初中数学竞赛辅导(数的整除)

初中数学竞赛辅导(数的整除)
初中数学竞赛辅导(数的整除)

初中数学竟赛辅导资料(1)

数的整除(一)

甲内容提要:

如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.

①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)

又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:

①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)

又如10285 1028-5=1023 102-3=99(能11整除) 乙例题

例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y

解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6.

∵328+92x =567,∴x=3

例2己知五位数x 1234能被12整除, 求X

解:∵五位数能被12整除,必然同时能被3和4整除,

当1+2+3+4+X 能被3整除时,x=2,5,8

4能被4整除时,X=0,4,8

当末两位X

∴X=8

例3求能被11整除且各位字都不相同的最小五位数

解:五位数字都不相同的最小五位数是10234,

但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行

调整末两位数为30,41,52,63,均可,

∴五位数字都不相同的最小五位数是10263。

丙练习

1分解质因数:(写成质因数为底的幂的連乘积)

①593②1859③1287④3276⑤10101⑥10296

987能被3整除,那么a=_______________ 2若四位数a

12X能被11整除,那么X=__________- 3若五位数34

35m能被25整除

4当m=_________时,5

9610能被7整除

5当n=__________时,n

6能被11整除的最小五位数是________,最大五位数是_________

7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________

88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,

⑧70972中,能被下列各数整除的有(填上编号):

6________,8__________,9_________,11__________

9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。

10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?

1234能被15整除,试求A的值。

11己知五位数A

12求能被9整除且各位数字都不相同的最小五位数。

13在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)

参考答案:

1.④22×32×7×3 ⑤3×7×13×37 ⑥23×32×11×13

2. 0,3,6,9

3. 0

4. 2,7

5. 3

6. 10010,9990

7. 9996,9992

8. 6:B 8:F,G 9:B,D 11:G,H

9. 16;27

10.没有一个,∵1+2+3+4+5=15是3的倍数,与数字的

位置无关

11.仿例2,a=5

12.10269(由最小五位数10234调换末两位数)

13.11111111100

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中奥数辅导讲义培优计划(星空课堂)

第一讲走进追问求根公式 第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理 第四讲明快简捷—构造方程的妙用 第五讲一元二次方程的整数整数解 第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想 第八讲由常量数学到变量数学 第九讲坐标平面上的直线 第十讲抛物线 第十一讲双曲线 第十二讲方程与函数 第十三讲怎样求最值 第十四讲图表信息问题 第十五讲统计的思想方法 第十六讲锐角三角函数 第十七讲解直角三角形 第十八讲圆的基本性质 第十九讲转化灵活的圆中角

第二十讲直线与圆 第二十一讲从三角形的内切圆谈起第二十二讲园幂定理 第二十三讲圆与圆 第二十四讲几何的定值与最值 第二十五讲辅助圆 第二十六讲开放性问题评说 第二十七讲动态几何问题透视 第二十八讲避免漏解的奥秘 第二十九讲由正难则反切入 第三十讲从创新构造入手

第一讲 走进追问求根公式 形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了 一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设、是二次方程的两个根,那么的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。 【例3】 解关于的方程。 思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。 【例4】 设方程,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数、、、互不相等,且, 试求的值。 思路点拨:运用连等式,通过迭代把、、用的代数式表示,由解方程求得的值。 注:一元二次方程常见的变形形式有: (1)把方程()直接作零值多项式代换; (2)把方程()变形为,代换后降次; (3)把方程()变形为或,代换后使之转化关系或整体地消去。 02=++c bx ax 0≠a a ac b b x 2422 ,1-±-=1)1(22=--+n n n 1x 2x 032=-+x x 1942231+-x x 1x 2x 1213x x -=2223x x -=x 02)1(2=+--a ax x a 01=-a 01≠-a 04122=---x x a b c d x a d d c c b b a =+=+ =+=+1 111x b c d a x 02=++c bx ax 0≠a 02=++c bx ax 0≠a c bx ax --=202=++c bx ax 0≠a c bx ax -=+2bx c ax -=+2x

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛辅导资料(12)

初中数学竞赛辅导资料(12) 用交集解题 甲内容提要 1. 某种对象的全体组成一个集合.组成集合的各个对象叫这个集合的元素.例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个. 2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集 例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集. 3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集. 不等式组的解集是不等式组中各个不等式解集的交集. 例如 不等式组? ??<->)2(2)1(62 x x 解的集合就是( ) 不等式(1)的解集x >3和不等式(2)的解集x >2的交集,x >3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答.把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案. 有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案.(如例2) 乙例题 例1. 一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值. 解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B ={3,8,13,18,23,28,……} 除以7余2自然数集合C ={2,9,16,23,30,……} 集合A 、B 、C 的公共元素的最小值23就是所求的自然数. 例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数. 解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个位数的集合是{1,3,7,9}; 其中差等于6的有:1和7;3和9;13和7,三组; 平方数的个位数字相同的只有3和7;1和9二组. 同时符合三个条件的个位数字是3和7这一组 故所求质数是:23,17; 43,37; 53,47; 73,67共四组. 例3. 数学兴趣小组中订阅A 种刊物的有28人,订阅B 种刊物的有21人,其中6人两种都订,只有一人两种都没有订,问只订A 种、只订B 种的各几人?数学兴趣小组共有几人? 解:如图左、右两椭圆分别表示订阅A 种、B 种刊物的人数集合,则两圆重叠部分就是它们

初中数学教研组新学期工作计划

初中数学教研组新学期工作计划 初中数学教研组工作计划 一、指导思想: 认真贯彻校教务处工作计划。 初中数学教研组工作计划。以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建“自主学习”课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式,使我校数学教学、教研质量进一步提高。 二、工作目标 1、加强组风建设,狠抓教学常规,更新教学观念,提高教师实践能力。 2、构建“自主学习”课堂教学模式,努力改善教与学的方式。 3、进一步提高教师的信息技术与数学教学整合能力。 XX 4、抓好培优补差工作,努力解决厌学问题。 5、继续抓好培养青年教师工作。 6、进一步加强科研力度,树立科研兴教思想。 三、重点及主要措施 1、加强组风建设,把数学组建设成师徳形象好,教研

风气浓,协作意识和团体凝聚力强,特别是对学生、对学校发展有强烈责任感和使命感的教研组。主要通过组内讨论,与领导交流,师生沟通及自修师德,听专家讲座等形式,增强教师的责任感和使命感,同时教研组长配合教导处承担对数学教学的指导和管理,以抓"课堂常规"为突破口,抓好各项常规管理。严格执行教导处的各项计划。 2、更新教学观念,构建“自主学习”课堂教学模式 ⑴、用新课程改革的理念来转变和更新教学观念,武装自己,指导平常的教学工作,提高课堂教学效率。 XX ⑵、强调智力因素和非智力因素的结合,创造愉快振奋的学习情绪,调动学生智力活动的积极性,积极实行启发式和讨论式教学,培养学生自主学习。激发学生独立思考和创新意识,切实提高教学质量。废除"注入式"、"满堂灌",挣脱阻碍学生主动发展的束缚,构建充满生命活力的“主动发展型”新模式,还学生主体参与的权力,实现学生主体、主动,创新可持续发展。 ⑶、继续树立学生是学习的主人,教师是学生学习的组织者、引导者、合作者和促进者的思想观念,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。。 ⑷、强化基础学科和学科基础知识,在注重基础知识和

初中数学竞赛辅导讲义及习题解答第14讲图第14讲图表信息问题51

第十四讲图表信息问题 21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求. 图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题. 图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题. 表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题. 【例题求解】 【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题: (1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车 早小时到达6地; (2)快车追上慢车需小时,慢车、快车的速度分别为千米/时; (3)A、B两地间的路程是. 思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程. 注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取. 【例2】已知二次函数c + =2的图象如图,并设M=b y+ ax bx + + - + 2, +2 - - + a a- a c b b b c a 则( ) A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0 思路点拨由抛物线的位置判定a、b、c的符号,并由1 x,推出相应y值的正负性. = ±

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

2020初中数学培优补差工作计划范文

很快又开学了,培优补差工作是一个学校教学工作的重中之重,接下来为你带来2020初中数学培优补差范文,希望对你有帮助。 2020初中数学培优补差工作计划范文篇一 新世纪呼唤新课改,当前,小学数学教学正处在一个大的变革之中,作为教师,我们要努力探讨如何在数学教学中进行素质教育和培养学生的创新精神,如何为学生的终身发展打好基础。为了全面提高本班学生学习的主动性和积极性,实行以点带面,全面提高、通过培优补差使学生转变观念,认真对待学习,发展智力,陶冶情操,真正做到教师动起来,学生活跃起来、并且长期坚持下去,真正让学生树立起学习的信心和勇气、克服自卑的心里、在学生中形成“赶、帮、超”浓厚的学习兴趣,使每个学生学有所长,学有所用、因此,特制订本班2020初中数学培优补差工作计划范文。 一、工作目标 1、加强对培优补差工作的常规管理和检查。 2、通过培优补差,使学生能充分认识到学习的重要性。 3、认真挑选好培优补差的对象。

4、认真做好学生的辅导工作,每周至少2次的辅导,辅导要有针对性和可行性。 二、具体内容 1、培优内容思维能力方面的训练。 2、补差内容义务教育课程标准试验教科书三年级上册。 三、培优补差对象和形式 对象本班优等生和后进生 形式1、利用课堂时间相机辅导2、利用学校午休时间3、老师、家长相配合 四、具体措施 1、利用课堂时间相机辅导 在课堂上多提问他们,对优等生,多提问一些有针对性、启发性的问题;对后进生多提问一些基础知识,促使他们不断进步。当后进生作业出现较多错误时,教师要当面批改,指出错误,耐心指导。当少数后进生因基础差而难以跟班听课

时,我们应采取系统辅导的方法,以新带旧,以旧促新,帮助后进生弥补知识上的缺陷,发展他们的智力,增强他们学好语文的信心。另外,在课堂上对后进生多提问,发现他们的优点和成绩就及时表扬,以此来提高他们的学习成绩。 2、课余时间个别辅导 在限定的课堂教学时间内,是很难满足和适应不同学生的需要的。因此,组织课外辅导,作为课堂教学的补充是很有必要的。对于优等生,我打算制定课外资料让他们阅读,布置要求较高的作业让他们独立思考,指定他们对其他学生进行辅导,使他们的知识扩大到更大的领域,技能、技巧达到更高的水平,使他们永远好学上进,聪明才智得到更好地发挥。同时,在每周的星期二、四午休活动定期对后进生进行辅导,对当天所学的基础知识进行巩固,对掌握特别差的`学生,进行个别辅导。平时,在后进生之间让他们开展一些比赛,比如看谁进步快、看谁作业得满分多、看谁成绩好等。 3、家长和老师相配合 我打算布置适当、适量的学习内容,让家长在家里对后进生进行协助辅导,老师定期到优等生和后进生家里进行家访,摸清他们在家的学习情况和作业情况。定期让优等生介绍他们的学习经验,让后进生总结自己的进步。 五、在培优补差中注意几点

初中数学竞赛辅导讲义及习题解答 第15讲 统计的思想方法

第十五讲 统计的思想方法 20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求. 统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】 【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大; (2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案. 注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的: (1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势. 【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( ) A .2a+3b B .b a +3 2 C .6a+9b D .2a+b 思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD, ∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同 一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不 出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点 连线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 1 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速 前进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相 等;又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

初一数学辅导计划

初一数学辅导计划 一、指导思想: 在新课程改革背景指导下,坚持学习先进的教育教学理念,坚持教为主导,学为主体,坚持学生为中心地位不动摇,使人人学会能用得上的数学,切实提高学生的成绩。 二、主要措施: 1、摸清学生底子,深入学生,深入教学,通过作业、课堂、试卷等切实摸清学生的 功底,并能将学生进行分类,分组,做到有的放矢。 2、改革课堂教学模式,提高学生的参与性,提高学生学习数学的兴趣,构建高效课堂。 3、充分利用小组,采取合作学习的方式,消除学生心中的疑惑和自卑心理。 4、认真批改学生作业,及时纠正学生作业中出现的错误,尽量做到面批。 5、利用自习辅导时间,老师争取集中抽查的方式,发现学生的不足,及时辅导纠正。 6、采用定时间:每天下午自习,集中进行差生辅导。 7、注重学习后的抽查,给差生吃“小灶”,对出现的错误及时纠正辅导。 8、建立错题集,提高学生的警惕性,避免犯同样的错误。 9、定时召开学习经验交流会,让他们谈感想、体会、学习心得,畅所欲言,相互学习,取长补短。 10、教师要立足于实际,多表扬学生,注意发现学生的闪光点,采用多表扬、少批评 或不批评的措施,来提高学生学习的自信心和兴趣。 11、在辅导过程中,要根据成绩、基础、学习态度和其他非智力因素,将学生分为上、中、下三等,予以区别对待,采取相应的措施力促他们得以相应提高。 三、主要时间安排: 1、第一周:结合上学期期末考试成绩,给学生分类,制定本学期辅导计划。 2、第二——八周,日常活动。 3、第九、十周,期中考试专题辅导及试卷分析讲评。 4、第十一——十八周,调整辅导策略。

5、第十九、二十周,总结辅导实施情况,学生学习经验交流。 一、学情分析 七年级是初中学习过程中基础和入门,学好七年级数学能为以后的学习做铺垫。现在班上的学生基础较差,但也有优秀的学生。他们都很热爱学习,只要端正学生们的学习态度,大家共同努力,让学生掌握学习数学的方法和技巧,激发学生学习数学的兴趣,这样才能极大提高学生的学习成绩。 二、教学辅导内容和目标 七年级数学辅导内容和目标 第五章、相交线与平行线 本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。第六章、平面直角坐标系 本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。 第七章、三角形 本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。 第八章、二元一次方程组 本章主要学习二元一次议程组及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题第九章、不等式与不等式组 本章主要内容是一元一次不等式组的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式组的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式组解决简单的实际问题。 第十章、实数 本章主要内容是学习了平方根、立方根及实数的相关概念。本章重难点:是会运用平方根立方根进行简单化简计算。 三、辅导教学的具体措施

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

第八讲由常量数学到变量数学 数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期. 函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法. 在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题. 【例题求解】 【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. 思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程. 注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有: (1)利用几何计算求; (2)通过解析式求; (3)解由解析式联立的方程组求. 【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的 函数关系,大致是下列图象中的() 思路点拨向烧杯注水需要时间,并且水槽中水面上升高0 h. 注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学特长生、后进生辅导计划

九年级数学辅导计划 付连敏 一、特长生辅导计划: (一)、学生情况分析 每个班中有部分学生对数学科比较感兴趣,学习成绩也较为突出,除了掌握课本的内容外,有着进一步学习其他数学知识的愿望。他们的手中虽然有一些相关的数学材料,但不会灵活加以运用,发挥不出其应有的功效。 (二)、辅导对象 每个班中数学成绩前十名的学生。 (三)、主要辅导内容 1.课本中知识的拓宽、推广和应用。 2.学习方法、技巧、规律归纳。 3.数学竞赛相关内容的辅导与讲解。 4.数学参考资料的选择与使用。 5.探究、操作性问题的解答方法介绍。 (四)、辅导措施 1.认真备课,准备好每次辅导时所需要的相关内容材料。 2.对参加辅导的学生严格要求,发现问题,及时解决。 3.保证做到时间、地点、人员、内容四落实。 4.每次辅导都保证活动的实效,不搞形式主义。 (五)、辅导目标 1.发挥数学特长,培养数学兴趣。 2.增强应用数学意识,提高综合运用数学知识能力。 3.中考尽可能在各科中排在前列。

二、临线生辅导计划 一、学生情况分析 在班级中,有部分学生学习成绩徘徊在及格线和优秀线左右,对数学学习兴趣不高,成绩忽上忽下,又有可能努努力就达到及格线和优秀线,是提高成绩的关键所在。 二、辅导对象 班级中成绩后处在及格线和优秀线左右的学生。 三、主要辅导内容 1.进行学习方法介绍。 2.课本知识的复习与归纳。 3.疑难问题解答、点拨。 4、课上、课下的重点关注。 四、辅导措施 1.辅导内容人人过关,过完关后还要进行及时的再回顾。 2.对学生严格要求,辅导中发现问题要及时解决。 3.每次辅导都认真组织,做到时间、地点、人员、内容四落实,保证活动的实效。 五、辅导目标 1.提高学生的思想觉悟,培养数学兴趣,养成良好的学习习惯。 2.学好数学基础知识,并能够不断取得进步,缩短与优生的差距。 3、争取在中考中取得好成绩。 三、学困生辅导计划 一、学生情况分析 在班级中,有少数学生学习成绩较差,对数学不感兴趣,不求

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学工作计划

初中数学工作计划集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

数学工作计划 一、班级情况分析 八年级两个班学生的总体情况如下: 1班学生:78人。2班学生79人;通过七年级成绩来看,学生的数学成绩参差不齐,分数高的,有110分以上的,分数低的,还不过30分,总体上看,学生的数学成绩一般,在学生的数学知识上看,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容。 本学期将要学习有关数型的初步知识,对三角形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分学生的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩一般,但仍有少部分学生对数学丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于升入初 二、学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初二生活。 三、教材分析

本学期所授的内容包括三角形的证明,一元一次不等式,图形的平移和旋转,因式分解,分式与分式方程,平行四边形六章。每章都是一个单独学习的主题,章与章之间的联系很大,但本学期所学的知识与小学、七年级和八年级上学期所学知识有一定的联系,而且是以后学习的基础,因此知识联系的跨度比较大,这就需要学生对所学知识要经常温习,以避免遗忘。所以教学时,对每一章的教学目标和重点难点都要明确,以圆满完成每一章节的教学任务。 四、学情分析 八年级学生虽然掌握了一定的基础知识,并且有了一定的能力,但是我校学生的实际基础较差,特别是在能力方面欠缺。另外学生在学习上缺乏主动性,不能积极主动地按老师的要求先预习,课后温习,认真完成作业,这样就造成了课堂检验学生的学习效果比较理想,但是第二天交上来的作业效果不理想。 五、教学措施 1、本学期教学工作重点是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。 2、课前备课。课前认真备课,研究教材、课程标准,把握教材的重点和难点,明确本章本节在整体中所处的地

相关文档
最新文档