤矸石、页岩灰、窑皮等火山灰质材时,成品水泥表现为吸附高效减水剂,后者掺量必须增加很多才能得到预计的混凝土坍落度,并且扩展度还达不到要求,往往用了“牺牲剂”的效果也不明显。粉磨时混合材有石灰石粉则成品水泥易产生泌水,粉磨前在水泥中加了存放时间久的陈旧

外加剂与混凝土适应性

外加剂与混凝土适应性的分析研究 [摘要] 本文主要论述了在混凝土系统工程中外加剂的科学应用,针对水泥、外加剂,掺合料及混凝土配合比组成等诸方面因素,进行了系统性分析,从而 为合力解决外加剂适应性问题,提出了较为全面的思维方式。 [关键词] 水泥外加剂混凝土原材料质量水平配合比质量水平 张保 砼外加剂是用于改变水泥反应的进程和新拌与硬化砼的性能。 若要充分发挥外加剂的自身效应,就必须对外加剂—水泥的相互适 应性,以及砼施工过程中的综合技术特征进行研究。其中也包含了 对属于胶结材料体系里的矿物掺合料的合理使用。 外加剂对水泥、砼的适应性既有相同性又有不相同性。相同的是:水泥是砼的主要胶凝材料,如果某种水泥和某种外加剂相互适应,那么用该水泥和该外加剂配置成砼亦应该相互适应。所不同的是,砼中其它材料性质亦可能和外加剂性能发生违勃,比如骨料中 的含碱量过高,掺合料的化学成份等等。故前者是指外加剂和水泥 矿物组成的是否适应,后者是指外加剂和砼所有材料性质的是否适应,并延伸到砼的强度等级、流态指标、搅拌方式、运输距离、施 工方法以及施工环境等等。 外加剂对水泥、砼的适应性体现在各个方面。比如减水率、流 动度、泌水程度、凝结时间、塌落度损失、抗冻抗渗性能等等。这 诸多要素都和外加剂的品种,化学成份以及水泥的矿物组成,砼的

综合技术条件是息息相关的。如何平衡处理好这些因素,使其在予盾中统一,既要外加剂能达到理想的技术效应,又能够使砼获得应有的质量水平,应是砼外加剂应用研究的重点。 虽然外加剂对水泥、砼的适应性是多方面的,但按我国现在以商品砼、泵送砼为主要生产方法的工艺需求。外加剂对砼的适应性关键在于三个方面:即减水性能,粘聚程度和保塑能力。这三个问题不但是中国砼界高层研究人员所特别关注的,也是世界各国砼专家所予以关注的。从美国、加拿大和日本的研究成果来看,和我国同济大学的研究成果基本相一致。同济大学材料科学院和工程学院为摸清我国南方各省市诸多水泥品种和各种外加剂的适应性情况,以江苏、上海、浙江、广州、深圳等城市商品砼主要水泥品种和28种外加剂进行了研究性相关试验。试验研究结果证明,对外加剂—水泥—砼相互适应主要影响因素可归纳为以下几个方面: 一.外加剂方面的因素 1、奈系减水剂:生产奈系高效减水剂的主要原料—奈的来源、品位和纯度等对产品的性能有一定影响。奈系高效减水剂在生产过程中的磺化程度越高,则转变为带有磺酸基磺化物的奈环越多,该减水剂的分散作用也增强:水解越充分,则随后的缩聚反应越容易进行,减水剂品质越好。奈系高效减水剂分子的聚合度对其塑化效果有明显影响,一般奈系高效减水剂的聚合度为10左右较好。减水剂的状态也影响其对水泥的塑化效果,粉状减水剂的减水率约比液态减水剂低5%。 2、氨基磺酸盐高效减水剂:氨基磺酸盐高效减水剂作为新一代高性能减水剂,与传统的奈系高效减水剂和密胺系高效减水剂相比,不仅掺量低(0.2%~0.7%),而且塑化效果、控制塌落度损失能力

减水剂以及减水剂与水泥的相容性

材料与工程学院材料化学0901班 学号:0904250130 姓名:姜峰

减水剂及减水剂与水泥的相溶性 一.减水剂 1.概念:减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及 强度不变条件下,节约水泥用量的外加剂。 2.形貌组成:外观形态分为水剂和粉剂。水剂含固量一般有20%,40%(又称母液),60%,粉剂含固量一般为98%。 3.减水剂的分类: 根据减水剂减水及增强能力分为:普通减水剂(又称 塑化剂,减水率不小于8%)、高效减水剂(又称超塑化 剂,减水率不小于14%)和高性能减水剂(减水率不小 于25%),并又分别分为早强型、标准型和缓凝型。 按组成材料分为:木质素磺酸盐类;多环芳香族盐类; 水溶性树脂磺酸盐类。 4. 目前市场上常用的几种减水剂为:木质素磺酸钠盐减 水剂,萘系高效减水剂,脂肪族高效减水剂,氨基高 高效减水剂,聚羧酸高效减水剂等。 二.减水剂的作用机理 1.分散作用:水泥加水拌合后,由于水泥颗粒分子引力的作用,

使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性。 2.润滑作用:减水剂中的亲水基极性很强,因此水泥颗粒表面 的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。 3.空间位阻作用:减水剂结构中具有亲水性的聚醚侧链,伸展 于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。 4.接枝共聚支链的缓释作用:新型的减水剂如聚羧酸减水剂在 制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损

水泥与外加剂的适应性

水泥对外加剂的适应性 2006-01-11 配制流态化混凝土所使用的外加剂主要有萘磺酸盐甲醛缩合物、多环芳烃磺酸盐甲醛缩合物、三聚氰胺磺酸盐甲醛缩合物、改性木质素磺酸盐、多元醇系等,单一外加剂不能满足流态混凝土的流化效果、强度、干缩、抗冻性、耐久性及运输过程中的经时损失要求,为达到综合效果,视混凝土的特性要求,需加入一部分缓凝剂、膨胀剂、早强剂以及上述外加剂的复合。目前较难控制的是混凝土经时损失,从外加剂的调制和加入方式上均应能得到解决,但搅拌站使用的是多家厂商的水泥,有不同的外加剂适应特点,不便于对各种水泥进行专配。为此,对水泥外加剂适应性的控制达到施工特性要求是水泥厂需采取一些技术措施,这也是本文章所要解决的问题。 1 水泥外加剂的作用 外加剂均是表面活性剂,水泥厂所关注的是外加剂的分散作用,尽可能降低立方混凝土用水量,保持混凝土的流动性和稳定性,达到高强度的目的。水泥与水接触即发生水化反应,机械搅拌过程使水泥分散成碎片,但这样的分散体系是不稳定的,特别是过粉磨的小粒径的粒子更容易絮凝,一部分游离水被包裹在絮凝水泥粒子团中间,水泥的持水量与水泥的物理、化学性质、水泥的矿物组成及水泥的分散度有一定关系,不同厂家的水泥持水量在很大范围内变化,持水量决定水泥混凝土用水量,这就构成了各厂家水泥的使用特点。外加剂的分散作用能够提高水泥凝聚体的分散度,改变结合水、吸附水和游离水的比例,提高游离水,以提高水泥浆的流动性和稳定性,其作用机理有: 1)在固-液界面产生吸附,降低颗粒表面能,使水泥分散体的热力学不稳定性降低,获得相对稳定。 2)增大水泥粒子表面的动电电位,从而增大粒子之间的静电排斥,破坏了水泥粒子的絮凝结构。 3)吸附在粒子表面的外加剂形成熔剂化膜,阻止凝聚结构的形成。 4)由于在水泥粒子表面形成吸附层,产生对水泥初期水化的抑制作用,提高了游离水和水泥浆的流动性。 5)引入稳定均匀的微小气泡,减少水泥粒子之间的摩擦,以提高水泥浆的分散性和稳定性。 水泥分散体系是固-液分散体系,同时伴随着水泥水化过程和相变过程,随着水化的进行,液体量减少,固相量增大,逐渐失去流动性,在运输及泵运过程中保持一定的流动性,满足施工要求。水泥的持水量和水化速度是决定用水量及经时损失的主要因素,同时构成了各厂家水泥的特点,有些适应性好,有的较差。水泥用水量可在水泥生产中适当加入一些表面活性剂,即助磨剂,加以解决。 2 坍落度及经时损失 坍落度6cm~8cm的基准混凝土,掺外加剂后可得到坍落度为20~22cm的流态混凝土,配置基准混凝土时,用水量越小越好,水灰比低,混凝土强度越高。现原则上要求每立方混凝土用水量控制在185kg内,各水泥厂用水量相差较大,这与水泥熟料、混合材种类及水泥细度有很大关系,用水量低的水泥混凝土强度较好。新配混凝土随时间的延长,坍落度逐渐减小,最终失去流动性,其损失的速度取决于外加剂的品种。 拌和温度及水泥的早期硬化特性!坍落度及经时损失机理主要是水泥水化反应所引起的物理凝聚现象,在这里只谈一谈水泥的水化影响。水泥的水化速度影响有矿物组成及水泥细度,

浅谈水泥与外加剂的适应性试验

浅谈水泥与外加剂的适应性试验 发表时间:2018-03-14T13:54:57.067Z 来源:《防护工程》2017年第31期作者:冯岩军 [导读] 我国经济社会的不断发展,基础设施建设的日益改善,建筑的规模也在不断的扩大。 山东广信工程试验检测集团有限公司山东济南 250000 摘要:我国经济社会的不断发展,基础设施建设的日益改善,建筑的规模也在不断的扩大,提供高质量和高性能的混凝土在建筑工程中显得尤为重要。而混凝土外加剂具有提高混凝土质量的效果,对于建筑物来说可以增加稳固性等,因此外加剂与水泥的适应性也成为工程建筑的热点难题,在进行混凝土搅拌前,要首先对混凝土外加剂与水泥的适应性进行试验。 关键词:水泥,试验,混凝土外加剂,适应性 前言:在工程建筑中,混凝土的外加剂由于具备一定的优势而被建筑施工广泛的应用。然而混凝土外加剂并非是统一规格的,在不同厂家的生产外加剂中也有不同,不同的外加剂与水泥的适应性也不同,因此要做好水泥与外加剂的适应性试验,才能确保外加剂添加后混凝土的质量。本文首先对水泥与外加剂适应性进行相关的分析,支出了水泥与外加剂适应性试验的必要性,并分析了影响二者适应性的要素,并阐述了解决二者适应性的办法。水泥与混凝土外加剂的适应性是一个较为复杂的过程,需要水泥厂、混凝土预拌长以及外加剂生产厂共同协商来实现,这样既可以高效的利用资源,也可以避免相应的资源浪费,为建筑企业增加利润的空间。 一、外加剂与水泥适应性检验具有必要性 工程建筑中使用的非基准水泥即使符合国家规定的等级标准,也一样存在相应的剂量定量与化学成分定性适应性的情况,也可能发生不适应的现象。因此据一项研究表明,普通的减水剂包括木钙、木钠、木镁等对调凝剂中的无水石膏、硬石膏、半水石膏等均存在化学上的不适应问题,使用外加剂以后要增加用水量。而外加剂的适应问题与铝酸三钙的含量有关。不同产地的水泥中含有的成分不同,因此混凝土的外加剂并非与所有的水泥相适应。只有以试验的方式对外加剂与水泥的适应性进行检测,最后得出相应的最优掺量,才能进行混凝土的大规模拌制。因为如果混凝土外加剂的添加多出了最优掺量,那么即使加再多的外加剂也不会起到建水的作用,而相反可能会增加副作用。同时,如果低于最优掺量,那么水泥的产品的见谁了会大规模降低。在实际工程建筑中,外加剂的掺量受到环境的因素影响,包括温度的配比等,如果温度和配比不变,适当的增加少量的缓凝剂具有延长混凝土初凝的时间效果。相反如果已经增加了最优掺量时,再继续增加掺量,那么缓凝的效果会降低。 二、影响外加剂与水泥适应性的因素 了解外加剂与水泥的适应性情况,就要首先明确有那些影响因素。影响外加剂与水泥适应性的因素是多方面的,包括水泥、外加剂、骨料添加以及环境因素等。 (一)水泥方面的因素 水泥中含有的化学元素C3A,能够在水中迅速融化成铝酸钙,在有石膏存在的情况下,会生产钙矾石等产物,从而降低减水剂的碱水作用。所以C3A的含量也会相应增加,对减水剂的吸附效果也会相应变小。其次,水泥的鲜度和温度也是影响其与外加剂适应的要素之一,水泥放置的时间越短,高效减水剂对它的作用的效果会越差。同样温度越高在添加减水剂以后塑化的效果也就越差。相应的水泥的减水剂减水率也会变成,导致混凝土出现大幅度坍塌的现象,给建筑单位造成巨大的损失。再次,水泥的颗粒,虽然水泥颗粒级配对减水剂的掺量不产生较大的影响,然而在减水剂中的掺量较大或者水胶较大的情况下,会导致水泥浆体出现流动的现象发生,导致水泥浆体的流动性增大。而掺有减水剂的泥浆,通常浓度越大,浆体的流动效果就越好。因此水泥颗粒表面对减水剂的初始吸附会导致水泥浆的初始流动发生改变,导致水泥的吸附量降低。最后,水泥的含碱量。含碱量大的水泥塑化效果较差,而混凝土的凝结时间也会相应的增长,因此减水剂的塑化效果也会相应变短,因此其坍塌现场会时有发生。另外,碱对缓凝剂也有一定的选择性能,高碱水泥应使用酸性缓凝剂。另外,水泥的品种选择也应主义混合材的挑选,混合材的性质、掺水量和品种是影响减水剂的关键。通常混合超量有高炉矿渣粉、火山灰、粉煤灰等,好的减水剂对于火山灰等的适应新较差,对矿渣水泥和粉煤灰水泥的适应效果较好。 (二)外加剂 首先,减水剂的种类是影响适应性的关键所在,粉剂的减水率通常通常会比液体状态低5%,水解越彻底,那么混凝土的凝聚时间就会越短,化学反应也更加容易进行,减水剂的减水率相应的也越高。通常高效的减水剂掺量会变小,其塑化的效果也会不断增加,对于经常出现假凝的水泥,可以使用这些缓凝剂进行混凝土的拌制。混凝土的搅拌时间和速度也会影响外加剂与水泥的适应性,这主要是由于混凝土的搅拌时间不同,其分散效果、凝结时间,可以影响混凝土的工作性、硬化与耐久性能。混凝土搅拌的速度同样会更快,导致水泥颗粒表面发生相应的硬化。快速搅拌会捯饬水泥颗粒表面遭到破坏,水泥浆体结构也会因此而发生损失并产生较大的而影响。 三、混凝土外加剂和水泥的双向适应性 高性能高强的混凝土和泵送混凝土已经得到了广泛的使用,这导致外加剂与水泥之间存在一定的适应性问题,因此也获得了更多人的关注。由于混凝土外加剂与水泥之间局域适应的关系,因此在外加剂与水泥不适应状况发生时,要求外加剂改变自身的成分和性能,从而来确保外加剂与水泥适应性。通常,单纯的依靠外加剂的调整和配方不足以适应水泥的特性,依靠技术也难于实现。因此,在缓凝剂坍塌问题的解决上是较难的,因此混凝土外加剂要与水泥相互适应。在添加外加剂的同时,也要考虑水泥与外加剂的适应性,这样才能确保外加剂能够增加混凝土的质量,提升建筑物的性能。 四、如何提高水泥与外加剂的适应性 第一,提高水泥与混凝土外加剂的适应性,就要做好选料,包括水泥和外加剂的选择。因此首先要从水泥上下手,选择适合的优质水泥,同时在外加剂的掺加工艺上要选用有经验的师傅进行混合配比。建议采用少量多次掺加和后掺法来增加混凝土的性能。如果遇到了坍塌严重的混凝土,则可以采用增加外加剂掺量或者注意用水量的特点。 第二,混凝土与外加剂的适应性较为复杂,需要水泥厂、外加剂长与预拌混凝土长共同合作,对于每一批生产的水泥和外加剂分别进行检测,尽可能的将适应性较好的外加剂与水泥配合使用,这样可以避免原材料的浪费,同时确保混凝土的质量和稳定性,能够让施工更

混凝土外加剂与水泥适应性研究

混凝土外加剂与水泥适应性研究 发表时间:2017-06-12T16:38:54.223Z 来源:《基层建设》2017年5期作者:包素君 [导读] 作为生产混凝土的重要原料,混凝土外加剂可有效提高混凝土的硬度及含水量,使混凝土发挥更加稳定的性能。 杭州市交通运输发展服务中心检测试验室 310018 摘要:随着经济的不断发展,建筑行业得到极大进步,混凝土作为重要的施工材料被广泛应用。作为生产混凝土的重要原料,混凝土外加剂可有效提高混凝土的硬度及含水量,使混凝土发挥更加稳定的性能。然而其外加剂与水泥之间却存在着一定的适应问题,为此在建筑中需改善二者的适应性。 关键词:混凝土外加剂;水泥;适应性 在建筑行业不断发展的背景下,对混凝土的需求也极大增强,使用外加剂可有效改善混凝土质量,使其达到施工建筑的基本要求。在改进了生产工艺后,混凝土外加剂却与水泥之间存在了较为严重的适应性问题,为此本文通过对二者适应性问题的分析,提出相关的解决策略。 一、混凝土外加剂及适应性的相关概述 (一)混凝土外加剂的概念 所谓混凝土外加剂即是指为提高混凝土的硬度及含水量、改善混凝土性能,在混凝土搅拌前或搅拌中添加的改良剂。通过改良剂的添加,改善了混凝土中吸附水、结合水与游离水的比例,提升游离水含量,避免混凝土因为短时间内未使用而凝固。由于外加剂是固液分散的体系,同时与水泥的相变过程与水化过程相伴,因此对于外加剂有较高要求。为保证混凝土具有高质量,在进行外加剂添加前必须进行相关的试验,对外加剂与水泥的适应性做严格分析。 (二)适应性的相关叙述 适应性是指在制作混凝土时,对于外加剂的添加必须符合国家标准,按照适当的比例与水泥掺入,以达到有效的目标效果。对于外加剂与水泥适应性差,主要表现在以下几方面:第一,新制混凝土经过一段时间坍落度较大,损失严重。第二,新制混凝土易出现速凝现象。第三,新制混凝土减水效果不佳。第四,混凝土易发生泌水现象。第五,混凝土强度明显降低。 二、影响混凝土外加剂与水泥适应性的因素 (一)外加剂的掺量与掺合工艺 任何产品的改良剂添加需要合适的度,就混凝土而言,当混凝土外加剂的掺量达到最佳时,对于改善混凝土性能可达到最佳效果。对于掺量的多少必须经过严格的实验来确定。同时混凝土外加剂的掺合工艺对混凝土外加剂与水泥的适应性也具有重要影响,其掺合的方式主要包括先掺法与后掺法,经过大量的实践结果表明,运用后掺法可有效减少外加剂的掺量,较高程度的确保了外加剂与水泥的适应性。(二)混凝土搅拌的时间与速度 施工人员经过实践发现,混凝土的搅拌时间与搅拌速速不仅会影响混凝土的含气量,同时又可对混凝土的分散效果与凝结时间作有效的调节,进而对混凝土的耐久性与力学性进行了有效调控,确保了混凝土在施工建筑中发挥其优良的性能与作用,保证施工的顺利进行。(三)外加剂的品种 不同的外加剂化学键会对水泥产生不同的影响,外加剂的分子含量与结构性差异会对混凝土性质产生不同的影响,外加剂中碱的含量同样会影响混凝土外加剂与水泥之间的适应性。 (四)水泥的因素 水泥中含有矿物成分、石膏形态、碱等成分,其中石膏形态及其掺量、混合品种的含量会对混凝土外加剂与水泥适应性产生较为严重的影响。具体表现包括以下几点:第一,矿物成分的含量。水泥中的矿物成分主要为C3A与C4AF两种,当二者存在的比例较小时,减水剂会发挥较大效果。经过专家的实验表明,C3A与硫酸根离子的含量是否平衡将直接影响到减水剂能否发挥最大的效果。第二,石膏形态及掺量。水泥与水的接触将直接影响C3A与硫酸根离子的平衡量,如果在水泥中掺加的是无水石膏,那么一旦与糖钙或者木钙减水剂相遇,其适应性会极大显现,既无法达到减水效果,同时又会加剧流动性损失。第三,其他因素。出上述影响因素外,水泥中的碱含量、水泥的新鲜度与温度会对混凝土外加剂与水泥的适应性产生较大影响,为此必须控制相关因素的含量以使二者达到完美的结合。 (五)缓凝剂因素的影响 对混凝土进行生产后会存在暂时无需的情况,为此混凝土将被搁置,一旦经过长时间的放置,混凝土必然会出现凝固现象,因此必须在其中添加相关的缓凝剂。然而对于添加多元醇类的缓凝减水剂时较易导致混凝土出现假凝情况,但是经过科学验证,羟基羧酸盐及二甘醇等缓凝剂不但不会降低石膏的溶解度,相反会使溶解度提升,当混凝土发生假凝情况时则可添加此类的缓凝剂。 三、混凝土外加剂与水泥适应性的调整方式 (一)调整混凝土外加剂的掺合工艺 通过上述内容可知,采用后掺法可减少外加剂的添加量,为此需要对混凝土运送装置进行整改,在运输车上安装后掺混凝土外加剂仪器,更好的发挥运输设备的优势,确保在混凝土运输过程中避免出现异常情况,减少混凝土外加剂与水泥的不适应性,减小企业的经济损失。 (二)调整混凝土外加剂的掺量与配方 对混凝土外加剂的配方进行调整,可有效改善对石膏的溶解度。例如当调节剂为硬石膏时,可减少糖钙、木钙减水剂的使用,以提高石膏的溶解度。除此之外,增加混凝土外加剂的掺合量可有效降低掺合物的坍落度损失速度,同时又可出现泌水情况的出现。 (三)调整混凝土配比及综合调整 对于不同的施工工程需要使用不同的混凝土,为达到混凝土的配比要求,施工方必须按照严格的标准对混凝土进行制作。若混凝土存在严重的泌水情况,则需适量的添加掺合物或提高砂率。若出现坍落度损失率较高的情况,则需加大掺合物的掺加量。在进行混合物的掺加时,必须经过严格的实验,尽量减少MgO、f-CaO等的含量,确保混凝土中C3A的含量小于9%。 四、混凝土外加剂与水泥适应性的检测方式 为确保混凝土外加剂与水泥之间形成良好的适应性,主要可通过以下三个指标来进行衡量:初始流动性、饱和点与流动性损失。其具

浅谈混凝土外加剂与水泥的相容性及其应用

浅谈混凝土外加剂与水泥的相容性及其应用 混凝土是世界上使用最广泛的人造产品,是除了水之外的世界上最常使用的物质。大约66%的混凝土用来建立街道、建筑、公路和其他基础设施。其中混凝土的五大原材料包括水泥、掺合料、水、外加剂、骨料。其中矿粉掺合料情况相对稳定些。粉煤灰掺合料品牌虽然少但来源多元化,时常影响混凝土的拌合性能,对粉煤灰进行车检,对细度、需水量比进行检验控制;粗细骨料可以从厂家源头来控制。但原材料任何一项指标的波动,都或多或少带来混凝土的生产和施工问题。因此除了做好原材料的日常检验,往往是不够的。 标签:混凝土外加剂;水泥;相容性 1、什么是混凝土外加剂与水泥的相容性 按照混凝土外加剂应用技术规范,将经检验符合有关标准的某种外加剂掺加到按规定可以使用该品种外加剂的水泥所配的混凝土中,若能产生应有的效果,则该水泥与这种外加剂是相容的,反之,如果不能产生应有的效果,则该水泥与此种外加剂之间存在不相容性。混凝土外加剂与水泥不相容给混凝土工程带来的质量问题主要表现在以下几个方面:①预拌混凝土在搅拌过程中出现不正常的凝结,影响混凝土的均匀性;②混凝土泌水、离析、分层现象比较严重,致使混凝土质量明显降低;③新拌制的混凝土坍落度损失快,影响混凝土的浇筑和振捣; ④施工时,混凝土硬化以后强度出现明显下降,达不到质量要求,造成经济损失; ⑤混凝土的抗渗性和耐久性明显降低,收缩性加大,给混凝土的后期使用带来诸多不便;⑥大体积混凝土存在裂缝,致使工程质量受到较大影响;因此混凝土外加剂与水泥相容与否至关重要。本文根据GB50119-2013《混凝土外加剂应用技术规范》的附录A进行试验。单种外加剂与三种水泥的相容性试验,对混凝土外加剂与水泥的相容性进行初步探讨。预拌混凝土中普遍用到的是减水剂。 2、影响混凝土外加剂与水泥相容性的因素 2.1 外加剂方面的因素 首先,在混凝土外加剂中,萘系高效减水济的应用是目前占比较多的品种之一。而这种外加剂的主要成份是工业萘。一般来说,工业萘的种类和纯度不同都会直接影响减水剂的应用效果。如果工业萘在减水剂生产过程中所产生的磺化程度高,则就会产生更多的硫酸基磺化物,水溶性也会越好[1]。因此来说,萘系减水剂的水分子聚合度越高,对混凝土塑性效果越好。另外,减水剂的生成状态对水泥的塑性效果也有着关键性的影响,一般来说,萘系减水剂的聚合度保持在10 个左右是最佳的效果,而硫酸钠含量对外加剂适应性能有较大影响,如果在混凝土外加剂生产中对材料的配比失去平衡,则会直接影响外加剂对水泥的分散性能。其次,相对于萘系减水剂来说,聚羧酸高效减水剂的性能会更好一些,与水泥的适应性也更好。在与水泥配比中,不仅渗量低,而且所形成的塑性效果也更明显。一般来说,相同种类的聚羧酸高效减水剂对不同的水泥所产生的相融性

水泥对水泥与外加剂的适应性影响

水泥对水泥与外加剂的适应性影响 (1)水泥中的碱含量 水泥中的碱含量对水泥与外加剂的适应性有重要影响,水泥中的碱分为可溶性和非可溶性两部分,水泥中的可溶性碱可以促进水泥水化,有利于混凝土早期强度发展,但会影响混凝土的流动性和坍落度经时损失;非可溶性碱大多固溶在C3A中对外加剂相容性影响不大。 通过对萘系高效减水剂与六种含碱量不同的水泥相容性的研究表明:存在一个相对于流动性和流动性损失而言的最佳可溶性碱含量,是0.4%~0.5%Na2O当量,在这个最佳碱含量下,浆体的流动性最好流动性损失最小,而且这个最佳碱含量,是独立于水泥组成与高效减水剂掺量的。水泥中含有少于最佳可溶性碱含量的碱时,掺加Na2SO4后浆体的流动性会表现出明显的增加;当水泥中的可溶性碱含量高于最佳值时,掺加Na2SO4会使浆体流动性略有降低。 碱含量对水泥净浆流动度的影响,表1列举了部分净浆流动度的试验数据,从表中可知,碱含量较大的水泥与外加剂适应性比较差,这是因为水泥中碱含量越高,减水剂对水泥的塑化效果变得就越差。水泥碱含量的增加还将导致混凝土凝结时间的缩短和坍落度损失的增大。 表1水泥碱含量对净浆流动度的影响 序号R2O(%)水泥净浆流动度(mm)

水泥中的碱主要来源于所用原材料,特别是石灰和黏土。含碱量过高或过低的水泥,在加入某些品种的外加剂时,会引起水泥中石膏溶解度的变化,使水泥矿物成分C3A的水化速率加快,使需水量增大,工作性损失也变快。这时加入可溶性的Na2SO4能够提高其与外加剂的适应性。 (2)石膏形态 水泥中加入一定量的石膏用于调整水泥的凝结时间,石膏的形态不同,溶解速率有差异,对外加剂适应性的影响也不同。水泥中加入的石膏在水泥的粉磨过程中,磨机温度的高低可以使部分二水石膏的形态发生转化,如:在80~140℃时,二水石膏逐步转化成半水石膏;在130~200℃时半水石膏又逐步转化成无水石膏。不同种类的石膏的溶解度和溶解速度差异很大,半水石膏的溶解速度最快,远大于二水石膏,硬石膏的溶解度和溶解速度最慢。水泥水化过程中由于不同种类石膏溶解度的不同,使石膏持续不断地对C3A产生作用可以改善外加剂的相容性。因此,适宜的石膏掺量和不同形态石膏比例应综合考虑水泥熟料中C3A含量及结晶形态、碱含量及形态、水泥比表面积和水泥出机温度等因素。当熟料出窑温度高、冷却速率慢时,

水泥对外加剂适应性的影响

水泥对外加剂适应性的影响 (一)C3A、SO3和碱含量三者之间的关系 水泥中C3A、可溶SO3和碱含量的平衡关系是影响外加剂与水泥中的相容性的关键因素。水泥中的石膏与C3A反应生成AFt(钙矾石)包裹在C3A的表面阻止C3A的进一步水化,C3A水化速度最快,在没有SO3存在的情况下可以瞬间水化。因此水泥中的SO3过少不能阻止C3A的水化;SO3过多石膏沉淀会导致假凝;水泥浆体中可溶性的碱可以促进C3A的溶出,增加溶液中C3A的数量,降低SO3与C3A 的比值,使水化速度加快;碱又能突破石膏与C3A反应生成AFt(钙矾石),使被AFt(钙矾石)包裹的C3A继续水化。可见水泥中的C3A、SO3及碱三者的平衡对水泥与外加剂的相容性有十分重要的作用。凡是打破三者平衡的因素都会影响到外加剂在混凝土中的相容性。应当注意的是,水泥中的碱与Na2SO4的碱对减水剂的作用是不一样的,Na2SO4在水泥浆体的溶解速度大于石膏的溶解速度,Na2SO4与 Ca(OH)2反应生成的CaSO4的溶解速度,比水泥中石膏快但作用时间较短;水泥中的石膏溶解速度慢主要对水泥的C3A产生作用,且作用时间长。 (二)C3A、SO3和碱含量匹配的因素 影响C3A、SO3和碱含量的因素很多,水泥比表面积、C3A 含量及形态石膏的种类、细度、用量等因素这些因素都可以打破C3A 与SO3之间的平衡;水泥中的碱分为可溶性和非可溶性两部分,水泥

中的可溶性碱可以促进水泥水化,有利于混凝土早期强度发展,但会影响混凝土的流动性和坍落度经时损失;非可溶性碱大多固溶在C3A 中对外加剂相容性影响不大。 水泥的粉磨过程中,磨机温度的高低可以使部分二水石膏发生转化。如:在80~140℃时,二水石膏逐步转化成半水石膏;在130~200℃时半水石膏又逐步转化成无水石膏。不同种类的石膏的溶解度和溶解速度差异很大,半水石膏的溶解速度最快,远大于二水石膏,硬石膏的溶解度和溶解速度最慢。水泥水化过程中由于不同种类石膏溶解度的不同,使石膏持续不断地对C3A产生作用可以改善外加剂的相容性。因此,适宜的石膏掺量和不同形态石膏比例应综合考虑水泥熟料中C3A含量及结晶形态、碱含量及形态、水泥比表面积和水泥出机温度等因素。 当熟料出窑温度高、冷却速率慢时,活性高溶解速率快,石膏中需要一部分溶解速率快的半水石膏与其相匹配。出磨水泥温度低于110℃时,二水石膏转化成半水石膏的量较少, 当出磨水泥温度达到130℃时大部分二水石膏都转化为半水石膏和硬石膏。因此控制出磨水泥温度, 最好在120~125℃,最高不超过130℃,可以使二水石膏转化成一定比例的半水石膏。 张大康认为:掺加助磨剂后水泥中最佳流变性能要求的SO3含量为2.7%~2.9%,但国内多数水泥厂仅根据凝结时间和强度确定水泥中SO3含量,许多水泥厂P·O42.5R水泥的SO3含量在2.2%左右,低于最佳流变性能要求的SO3含量。Shi ping Jiang 通过对萘

减水剂与水泥的适应性的主要因素及其他

影响混凝土中外加剂与水泥的适应性的主要因素及其他 -------------------------------------------------------------------------------- 摘要:论述了引起混凝土中外加剂(减水剂) 与水泥不相适应的主要影响因素及其对策,并从预防的角度出发,浅议混凝土主要材料水泥、外加剂、粉煤灰的选择。 关键词:外加剂; 水泥; 适应性; 坍落度;坍落度损失 混凝土是人类的重大发明,混凝土的出现开始了人类建筑史的革命,混凝土外加剂的应用是混凝土生产的重大进步。混凝土集中搅拌站的出现,使建筑材料混凝土的生产走向了工业化、节约化的道路。这也对混凝土的生产质量控制提出更多的要求,造成了近几年混凝土质量整体提高的同时,由于部分混凝土预拌站质量控制技术水平的不高,给工程质量带来隐患,甚至出现了20 多年未遇的工程质量事故,造成重大经济损失。 1 外加剂与水泥产生不相适应问题的主要因素 混凝土的性能不仅取决于组成材料的性能,更取决于材料之间的适应性及混凝土配合比。外加剂(减水剂) 与水泥的不相适应问题即外加剂对水泥工作性能改善不明显、混凝土坍落度损失过大或混凝土过于快凝,甚至造成混凝土结构构件更易出现的裂缝。 外加剂作为混凝土的第5 组分,所占比重很小,但是对混凝土的性能却是影响很大,能够明显提高混凝土的坍落度、调节凝结时间,从而改善混凝土施工性能或节约成本。水泥的水化反应需要不到水泥质量25 %的水,但水泥遇到水会形成絮凝结构将水包裹在里面,为了使水泥水化更完全和提高混凝土施工性能需要加入更多的水,外加剂的加入能够在水泥颗粒表面定向吸附,使水泥颗粒表面带有同性电荷,因斥力作用而分离开来,从而释放出水泥絮凝结构包裹的水份,使更多的水参与水化反应、提高流动性[1 ] 。水泥颗粒对外加剂吸附性的大小及外加剂作用的损耗大小,反应了外加剂与水泥的适应性好坏。 外加剂与水泥的不相适应性问题是让所有商品混凝土厂家的担心和头痛的问题,而出现问题后,最终总归罪与外加剂,外加剂与水泥的不相适应性有外加剂本身的质量、化学成分的因素,主因却常是水泥及掺合料等的因素有关,无论是普通减水剂、奈系高效减水剂还是第3 代聚羧酸系高效减水剂都会出现与水泥的不相适应性的情况,影响外加剂与水泥的适应性的因素很多,主要有: 1. 1 外加剂自身的因素 外加剂(减水剂) 的品种不同、结构官能团的不同、聚合度不同、复配组分不同等等因素的影响均会影响与水泥的适应性。不同厂家生产工艺、技术水平、质量管理水平不一样,产品必然有差异[1 ] 。 1. 2 水泥的矿物组成对外加剂的影响 水泥的矿物组成对外加剂的影响很大,水泥的矿物组成主要有铝酸三钙(C3A) 、铁铝酸四钙(C4AF) 、硅酸三钙(C3 S) 、硅酸二钙(C2 S) 等,不同矿物组成主要是由生产水泥的原材料和生产工艺决定的,水泥的矿物组成中对外加剂影响因素大小依次为C3A > C4AF > C3

论水泥与化学外加剂的相容性

论水泥与化学外加剂的相容性 作者:王栋民,金欣2009年06月30日[字体:放大缩小默认] 我要评论 摘要: 标签:外加剂,水泥, 常用的缓凝剂有木钙、糖钙、柠檬酸(盐)、酒石酸、葡萄酸(盐)、多聚磷酸盐等。在考虑外加剂与水泥的相容性时,对流态高强泵送混凝土常常必须同时考虑外加剂与矿物质掺合料(如磨细矿渣、粉煤灰、硅灰、沸石粉、膨胀剂等)的相容性。 3)环境条件的影响因素 在考虑水泥与外加剂的相容性时,离不开一定的环境条件,最主要的有温度、时间、湿度等,如某泵送混凝土坍落度值,会随时间的延长而损失,会随温度的增加而加大损失速率。这些均可以通过掺用不同品种的外加剂进行调整。中国陈建奎、王栋民合作提出“复合超塑化剂CSP的配方设计”即在大量试验基础上提出一个配方计算方法,本质也在于解决水泥一外加剂相容性的定量问题。 4 水泥生产厂家的主要应对措施

混凝土施工技术的发展、流态泵送混凝土的广泛应用,特别是未来高性能混凝土的工业化将对水泥与化学外加剂相容性的问题提出越来越多的要求。从某种意义上来说,水泥是否满足国际及ISO标准是决定它能否出厂的问题,而其与外加剂是否具有良好的相容性则是其能否进入市场和实际使用的问题,对水泥企业生死攸关。 对此,作者认为水泥厂应采取的主要应对措施如下: 1、应注重本厂水泥与市场所在地区通用化学外加剂的相容性。 2、在厂内建立混凝土试验室,进行水泥与市场通用化学外加剂相容性的研究。 3、有条件的水泥厂,特别是离中心市较近的水泥厂,可以建立专业的混凝土化学外加剂生产分厂(车间),生产化学外加剂,对市场提供一条龙服务。 3中国建筑材料科学研究院能作的工作 中国建筑材料科学研究院下属的水泥科学与新型建筑材料研究所(简称水泥所)和设计分院与国内水泥制造、混凝土应用及建筑施工行业

相关文档
最新文档