海洋微生物腐蚀研究进展

海洋微生物腐蚀研究进展
海洋微生物腐蚀研究进展

*国家自然科学基金(50242008)

作者简介:杜建波(1981-),男,山东临沂人,中国海洋大学硕士研究生,主要从事海洋微生物腐蚀研究。

?专论与综述?

海洋微生物腐蚀研究进展*

杜建波,尹衍升,滕少磊,常雪婷,程

(中国海洋大学材料科学与工程研究院,山东青岛266003)

要:近年来,微生物腐蚀已经引起了广大研究者的关注,来自不同研究领域的研究者对其腐蚀机理和控制方法都作了

大量的研究;综述了微生物腐蚀的机理和研究方法,并介绍了微生物膜的形成及影响因素。关键词:微生物腐蚀机理;电化学方法;表面分析方法;生物膜中图分类号:TG172

文献标识码:A

第29卷增刊

2007年3月

山东冶金

ShandongMetallurgy

Vol.29,SupplementMarch2007

1引言

海洋中存在着种类繁多的微生物,它们附着于工程材料表面,形成生物膜(Biofilm),在生物膜内部,pH值、溶解氧、有机物和无机物种类等因素都与海洋本体环境完全不同,生物膜内微生物的活性控制着电化学反应的速率和类型,这种受微生物影响的金属和合金的腐蚀称为微生物腐蚀

[1,2]

(Microbio-

logicallyInfluencedCorrosion,简称MIC)。

21世纪是海洋的世界,人类已经进入海洋开发

的新时代。然而用于的海洋的各种金属材料都会受到不同程度的侵蚀破坏,给人类造成了巨大的损失,金属材料在海水环境中的腐蚀是一个涉及物理、化学、生物、气象等因素的复杂电化学过程。其中,生物腐蚀造成的损失占总体腐蚀损失的20%左右,因此,必须对生物腐蚀予以足够的重视。

2微生物腐蚀

2.1

微生物腐蚀的发展

最早指出微生物参与金属腐蚀的是Gaines(1910),他从地下埋设的钢管腐蚀产物中分离出了铁嘉氏杆菌(GallionellaFerraginea),并发现有大量的硫,这表明有硫酸盐还原菌的存在;荷兰学者Von.

WolzogenKuhr自1922年以来做了大量的工作,指

出了硫酸盐还原菌在金属腐蚀中起到非常重要的作用。在1949年,Butlin和Vernon[3]给出了这个领域的一些经典的基本概念。剑桥的Postgate[4]系统地研究了硫酸盐还原菌的生理、生态和生化特征及营养需求,为微生物腐蚀的研究奠定了基础。20世纪60年

代以来,许多学者如BoothIverson、

Horvath等人对微生物的腐蚀机理进行了大量的研究,欧洲各国及美国进行了一系列研究。但最初人们对微生物腐蚀的认识仅限于个别的微生物腐蚀失效事故的描述。到

80年代中期,随着表面分析技术(如环境扫描电镜、

原子力和激光共焦显微镜)的发展,人们可以测量生物膜的厚度和组成,使得精确确定微生物和腐蚀之间的空间关系成为可能,微生物腐蚀的研究也从失效事故的表面现象变为日益成熟的交叉学科。

2.2生物膜的形成及影响因素

研究表明,微生物是极易附着在材料表面上的,

一般放入海水几个小时后就会形成一层薄薄的膜。当一个物体浸没海水中后,首先是有机碎片粘附在表面上,形成一层薄膜,这层膜改变了物体表面的性质,尤其是静电荷和润湿度,它是生物膜进一步发展的基础,然后细菌在表面上附着,并开始生长繁殖,数小时后便可形成菌落,然后硅藻、真菌、原生动物、微型藻类和其他微型生物在表面上附着,形成一层黏膜,称为微生物膜(Biofilms)[5]。微生物膜的成分

70%~95%是水,它的基本性质仍是电化学的。生物

膜由细胞生物量和胞外聚合物(EPS)组成,主要成分是蛋白质。从所有生物膜的胞外聚合物组分中可以提取出腐殖酸、多糖、糖醛酸和DNA等[6~8]。

微生物在材料表面的附着经历了一系列过程:(1)材料表面上会在几秒钟形成一层有机物膜,其厚度仅为5~10nm,这些有机物包括水溶性物、微生物分泌的体外多聚物和有机残体降解的中间产物;(2)部分微生物会有选择的运动并附着在材料的特定部位;(3)微生物的附着也可能是趋向性的或是随机运动造成的;(4)部分吸附着的微生物还会有于自身的运动或水体的动力学方面的因素而脱离附着点;(5)附着紧密的微生物则进行繁殖,合成多聚物,形成微生物膜及其结构。

微生物膜的形成是一个高度自发的动态过程,海洋细菌首先附着在物体表面上,很多因素都会影响细菌在表面的附着,BrendaJLittle和PatriciaWag-

ner[9]报道了影响微生物表面附着的两种因素,即细

菌细胞的特性(如受营养条件、生长类型与碳源影响的细菌细胞的表面疏水性)和基底金属的性质(包括材料成分、表面膜的存在、组成与化学性质以及极化

方法适用性

腐蚀电位易于测量,需要与其他方法结合才能获得进一步的信息来解释数据

氧化还原电位可提供有关环境变化的信息,但不一定提供有关腐蚀速率的信息

极化电阻可给出腐蚀速率变化的趋势,尤其适于均匀腐蚀

双区电解池精细实验技术,可给出阳极或阴极作用信息,不能给出腐蚀速率

极化曲线可给出微生物对腐蚀的影响,但对微生物活性影响,不适合监测

电化学阻抗谱可给出腐蚀反应的相关步骤,提供均匀腐蚀速率信息,数据解释较难

电化学噪音不需外界扰动,给出腐蚀形态信息,可用于监测,是一非常适用的方法

微电极技术给出生物膜内部的环境信息,研究微生物腐蚀的有效方法,实验难度大

电化学表面

成像给出电位电流分布,可测微生物的数量和微生物的繁殖过程对腐蚀的形貌和速率的影响,但仪器较贵

山东冶金

2007年3月第29卷

程度)。W.LeeandW.G.Characklis发现海水流速也对生物膜的形成有一定的影响,随流速增加膜厚也增加[10]。JohnsenandBardal将6种SS电极放入流动的自然海水中,大约5~10天后也发现海水流速变快时,生成的微生物膜增厚。

2.3微生物腐蚀机理

由于微生物膜的存在而引起或加速了金属腐蚀,这个过程是涉及物理、化学、电化学、材料学和生物学众多学科的极其复杂的过程。研究微生物腐蚀,关键问题是澄清微生物膜与金属腐蚀过程相互作用的性质、特征和机制。微生物膜的形成、发展和消亡过程影响了金属的电化学状态和腐蚀过程;同时,金属的电化学状态和腐蚀过程的变化也会影响微生物膜的性质和生长状态。因此可以所以说,微生物膜与金属表面状态存在相互作用和协同作用,在不同条件下,它们既能相互影响,相互促进,又能相互控制,相互制约[11]。微生物膜与金属表面状态存在如下相互作用和协同作用[12]:(1)影响电化学腐蚀的阳极或阴极反应;(2)改变了腐蚀反应的类型;(3)微生物新陈代谢过程产生的侵蚀性物质改变了金属表面膜电阻;(4)创造了生物膜内腐蚀环境;(5)由微生物生长和繁殖所建立的屏障层导致了金属表面的浓差电池。由此可概括机理如下:

2.3.1浓度差异电池的形成由于微生物的附着在金属表面形成不规则的聚集地,材料不可避免地形成几何的不均匀性,细胞胞外高聚物(Extracellularpolymersubstances简称EPS)基质的扩散屏障作用阻碍氧向材料表面的扩散,微生物膜分布及其本身结构的不均匀性、腐蚀产物的局部堆积等形成氧浓度差异电池,微生物的新陈代谢产物和腐蚀产物的向外扩散也同样被阻止,于是形成局部浓度差异电池。另外一种情况是海藻和光合作用细菌利用光产生氧气,积聚于生物膜内,氧浓度的增加,加速了阴极过程,也就加快了腐蚀速度。E.L,Hostis等采用旋转电极技术分析了金电极上天然海水生物膜内氧扩散动力学[13],氧浓差存在满足了局部腐蚀的初始条件。2.3.2新陈代谢过程对腐蚀行为的影响好氧菌的新陈代谢活动一般会影响电化学过程,生物膜内好氧菌的呼吸频率高于氧的扩散速率,则腐蚀的阴极过程机理就发生了变化,在贫氧的生物膜与金属界面上不可能再消耗氧。阴极反应可能转变为消耗水或微生物产生H2S。Pedersen和Hermansson验证了细胞浓度、含氧量和腐蚀速度间的关联作用[14]。2.3.3酸的产生多指有氧区好氧菌代谢产物硫酸和各种有机酸的产生,当酸性代谢物被困在生物膜/金属界面时,对腐蚀影响更加明显。2.3.4硫化物的产生局部无氧区厌氧菌代谢生成破坏性极强的硫、硫化物、硫代硫酸盐等,加速局部腐蚀;其中就是SRB是一类以有机物为养料的、广泛存在于土壤、海水、输运管道、油气井等处的厌氧性细菌,它对金属的腐蚀是相当严重的,对它的腐蚀机理研究也最多,其腐蚀机制的解释因观察场合等不同,主要有4种不同的说法[11]。

2.3.5金属沉积菌作用造成闭塞电池腐蚀近几年,MIC中金属沉积菌(MetalDepositionBacteria)的作用已引起关注。Ghiorse提出一种关于细菌沉积金属氧化物的观点,认为微生物加速了金属的氧化,有些使非生物性的金属氧化沉淀物积累起来,有些通过氧化金属而获取能量。嘉利翁氏菌属、球衣菌属、铁细菌属、纤毛菌属是常被提到的引起MIC的铁氧化类属。这些有机物将Fe2+氧化成Fe3+或将Mn2+氧化成Mn3+,从而获取能量[15]。

2.4微生物腐蚀研究方法

2.4.1电化学方法微生物腐蚀本质上是电化学过程,因此可用电化学方法去研究微生物腐蚀的详细过程及其腐蚀机制,监测微生物腐蚀的发生和发展。有关微生物腐蚀的电化学研究方法,FlorianMans-feld和BrendaLittle[16]以及吴建华等[17]都进行过相关报道,方法比较见表1。

表1微生物腐蚀的电化学研究方法比较

2.4.2表面分析方法微生物腐蚀都是电化学过程,然而,要对所得的电化学数据和腐蚀机制作出合理的解释,必须借助于表面分析技术,S.B.Surman,J.T.Walker等[18]人曾对表面技术在微生物腐蚀领域的应用做过较详细的描述。

光学显微镜一直是研究细菌的基本方法.Marshall曾经报道了用光学显微镜来研究惰性电极表面上细菌的生长情况[19],但是光学显微镜不能观察不透明物体表面细菌的附着情况。

海洋微生物腐蚀研究进展

杜建波等2007年增刊

金相显微镜一直是研究金属表面形貌的有效手段,可以用于观察腐蚀表面的状态,但是分辨率和放大倍数不高,而透射电子显微镜(TEM)具有高的分辨率和放大倍数,用于观察材料表面形貌、微观结构,并且它能够用来观察细胞的结构,对腐蚀机理的研究提供更形象地表征,只是由于TEM样品制备较难,因而限制了它的应用;K.Mattila,L.Carpen等[20]人报道了使用扫描电子显微镜(SEM),TEM,共焦扫描激光显微镜(CLSM)探索了AISI316不锈钢上微生物膜的生长过程,取得了良好的效果,所以设法将TEM更好地应用于微生物腐蚀领域,也是值得探索的课题;相对于TEM,SEM的分辨率和放大倍数较低,但是具有大的场深,对于观察表面或断面的形貌可以得到更为清晰的显微像,可以观察金属表面腐蚀状态,微生物膜的结构等;而对于环境扫描电镜(ESEM),它利用独特的二次电子探测器在0.1~20托的压力范围内形成高清晰度的图象,对于多水的、具有生物活性的生物膜来说,ESEM一种原位的、无伤探测方法,Little和Wagner等人最早将ESEM应用于微生物腐蚀研究[21]。

俄歇电子能谱(AES)和X射线光电子光谱法(XPS)常用于研究微生物腐蚀的产物,这种测量对于理解腐蚀机制大有帮助。R.A.Sadowski和R.Clayton分别利用AES、XPS研究了不锈钢在含有SRB的介质中的腐蚀产物,提出了腐蚀机制[22,23]。

原子力显微镜(AFM)是继扫描隧道显微镜(ScanningTunnelingMicroscope)之后发明的一种具有原子级高分辨的新型仪器,香港大学方汉平[24,25]等人利用AFM研究了海洋微生物腐蚀,可以对细菌,生物膜,金属腐蚀表面形成更高的分辨率像,定量的描述了材料局部腐蚀。

3展望

根据国内外相关报道,现阶段及未来微生物腐蚀领域的发展方向和所要解决重大课题大概有:(1)微生物附着及腐蚀机制,现在这一课题还停留在定性的分析上,难以控制和定量描述;(2)金属/微生物界面的表征,对这种半生命、半活性的独特的复合界面进行原位的检测是极其有意义的课题;(3)开发海洋腐蚀数据库和海洋环境腐蚀的预测、咨询系统,建立完善的专家系统;(4)建立模拟生物环境的实验方法,这对于缩短实验周期,加速对生物附着和腐蚀机理的研究具有重大的意义,然而这方面的报道现在是极少的;(5)探讨针对不同海域、不同材料、不同环境的防腐蚀技术和方法等。

参考文献:[1]LittleB.WagnerP.TrendsinMICtesting[R].ADA286824,1995.[2]刘光洲,吴建华.海洋微生物腐蚀的研究进展[J].腐蚀与防护,2001,22(10):430-433.

[3]ButlinKR,VernonWHJ.JourInstofWaterEng,1949,(3):637.[4]PostgateJR.TheSulphateReducingBacteria,2ndEdition[M].Cam-bridge,England:CambUnivpress,1984.

[5]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1998.6.

[6]JahnAandNielsenPH.CellBiomassandExopolymerCompositioninSeawerBiofilm[J].Wat.Sci.Tech.1998,37(1):17-24.

[7]ZhangX,BishopPLandKupferleMJ.MeasurementofPolysacch-aridesandProteinsinBiofilmExtracellularPolmers[J].Wat.Sci.Tech.1998,37(4-5):345-348.

[8]VeigaMCetal.CompositionandRoleofExtracellularinMethanog-enicGranules.Appl[J].Environ.Microbiol.1997,63(2):403-407.[9]BrendaJLittle,PatriciaWagner.FactorsInfluencingtheAdhesionofMcroorganismstoSur-faces[J].JAdhesion,1986,20:187-210.[10]WLee,WGCharacklis.Corrosion,1993,49(3):186.

[11]王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002,22(3):184-188.

[12]李相波,王伟,王佳,刘五一.海水中微生物膜的生长对金属腐蚀过程的影响[J].腐蚀科学与防护技术,2002,14(4):218-222.

[13]L'HostisE,CompereC,DesloaisC.Characterizationofbiofilmsformedongoldinnaturalseawaterbyoxygendiffusionanalysis[J].Corrosion,1997,53(1):4-10.

[14]PedersenAhermanssonM.Inhibitionofmetalcorrosionbybacteria[J].Biofouling,1991,3(1):1-11.

[15]DickinsenWH,DaccavoJrF,LewandowskiZ.Theennoblementofstainlesssteelbymanganicoxidebiofouling[J].Corros.Sci.,1996,38(8):1407-1422.

[16]FlorianMansfeld,BrendaLittle.ATechnicalReviewofElectroch-emicalTechniquesAppliedtoMicrobiologicallyInfluencedCorros-ion[J].CorrosionScience,1991,32(3).

[17]吴建华,刘光洲,于辉,等.海洋微生物腐蚀的电化学方法[J].腐蚀与防护,1999,5(2):231~237.

[18]S.B.Surman,J.T.Walker,D.T.Goddard,L.H.G.Morton,C.W.Keevil,W.Weaver,A.Skinner,K.Hanson,D.Caldwell,J.Kurtz.Comparis-

ionofmicroscopytechniquesfortheexaminationofbiofilms[J].JournalofMicrobiologicalMethods,1996,25:57-70.

[19]KCMarshall.J.Microbiol.Meth.1986,4:217.

[20]K.Mattila,L.Carpen,T.Hakkarainen&M.S.Salkinoja-Salonen.Bi-ofilmDevelopmentDuringEnnoblementofStainlessSteelinBalticSeaWater:AMicroscopicStuday[J].InterrationalBiodeterioration&Biodegradation,1997,40(1):1-10.

[21]LittleB,WagerP,etal.MICofcopperalloysinsalinewatercon-tainingSRB[A].Corrosion/91[C].HoustonTX:NACE,1991,101.[22]SadowskiRA,ChenG,etal.Ascanningaugermicroprobeanal-ysisofcorrosionproductsAssociatedwithSRB[A].Corrosion/95[C].HoustonTX:NACE,1995,218.

[23]ClaytonR.Investigationtothesusceptibilityofcorrosionresistantalloystobiocorrosion[R].ADA281066,1997.

[24]HerbertH.P.Fang,Lichongxu,TongZhang,StudayofMarineBio-corrosionUsingAFMandMolecularTechniques[J].Electrochemistry,2003,9(2):164-169.

[25]Li-ChongXu,Kwong-YuChan,HerbertH.P.Fang,Applicationofatomicforcemicroscopyinthestudyofmicrobiologicallyinfluencedcorrosion[J].MaterialsCharacterization,2002,48:195-20.

海洋腐蚀环境与换热器表面处理选型

海洋腐蚀环境 海洋腐蚀环境包括海洋大气腐蚀环境和海水腐蚀环境, 1﹑海水腐蚀环境 海水是一种复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水是一种含盐量相当大的腐蚀性介质,表层海水含盐量一般在3.20%-3.75%之间,随水深的增加,海水含盐量略有增加。盐分中主要为氯化物,占总盐量的88.7%.由于海水总盐度高,所以具有很高的电导率,海水中pH值通常为8.1-8.2,且随海水深度变化而变化。若植物非常茂盛,CO2减少,溶解氧浓度上升,pH值可接近10;在有厌氧性细菌繁殖的情况下,溶解氧量低,而且含有H2S,此时pH值常低于7。海水中的氧含量是海水腐蚀的主要影响因素之一,正常情况下,表面海水氧浓度随水温大体在5~10mg/L范围内变化。海水温度一般在-2℃-35℃之间,热带浅水区可能更高。海水中氯离子含量约占总离子数的55%,海水腐蚀的特点与氯离子密切相关。氯离子可增加腐蚀活性,破坏金属表面的钝化膜。 2﹑海洋大气腐蚀环境 大气腐蚀一般被分成乡村大气腐蚀,工业大气腐蚀和海洋大气腐蚀。乡村地区的大气比较纯净;工业地区的大气中则含有SO2,H2S, NH2和NO2等。大气中盐雾含量较高,对金属有很强的腐蚀作用。 海洋环境对金属腐蚀同其它环境中的大气腐蚀一样是由于潮湿的

气体在物体表面形成一个薄水膜而引起的。这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上,腐蚀现象是非常严重的,除了在强风暴的天气中,在距离海岸近的大气中的金属材料也强烈的受到海洋大气的影响。海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,空气的相对湿度都高于它的临界值。空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于铜带表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使铜的腐蚀速度增加几倍。 海洋环境对金属腐蚀的影响因素 1﹑盐度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海洋环境中遭到严重腐蚀。 2﹑含氧量 海洋环境对金属腐蚀是以阴极氧去极化控制为主的腐蚀过程。 海水中的含氧量是影响海洋环境对金属腐蚀性的重要因素。氧在海

海洋平台腐蚀与防护1

第一章前言 1.1 国内外海洋平台事故 近30年来,海洋腐蚀向人类敲响的警钟。1980年3月,在北海艾克菲斯油田上作业的“亚历山大·基定德”号钻井平台,在8级大风掀起的高6∽8m的海浪的反复冲击下,5根巨大的桩腿中的D号桩腿因6根主撑管先后断裂而发生剪切断裂,万余吨重的平台在25min 内倾倒,使123人遇难,造成近海石油钻探史上罕见的灾难。挪威事故调查委员会检查报告表明,D号桩腿上的D-6主撑管首先断裂。该主撑管曾经开过一个直径325mm的孔,并焊上一个法兰,准备安装平台定位声纳装置,实际上后来并未安装,开裂就是从这个法兰角的6mm焊缝处开始的,裂纹在海浪与荷载的反复作用下不断扩展,最后导致平台沉没。 2010年9月7日23时,山东东营胜利油田位于渤海的作业3号修井作业平台受玛瑙台风影响(风力最大时阵风9级,浪高近4米)平台发生倾斜发生倾斜45度事故。平台上4人落水,32人被困平台。目前已有34人获救。平台设计通常都考虑台风的影响,况且又是在中国的内海-渤海,我觉得平台倒塌与海洋腐蚀应有一定的关联。 1.2 腐蚀工程 腐蚀工程包括腐蚀原理和防护技术两部分。 腐蚀原理是从热力学和动力学方面解释和论述腐蚀的原因、过程和控制。 防护技术泛指防止或延缓腐蚀损害所采用的有效措施。大体上有以下几种: ①选择材料,根据使用环境合理选用各类金属材料或非金属材料; ②电化学保护技术,主要是阴极保护技术、阳极保护技术与排流技术;③表面处理技术,如磷化、氧化、钝化及表面转化膜; ④涂层、镀层技术,主要有涂料、油脂、镀层、衬里与包覆层等; ⑤调节环境,即改善环境介质条件,如封闭式循环体系中使用缓蚀剂、调节pH值,以及脱气、除氧和脱盐等; ⑥正确设计与施工,从工程与产品设计时就应考虑腐蚀问题,如正确选材与配合,合理设计表面与几何形状,严格施工工艺,采取保护措施,特别是防止接触腐蚀、应力腐蚀、缝隙腐蚀及焊接腐蚀等。 由此可见,腐蚀工程涉及的专业知识领域很广,主要有冶金、材料、机械、表面处理、化学、

海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍 上海海事大学尹若元摘编2010-04-22 关键字:混凝土腐蚀海洋环境浏览量:113 作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是目前世界上使用最广泛的建筑材料之一,在工业、运输、民用等领域有着广泛的应用。用混凝土建造的建筑物和构筑物在使用期间常常受到腐蚀介质的侵蚀,特别是在海洋环境中。海洋环境是混凝土结构所处的最恶劣的外部环境之一。海水中的化学成分能引起混凝土溶蚀破坏、碱-骨料反应,在寒冷地区可能出现冻融破坏,海浪及悬浮物对混凝土结构会造成机械磨损和冲击作用,海水或海风中的氯离子能引起钢筋腐蚀。国内外大量调查表明:海洋恶劣环境下的混凝土构筑物经常过早损坏,寿命一般在20~30年,远达不到要求的服役寿命(一般要求服役寿命100年以上)。损坏的构筑物需花大量财力进行维修补强,且造成停工停产,带来巨大经济损失。因此,研究海洋环境下混凝土的腐蚀机理,提高海洋环境混凝土耐久性,保护内部钢筋免于腐蚀,建造低价格高性能的混凝土就显得尤为重要。 近年来,国内外的学者相继开展了一些针对混凝土材料化学腐蚀的研究,本文从试验研究和数值模拟两方面对当前受腐蚀混凝土的力学研究现状进行简要介绍。 一、试验研究 蒋钰鹏[1]通过对酸性地下水环境中不同配比的混凝土强度进行分析,并和标准养护的未腐蚀材料对比,研究酸性环境对不同配比混凝土强度的影响规律,提出对存在酸性腐蚀条件的土质,基础混凝土工程应采取以下预防措施:(1)混凝土的密实度和抗渗性是防止腐蚀的关键,提高基础混凝土的设计强度,合理选用水泥型号,使用高标号水泥,并适当掺用高效减水剂(缓凝型除外),降低水灰比。(2)加强混凝土施工中的现场管理,严格控制施工质量,确保混凝土按规程振捣,确保混凝土的密实度,表面必须抹光压实。 (3)施工前要制定混凝土养护方案,科学地进行养护。(4)适当增加钢筋保护层的厚度,厚度应大于50 mm,并在施工中严格控制。(5)混凝土基础施工前对基槽进行处理,加入石灰等降低酸度,并加厚垫层。(6)对完成的混凝土基础结构在回土覆盖前,可采用混凝土密封剂进行防护,使用前要对混凝土表面进行清理。张伟勤等[2]研究了混凝土在盐卤的干湿循环环境中,受单一化学腐蚀破坏材料的损伤及强度、质量损失的规律,研究表明研制的高性能混凝土(HPC)在淡水、卤水中干湿循环能力全部优于普通混凝土

探究海洋环境污染与保护

探究海洋环境污染与保 护 海洋教育研究性学习报告 课题名称:探究海洋环境污染与保护 学校: 班级: 组长: 组员: 指导老师: 联系电话: 探究海洋环境污染与保护 自上个世纪五十年代以来,随着各国社会生产力和科学技术的迅猛发展,海洋受到了来自各方面不同程度的污染和破坏,日益严重的污染给人类的生存和发展带来了极为不利的后果.下面是我关于海洋污染的研究报告。 海洋污染通常是指人类改变了海洋原来的状态,使海洋生态系统遭到破坏。有害物质进入海洋环境而造成的污染,会损害生物资源,危害人类健康,妨碍捕鱼和人类在海上的其他活动,损坏海水质量和环境质量等。 下面是造成海洋污染的几个主要原因: 1.石油 包括原油和从原油中分馏出来的溶剂油、汽油、煤油、柴油、润滑油、石蜡、沥青等等,以及经过裂化、催化而成的各种产品。每年排入海洋的石油污染物约1千万吨,主要是由工业生产,包括海上油井管道泄漏、油轮事故、船舶排污等造成 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

的,特别是一些突发性的事故,一次泄漏的石油量可达10万吨以上,这种情况的出现,大片海水被油膜覆盖,将促使海洋生物大量死亡,严重影响海产品的价值,以及其他海上活动。 2.重金属 包括汞、铜、锌、钴、镐、铬等重金属,砷、硫、磷等非金属由人类活动而进入海洋的汞,每年可达万吨,已大大超过全世界每年生产约9千吨汞的记录,这是因为煤、石油等在燃烧过程中,会使其中含有的微量汞释放出来,逸散到大气中,最终归入海洋,估计全球在这方面污染海洋的汞每年约4千吨。镉的年产量约1.5万吨,据调查镉对海洋的污染量远大于汞。 3.农药 包括有农业上大量使用含有汞、铜以及有机氯等成分的除草剂、灭虫剂,以及工业上应用的多氯酸苯等。这一类农药具有很强的毒性,进入海洋经海洋生物体的富集作用,通过食物链进入人体,产生的危害性就更大,每年因此中毒的人数多达10万人以上,人类所患的一些新型的癌症与此也有密切关系。有机物质和营养盐类:这类物质比较繁杂,包括工业排出的纤维素、糖醛、油脂;生活污水的粪便、洗

金属腐蚀与防护

摘要:本文论述了腐蚀的产生机理,从而探讨了防腐蚀的办法。文章介绍了金属腐蚀与腐蚀机理,详细综述了形成保护层、电化学保护法、缓蚀剂法等几种常见腐蚀防护方法的原理以及在金属腐蚀与防腐中的应用和研究进展。 关键词:金属腐蚀防护 金属腐蚀的分类:根据金属腐蚀的反应机理,腐蚀可以分为电化学腐蚀和化学腐蚀。电化学腐蚀是指金属表面与离子导电的介质因发生电化学作用而产生的破坏;化学腐蚀是指金属表面与非电解质直接发生化学作用而引起的破坏。电化学腐蚀是最常见、最普遍的腐蚀,因为只要环境的介质中有水存在,金属的腐蚀就会以电化学腐蚀的形式进行。金属在各种电解质溶液,比如大气、海水和土壤等介质中所发生的腐蚀都属于电化学腐蚀.。环境中引起金属腐蚀的物质主要是氧分子和氢离子,它们分别导致金属的吸氧腐蚀和析氢腐蚀,其中又以吸氧腐蚀最为普遍。 腐蚀给人类社会带来的直接损失是巨大的。20世纪70年代前后,许多工业发达国家相继进行了比较系统的腐蚀调查工作,并发表了调查报告。结果显示,腐蚀的损蚀占全国GNP的1%到5%。这次调查是各国政府关注腐蚀的危害,也对腐蚀科学的发展起到了重要的推动作用。在此后的30年间,人们在不同程度上进行了金属的保护工作。在以后的不同时间各国又进行了不同程度的调查工作,不同时期的损失情况也是不同的。有资料记载,美国1975年的腐蚀损失为820亿美元,占国民经济总产值的4.9%;1995年为3000亿美元,占国民经济总产值的4.21%。这些数据只是与腐蚀有关的直接损失数据,间接损失数据有时是难以统计的,甚至是一个惊人的数字。我国的金属腐蚀情况也是很严重的,特别是我国对金属腐蚀的保护工作与发达的工业国家相比还有一段距离。据2003年出版的《中国腐蚀调查报告》中分析,中国石油工业的金属腐蚀损失每年约100亿人民币,汽车工业的金属腐蚀损失约为300亿人民币,化学工业的金属腐蚀损失也约为300亿人民币,这些数字都属于直接损失。如该报告中调查某火电厂锅炉酸腐蚀脆爆的实例,累计损失约15亿千瓦·时的电量,折合人民币3亿元,而由于缺少供电量所带来的间接损失还没有计算在内。所以说,金属腐蚀的损失是很严重的,必须予以高度的重视。金属腐蚀在造成经济损失的同时,也造成了资源和能源的浪费,由于所报废的设备或构件有少部分是不能再生的,可以重新也冶炼再生的部分在冶炼过程中也会耗费大量的能源。目前世界上的资源和能源日益紧张,因此由腐蚀所带来的问题不仅仅只是一个经济损失的问题了。腐蚀对金属的破坏,有时也会引发灾难性的后果,此方面的例子太多了,所以对金属腐蚀的研究是利国利民的选择。由于世界各国对于腐蚀的危害有了深刻的认识,因此利用各种技术开展了金属腐蚀学的研究,经过几十年代努力已经取得了显著的成绩。 金属防护的方法: 改善金属的本质根据不同的用途选择不同的材料组成耐蚀合金,或在金属中添加合金元素,提高其耐腐蚀性,可以防止或减缓金属的腐蚀。例如,在钢中加入镍制成不锈钢可以增强防腐蚀能力。 在金属表面形成保护层在金属表面覆盖各种保护,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法[3]。工业上普遍使用的保护层有非金属保护层和金属保护层两大类。它们是用化学方法、物理方法和电化学方法实现的。该法就是使金属表面形成转化层和加上一层坚固的保护层,达到隔离大气保护金属的目的.如对金属表面实施电镀、化学镀以及氧化、磷化处理等,可使金属表面覆盖一层耐腐蚀的保护层;也可以对金属表面氮化。

十大海洋腐蚀防护技术

盘点十大海洋腐蚀防护技术 前言 海洋工程构筑物大致分为:海岸工程(钢结构、钢筋混凝土)、近海工程(海洋平台、钻井、采油、储运)、深海工程(海洋平台、钻井、采油、储运)、海水淡化、舰船(船体、压载舱、水线以上),简称为船舶与海洋工程结构。船舶与海洋工程结构的主要失效形式包括:均匀腐蚀、点蚀、应力腐蚀、腐蚀疲劳、腐蚀/磨损、海生物(宏生物)污损、微生物腐蚀、H2S与CO2腐蚀等等。控制船舶和海洋工程结构失效的主要措施包括:涂料(涂层)、耐腐蚀材料、表面处理与改性、电化学保护(牺牲阳极、外加电流阴极保护)、缓蚀剂、结构健康监测与检测、安全评价与可靠性分析及寿命评估。 从腐蚀控制的主要类型看(表1),涂料(涂层)是最主要的控制方法、耐腐蚀材料次之,表面处理与改性是常用的腐蚀控制方法,电化学保护(牺牲阳极与外加电流)是海洋结构腐蚀控制的常用手段,缓蚀剂在介质相对固定的内部结构上经常使用,结构健康监测与检测技术是判定腐蚀防护效果、掌握腐蚀动态以及提供进一步腐蚀控制措施决策和安全评价的重要依据,腐蚀安全评价与寿命评估是保障海洋工程结构安全可靠和最初设计时的重要环节。建立全寿命周期防护理念,结合海洋工程设施的特点及预期耐用年数,在建设初期就重视防腐蚀方法,通过维修保养实现耐用期内整体成本最小化并保障安全性,是重大海洋工程结构值得重视的问题。 表1腐蚀防护方法及中国的防腐蚀费用比例 一、防腐涂料(涂层) 涂料是船舶和海洋结构腐蚀控制的首要手段。海洋涂料分为海洋防腐涂料和海洋防污涂料两大类。按防腐对象材质和腐蚀机理的不同,海洋防腐涂料又可分为

海洋钢结构防腐涂料和非钢结构防腐涂料。海洋钢结构防腐涂料主要包括船舶涂料、集装箱涂料、海上桥梁涂料和码头钢铁设施、输油管线、海上平台等大型设施的防腐涂料;非钢结构海洋防腐涂料则主要包括海洋混凝土构造物防腐涂料和其他防腐涂料。 海洋防腐蚀涂料包括车间底漆、防锈涂料、船底防污涂料、压载舱涂料、油舱涂料、海上采油平台涂料、滨海桥梁保护涂料以及相关工业设备保护涂料。海洋防腐涂料的用量大,每万吨船舶需要使用4~5万升涂料。涂料及其施工的成本在造船中占10%~15%,如果不能有效防护,整个船舶的寿命至少缩短一半,代价巨大。 海洋防腐领域应用的重防腐涂料主要有:环氧类防腐涂料、聚氨酯类防腐涂料、橡胶类防腐涂料、氟树脂防腐涂料、有机硅树脂涂料、聚脲弹性体防腐涂料以及富锌涂料等,其中环氧类防腐涂料所占的市场份额最大,具体见表2。实际上,从涂料使用的分类看,涂料可以分为:底漆、中间漆和面漆。其中,底漆主要包括富锌底漆(有机:环氧富锌;无机:硅酸乙酯)、热喷涂铝锌;中间漆主要有环氧云铁、环氧玻璃鳞片;面漆包括聚氨酯、丙烯酸树脂、乙烯树脂等。 表2我国重防腐涂料的种类与比例 我国重防腐涂料增长率较快,2012年我国涂料总产量1270万t,居世界第一位,但企业数量多,单产低。 我国涂料生产企业有上万家,但产量在5000t以上的涂料企业不足10%。美国涂料年生产总量约700万t,厂家只有400多个。日本是世界第3大涂料生产国,总产量200万t,生产企业只有167家。我国涂料公司的产值低:从企业销售额来看,我国最大的涂料公司的年销售额不足AkzoNobel(阿克苏诺贝尔)公司的1/50。此外,我国许多涂料公司的产品质量还有待进一步提高。我国虽有先进的纳米复

海水海洋大气腐蚀特点及防腐

海水海洋大气腐蚀特点 及防腐 COmPany number : [0089WT-8898YT-W8CCB-BUl^^^?8]

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在3□g∕L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。PH变化小,海水表层PH在~范围内,而在深层PH则为左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,CI-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中山于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 盐类及浓度 盐度是指IOO克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为%~%,这对—般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以CI-为主,一方面:盐浓度的増加使得海水导电性増加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 PH值

海洋环境污染与保护

海洋环境污染与保护教案 王梦天 [教学目标] (一)知识与技能 1.知道海洋污染防治的主要措施,理解海洋污染防治的意义。 2.知道海洋环境保护的重要措施——建立海洋自然保护区;了解海洋自然保护区的定义、分类,以及我国海洋自然保护区的基本情况。 3.结合“中国国家级海洋自然保护区”图,归纳我国海洋自然保护区的分布特点。(二)过程与方法 收集整理有关我国近海生态环境的资料分析面临的主要问题,提出并讨论保护我国海洋生态环境的主要对策。 (三)情感态度价值观 关注现实生活中可能引起海洋污染的事件,体会海洋环境保护对于人类社会的意义,增强学生的环境保护意识。 [教学重点] 1.海洋污染防治的主要措施 2.海洋自然保护区 3.我国近岸海域海洋生态环境所面临的主要问题 [教学难点] 海洋环境保护 [教学媒体与教具] 利用网络收集资料,结合案例分析、探究导学完成教学任务。

[课时安排] 1课时 [讲授过程] 【复习提问】海洋污染的类型、来源以及危害。 【导入新课】海洋环境是人类发展的重要基础。随着海岸带的大规模开发建设,海洋环境问题日益严重,防治海洋污染,进行海洋环境保护己经成为人类社会的共识。 【板书】第三节海洋污染的防治与环境保护 一、海洋污染的防治 【案例分析】阅读课本82页材料“水质污染鱼先知”探究讨论与陆地污染相比,海洋污染有哪些独特性?在治理上有哪些难度?你有什么治理良策? 【学生回答,教师总结】1.海洋污染的危害:海洋污染不仅威胁着海洋生物的生存环境,也危及人类的健康。 2.特点:海洋污染容易,治理难 3.海洋污染的防治措施主要有: 1. 对向海洋直接排污的企业实行强化管制; 2. 加快沿海城市污水处理厂的建设,生活污水处理之后再排放入海; 3. 禁止向海洋倾倒工业废料; 4. 禁止含磷洗涤用品的销售和使用; 5. 实施垃圾分类回收和循环利用,使用可降解塑料,不把海洋作为废水排放地和垃圾填埋场等等 【启发提问】除此之外,还有哪些措施可以防治海洋污染?

金属腐蚀及防腐技术

金属腐蚀及防腐 内容 1.腐蚀的定义及其危害 2.工程中钢铁的腐蚀问题 3.国内外在防腐蚀涂料方面的研究现状及分析 4.防腐蚀涂料简介 5.防腐蚀涂料的用途 6.防腐蚀涂料的选择与施工 7.Z Y-S高渗透性带锈防锈漆系列产品简介 8.Z Y-D橡塑漆简介 9.目前在研项目 1.腐蚀的定义、危害及分类 腐蚀是指材料与它所处的环境介质之间发生作用而引起的变质和破坏。 根据机理,腐蚀分为化学腐蚀、电化学腐蚀、物理腐蚀。 腐蚀的危害: 目前全球每年因腐蚀造成的损失已高达7000亿美元,占G D P总值的2~4%,为地震、台风、水灾等自然灾害造成损失的6倍之多 我国2003年统计,腐蚀损失约占国民生产总值(G N P)的约6%,完成“九五” 期间降低1个百分点挽回了700多亿人民币的损失。钢铁因腐蚀而报废的数量约当年产量的25-30%造成重大事故,阻碍经济发展。军事设备、舰艇、沿海空军飞机、二炮发射井架、两栖装甲车、沿海通讯装备。 化学腐蚀: 材料与环境介质发生直接的化学作用而引起的破坏。 氧化反应与还原反应同时发生。

腐蚀的机理: 电化学腐蚀:电化学腐蚀是对金属材料而言,指金属与离子导电的介质发生电化学作用而产生的破坏。 特点:氧化反应和还原反应为两个相对独立并同时进行的过程,即阴极过程和阳极过程。 物理腐蚀:指材料由于单纯的物理作用所引起的破坏。 特点:过程中既不发生化学作用,也不发生电化学作用。 工程中钢铁的腐蚀问题: 2.1钢铁的腐蚀环境分析 钢铁腐蚀主要指钢铁构件和混凝土的腐蚀,其中混凝土的腐蚀包括混凝土中钢筋的腐蚀及混凝土材料本身的腐蚀。钢铁设备所处的腐蚀环境是大气环境,或者是水环境。大气环境和水环境都属于自然环境。表面上看,自然环境的腐蚀问题不及工业环境腐蚀那么明显,但这类腐蚀情况十分复杂,影响因素很多,往往随时间的延长而加剧,最后导致材料失效。对腐蚀来说,大气的污染程度是重要的因素。 2.2影响钢铁腐蚀的因素: 湿度:湿度是决定大气腐蚀类型和速率的一个重要因素,一般来说,金属的临界湿度为50%~70%。 温度:在其他条件相同的情况下,平均气温高的地区,大气腐蚀速率较大。大气中S O2含量:我国城市大气中S O2浓度2级标准含量为0.023%,3级标准为 0.096%,碳钢在3级标准大气中腐蚀速率比2级标准大气中要快4倍。2.3钢铁材料的腐蚀:钢铁材料的腐蚀大多为电化学腐蚀。 2.4钢铁腐蚀典型案例分析: 广东某斜拉桥1988年12月建成,1995年5月,一根拉索突然断裂,自行坠落该斜拉桥拉索钢丝的性能符合标准要求。拉索聚乙烯套管内的水泥浆体离析,浆

海洋污染与海洋环境保护[课件资料]

海洋污染与海洋环境保护[课件资料] 海洋污染与海洋环境保护 二十一世纪是海洋的世纪,“海洋权益”“海权之争”……越来越成为人们耳熟能详的名词,海洋既是人类生存的基本空间,也是国际斗争的重要舞台,海洋环境是我们维护海洋权益的重要平台,因此,海洋污染与海洋环境保护就必然成为不可忽视的问题。 “海洋污染”在地理学、环境地理学上的定义是人类活动排放的污染物进入海洋中,破坏海洋生态系统,引起海水质量下降的现象。就海洋科技、海洋科学、环境海洋学学科来讲是指人类直接或间接地把物质或能量引入海洋环境,以致发生损害生物资源、危害人类健康、妨碍包括渔业在内的海洋活动、损害海水使用素质和降低或毁坏环境质量等有害影响。海洋污染改变了海洋原来的状态,损害海洋的生物资源,妨碍捕鱼和人类在海上的其他活动,使海洋生态系统遭到破坏,损坏海水质量和环境质量,最终危害人类健康。海洋污染主要发生在靠近大陆的海湾,由于密集的人口和工业,大量的废水和固体废物倾入海水,加上海岸曲折造成水流交换不畅,使得海水的温度、pH、含盐量、透明度、生物种类和数量等性状发生改变,对海洋的生态平衡构成危害。目前,海洋污染突出表现为石油污染、赤潮、有毒物质累积、塑料污染和核污染等几个方面。由于污染已造成渔场外迁、鱼群死亡、赤潮泛滥、有些滩涂养殖场荒废、一些珍贵的海生资源正在丧失。 由于海洋是一个完整的水体,海洋本身对污染物有着巨大的搬运、稀释、扩散、氧化、还原和降解等净化能力。但这种能力并不是无限的,当局部海域接受的有毒有害物质,超过它本身的自净能力时,就会造成该海域的污染。海洋污染物通过风、陆上径流、沿海工程建设、人类海上活动排放入海。根据污染物的性质和毒性,以及对海洋环境造成的危害方式,主要的污染物有农药;石油及其产品;重金属

金属防腐蚀的方法

防止金属腐蚀的方法和途径很多,主要有以下几种: 一、提高金属材料内在耐蚀性能 采用不易与周围介质发生反应的金属及合金材料来加工产品,是有效的防腐办法。例如,有些金属及合金在空气单不易氧化,或能生成致密的钝化薄膜,可以抵抗酸、碱、盐腐蚀,如不锈钢,就是在钢中加入定量的铬、镍、钦等元素,当铬元素含量超过12%时,就可以起到不锈的作用。有些在高温高压时性能稳定,如耐热不起皮钢;有些在空气中不易腐蚀,如铝、锌等。获得这种金属材料的途径卞要是采用冶炼方法来改变金属的化学成分,例如在碳钢中加入镍、铬、硅、锰、钒等元素炼成耐蚀合金钢。不锈钢就是含有较多铬、镍、钛等元素的高合金钢。耐蚀低合金钢就是在钢中加入微量的钒、钛、稀土等元素炼成的低合金耐蚀钢。此外,对于某些金属材料,还可以通过热处理方法,改变金属的金相组织,提高耐蚀性能。 二、涂、镀非金属和金属保护层 在金属表面上制成保护层,借以隔开金属与腐蚀介质的接触,从而减少腐蚀。根据构成保护层的物质,可以分为以下几类:(1)非金属保护层把有机和无机化合物涂覆在金属表面,如油漆、塑料、玻璃钢、橡胶、沥青、搪瓷、混凝土、珐琅、防锈油等。在金属表面涂覆非金属保护层,用得最广泛的是油漆和塑料涂层。油漆是千百年来的传统方法,但油漆在造漆和涂装过程中有环境污染现象,正在变革工艺,向水溶性方向发展。塑料涂层是近几十年来发展最快的防腐方法,尤其是把有机树脂做成粉末涂料,采用各种方法在金属表面形成优良的涂层,获得了空前的发展。(2)金属保护层在金属表面镀上一种金属或合金,作为保护层,以减慢腐蚀速度。用作保护层的金属通常有锌、锡、铝、镍、铬、铜、镉、钛、铅、金、银、钯、铑及各种合金等。获得金属镀层的方法也有许多。①电镀用电沉积的方法在金属表面上镀上层金属或合金。镀层金属有

海洋平台的腐蚀及防腐技术_胡津津

第23卷第6期2008年12月 中国海洋平台CHINA OFFSHORE PL A TFORM Vol.23No.6Dec.,2008 收稿日期:2008-08-26 作者简介:胡津津(19792)女,工程师,从事非金属材料研究。 文章编号:100124500(2008)0620039204海洋平台的腐蚀及防腐技术 胡津津, 石明伟 (上海船舶工艺研究所,上海200032) 摘 要:概括了海洋平台不同区域的腐蚀环境和腐蚀规律,对海洋平台重防腐涂料的选择要求及配套体 系进行简要叙述。针对海洋平台的长效防腐防护要求,介绍了几种具有长效的防腐材料和防腐技术特点,包括 海洋平台热喷涂长效防腐蚀技术、锌加保护技术、海洋平台桩腿防腐套包缚技术等,为我国对海洋平台长效防 腐防护技术的研究提供参考。 关键词:海洋平台;防腐;热喷涂;锌加技术;防腐套 中图分类号:T G 17 文献标识码:A CORROSION AN D ANTICORROSION TECHNOLOG Y IN OFFSH ORE PLATFORMS HU Jin 2jin , S H I Ming 2wei (Shanghai Ship building Technology Research Instit ute ,CSSC 200032,China ) Abstract :This paper summarizes t he corro sion environment and rules of t he different zones in off shore platforms ,also briefly int roduces t he requirement s and systems of t he an 2 ticorro sion coating.According to t he long 2term anticorro sion requirement s in off shore plat 2 forms ,t he paper int roduces several long 2term anticorro sion technology ,including t hermal spraying ,adding zinc protection and anticorrosion technology wit h platform legs wrapped etc , which will provide some references to t he research of t he long 2term anticorrosion technology in off shore platforms. K ey w ords :off shore platform ;anticorro sion ;t hermal spraying ;adding zinc technolo 2 gy ;anticorrosion wrap 海洋平台是一种海上大型工程结构物。其钢结构长期处于盐雾、潮气和海水等环境中,受到海水及海生物的侵蚀,而产生剧烈的电化学腐蚀。腐蚀严重影响海洋平台结构材料的力学性能,从而影响到海洋平台的使用安全[4]。而且由于海洋平台远离海岸,不能像船舶那样定期进坞维修保养,因此海洋平台的建造者及使用者都非常重视海洋平台的防腐问题。如何对海洋平台结构进行长效防腐,以及开发研究海洋平台结构长效防腐的新材料、新技术及新工艺都具有十分重要的意义。 1 海洋平台的腐蚀规律 1.1 海洋环境的腐蚀区域界定 海洋平台的使用环境极其恶劣,阳光暴晒、盐雾、波浪的冲击、复杂的海水体系、环境温度和湿度变化及海洋生物侵蚀等使得海洋平台腐蚀速率较快。海洋平台在不同的海洋环境下,腐蚀行为和腐蚀特点会有比

保护海洋演讲 海洋污染的演讲稿

保护海洋演讲海洋污染的演讲稿 ----WORD文档,下载后可编辑修改---- 保护海洋演讲篇一 亲爱的老师,同学们: 大家好!今天我演讲的题目是:《走向海洋》。 《走向海洋》是我刚读过的一本书。顾名思义,这本书是介绍海洋的。其实在读这本书之前,关于大海,我只是听老师说过:大海是无边无际的,连接着天和地。海洋是一个蕴藏着大量能量的宝藏。偶尔也在电视上看到过海洋的一角。至于其他,我一无所知。 读完这本书,让我对海洋有了初步的了解,让我知道海洋占地球表面积的70.8%。四大洋是:太平洋、印度洋、大西洋和北冰洋。第一个到达南极的是阿蒙森。在各国的海洋历史上也有过重要的战争。如鸦片战争、甲午战争、八国联军侵华战争等。流传至今的历史名人还有更多,郑和,他证明了地球是圆的,麦哲伦、哥伦布发现了新大陆,还有民族英雄郑成功等等,让我知道,我们的祖国不仅有960万平方公里的土地,而且还有人民海军用生命换来的300万平方公里的蓝色国土! 这本书也告诉我海洋对人类的重要性。海洋是人类的家园,海洋是人类之母,海洋与人类息息相关。海洋是生命的摇篮,海洋是蓝色的瑰宝。究其原因,正如书中所说:海洋中有大量的淡水资源、化学资源、生物资源、矿产资源、能源资源和空间资源。 它抚养我们,但不求回报。它给了我们,但并不要求得到。难道

这种无私的精神不值得学习吗?大海是美丽而无私的。然而,我们人类却在不断地破坏美,大海的无私换来的却是我们的伤害。过度的能源开发和严重的环境污染已经使美丽的海洋伤痕累累。同学们,让我们一起行动起来保护我们的星球,不要让它再受伤害,让它永远留在这里。它愿意奉献它的一切。难道我们不应该关心它吗?正如书中所说:世界的海洋是相通的,人类的利益是共同的。让我们携起手来,让海洋世纪的钟声响起高歌,与海同行...... 我的演讲到此结束,感谢大家。 保护海洋演讲篇二 亲爱的老师、同学们: 大家好! 今天我演讲的题目是:珍惜水资源,保护海洋资源。 水是生命之源。如果地球上没有水,那么地球母亲就不会养育我们人类的后代。因为最早的原始生命最初是在海洋中形成的,并逐渐扩展到陆地上。 海洋是人类生存环境的重要组成部分。在清澈的蓝色海水下,地球上80%的生物都得到了滋养。海洋促进水流,提供氧气和能量,平衡气候。一旦我们没有水,就没有海洋。然后地球上的生命就结束了。 随着社会经济的不断发展和土地资源的短缺,人类开始了对海洋的研究和开发。因此,海洋走进了我们的生活中,给我们带来了巨大的经济财富,给我们提供了很多生活中的必需品。 因此,当前的海洋对我们的生活和世界的发展起着举足轻重的作

化工管道腐蚀原因及防腐技术在线解答

化工管道腐蚀原因及防腐技术在线解答 关键词:化工管道腐蚀,化工管道腐蚀原因,化工管道防腐,索雷CMI重防腐涂层 在化工企业中,管道是化工装置中一个主要的组成部分,它主要用来输送和控制流体介质。介质在输送过程中会与金属管道发生某些化学反应极易造成管路的腐蚀,管道中通过的介质不同,管材不同,腐蚀情况也不同。 化工管道腐蚀原因可以归结为以下几点: 管道的腐蚀包括管内介质对管内壁的腐蚀和管外环境对管外壁的腐蚀二个方面。当金属与周围介质接触时,由于发生化学作用或电化学作用而引起的破坏叫做金属的腐蚀。单纯由化学作用而引起的腐蚀是化学腐蚀;金属与电解质溶液接触时,由电化学作用而引起的腐蚀是电化学腐蚀。 1.化学腐蚀:化学腐蚀多发生在非电解质溶液中或干燥气体中。腐蚀过程无电流产生,腐蚀产物直接生 成在腐蚀性介质接触的金属表面。影响化学腐蚀的因素包括:金属的本性、腐蚀介质的浓度、温度等。

2.电化学腐蚀:当金属与电解质溶液(如酸、碱、盐等溶液)接触时,金属和电解质溶液发生了电化学 反应,在反应过程中有隔离的阴极区和阳极区,电子通过金属有阳极区流向阴极区,电化学腐蚀形成了原电池反应。它是最常见的腐蚀,金属腐蚀中的绝大部分均属于电化学腐蚀。如在自然条件下(海水、土壤、地下水、潮湿大气、酸雨等)对金属的腐蚀通常是电化学腐蚀。 化工管道防腐技术在线解答: 在化工管道表面涂覆防腐涂层是比较常见的一种化工管道防腐技术,索雷CMI重防腐涂层是现在比较常用的一种防腐涂层。该涂层采用独特的聚合物技术制造而成,具有良好的耐腐蚀性能,可耐受众多种类的腐蚀性化学品,包括强酸、强碱、气体、溶剂和氧化剂;对金属基材、复合材料和混凝土具有优异的粘合度和附着力;可耐高温达400°F(204°C);可耐冷热循环性能,范围从-40°F至+400°F(- 40°至204°C);良好的耐磨性能和柔韧性;可蒸汽清洗;可在线修复;与其他防腐涂层相比,该涂层具有更好的防渗透(吸收)性能,几乎不可渗透的薄膜涂层,可最大程度地减少货物吸收并确保货物的纯度。 我们在采用索雷CMI重防腐涂层对化工管道进行防腐保护的同时,还应该对化工管道进行定期的检查及维护,以确保化工管道的使用寿命。

金属材料的海洋腐蚀与防护习题(第一篇)

《金属材料的海洋腐蚀与防护》第一篇习题 一、填空题 1. 通常将海洋腐蚀环境分为5个区带,它们分别是:海洋大气区、浪花飞溅区、海水潮差区、海水全浸区以及海底泥土区。 2. 金属在海水中的腐蚀行为按其腐蚀速度受控制的情况分为: 控制和控制两大类。 3. 渤海的入海河流主要包括黄河、海河、辽河和滦河四条入海河流。 4. 南海北部海面12月份平均风速最大,台湾海峡及其南部海面以及巴士海峡海面由于狭管效应,是全年平均风速之冠。 5. 南海地形从周边向中央倾斜,依次分布着大陆架和岛架、大陆坡和岛坡及海盆等。 6. 在海洋环境中的金属结构件,腐蚀类型主要有均匀腐蚀、点蚀、缝隙腐蚀、冲击腐蚀、空泡腐蚀、电偶腐蚀、腐蚀疲劳等。 7. 金属结构腐蚀失效的主要原因可以归结为3个方面的原因:金属材料本身方面的原因、环境方面的原因、设计方面的原因。 8. 我国海水腐蚀试验确定的4个典型的试验点分别为黄海海域的青岛站、东海海域的舟山站和厦门站、南海海域的榆林站。 9. 在腐蚀学里,通常规定点位较低的电极为阳极,电位较高的电极为阴极。 10. 最重要最常见的两种阴极去极化反应是氢离子和氧分子阴极还原反应。 11. 多数情况下,发生氧去极化腐蚀主要由扩散过程控制。氧的扩散电流密度随溶解氧的浓度增加而增加,并与扩散层厚度成反比,流速越大,氧的扩散层厚度越小、氧的扩散电流密度越大,腐蚀增大。 12. 引起金属钝化的因素有化学及电化学两种。其中化学因素引起的钝化,一般都是有强氧化剂引起的。 13. 与腐蚀有关的微生物是细菌类,主要是硫酸盐还原菌。 14. 海水电导率以及氧在海水中的溶解度都主要取决于海水的盐度和温度两个 因素,其中任意一个因素的增加都会使海水电导率增加,氧的溶解度降低。15. 诸多海洋生物钟,与海水腐蚀关系较大的附着生物,最常见的附着生物主要有硬壳生物和无硬壳生物两种。 二、名词解释 1. 海洋飞溅区 答:在海洋环境中,海水的飞溅能够喷射洒到结构物表面,但在海水涨潮时又不能被海水所浸没的部位一般称为海洋飞溅区。 2. 海水潮差区 答:指海水平均高潮线与平均低潮线之间的区域。 3. 缝隙腐蚀 答:部件在介质中,由于金属与金属或金属与非金属之间形成特变小的缝隙,使缝隙内介质处于滞留状态引起缝内金属的加速腐蚀,这种局部腐蚀。

海水、海洋大气腐蚀特点及防腐

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显著的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 3.1盐类及浓度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接

影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 3.2 pH值 海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。 3.3碳酸盐饱和度 在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。若未饱和,则不会形成保护层,使腐蚀速度增加。 3.4含氧量 海水腐蚀是以阴极氧去极化控制为主的腐蚀过程。海水中的含氧量是影响海水腐蚀性的重要因素。氧在海水中的溶解度主要取决于海水的盐度和温度,随海水盐度增加或温度升高,氧的溶解度降低。如果完全除去海水中的氧,金属是不会腐蚀的。对碳钢、低合金钢和铸铁等,含氧量增加,则阴极过程加速,使金属腐蚀速度增加。但对依靠表面钝化膜提高耐蚀性的金属,如铝和不锈钢等,含氧量增加有利于钝化膜的形成和修补,使钝化膜的稳定性提高,点蚀和缝隙腐浊的倾向减小。 含氧量增加,金属腐蚀速度增加;对于能形成钝化膜的金属,含氧量适当增加,有助于防止腐蚀的进一步进行。

海洋污染源和海洋环境保护

海洋污染源和海洋环境保护 一、造成海洋污染的途径有哪些 1、沿海工业企业直接向海洋排放污水; 2、流入海中的河流,这些河流在流经区域有企业向水体排放污水; 3、由于带有污染物的废气排放到大气中,形成酸雨后,造成降雨进入海中; 4、过度捕捞,破坏了海洋的生态平衡; 5、运输船只抛弃废弃物、污染物泄露,有机物泄露; 6、对海洋地下矿物开采造成的泄露、遗漏等 二、防止海洋污染的方法 自上个世纪五十年代以来,随着各国社会生产力和科学技术的迅猛发展,海洋受到了来自各方面不同程度的污染和破坏,日益严重的污染给人类的生存和发展带来了极为不利的后果。据不完全统计,1999年我国共发生较大渔业污染损害事故947起,造成直接经济损失约5亿元;2000年发生较大渔业污染损害事故1120起,造成直接经济损失约5.6亿元。海洋渔业污染损害事故据不完全统计,1999年我国共发生较大突发性海洋渔业污染损害事故104起,造成直接经济损失约2.7亿元,其中特大渔业污染损害事故(经济损失在1000万元以上)3起,重大渔业污染损害事故(经济损失在100万元以上)12起。2000年共发生较大渔业污染损害事故120余起,造成直接经济损失约3亿元,其中特大渔业污染损害事故4起,重大渔业污染损害事故11起。日益严重的污染给生态环境带来了极为不利的后果,

这一问题引起了有关国际组织及各国的政府的极大关注。为防止、控制和减少污染,在一些国家和国际组织的努力下,国际社会先后制定了一系列公约,它们对防止、控制和减少污染起到了积极的作用。虽然,沿海各国政府及国际组织,针对本国实际情况制订了相应的法律,国际社会也针对世界海洋污染制订了一系列的国际公约,但是,海洋环境污染的形势还是非常严重。造成污染的原因是多种多样的,如,空气污染、躁音污染、淡水污染等。本文只就造成海洋污染的原因对策作一探讨。 (一)、造成污染的原因 1、船舶造成的污染 何谓船舶造成的污染,是指因船舶操纵、海上事故及经由船舶进行海上倾倒致使各类有害物质进入海洋,海洋生态系统平衡遭到破坏。船舶造成污染的特征:(1)经由船舶将各类污染物质引入海洋。(2)污染物质进入海洋是由于人为因素而不是自然因素,也就是说污染行为在主观上表现为人的故意或过失。(如:洗舱污水、机舱污水未经处理排入海洋)(3)污染物进入海洋后,造成或可能造成海洋生态系统的破坏。 船舶造成的污染主要表现为:(1)船舶操作污染源,这种污染的产生主要是船舶工作人员的故意或过失造成的。如:有的船舶工作人员故意的将含有有害物质的洗舱污水排入海洋,船舶机舱工作人员故意将含有污油的机舱污水未经处理排入海洋,还有的由于工作责任心不强错开伐门将燃油排入海洋。(2)海上事故污染源,船舶由于

金属材料在海洋中的腐蚀与防护

金属材料在海洋中的腐蚀与防护 摘要:沿海工业发展,海洋资源的开发和利用,离不开海上基础设施的建设。由于海洋苛刻的腐蚀环境,金属材料结构及构造物的腐蚀不可避免。为了减少腐蚀,我们必须采取相应防护,目前阴极防护技术及海洋防蚀材料的发展,已经让金属的腐蚀得到一定的控制,并且随着技术的不断深化,海洋金属的腐蚀一定会得到更好的控制。 关键词:金属材料;海洋腐蚀环境;海洋腐蚀类型;阴极保护技术;海洋防蚀材料腐蚀是金属与其所处的环境之间的化学或电化学相互作用,受材料特性和环境特性所支配,其结果,改变了金属的性质。一般设施的建设都要经过设计阶段,其中防腐蚀设计是保证工程设施使用寿命的重要步骤。沿海工业建设,海洋资源开发和海洋经济的发展离不开海洋腐蚀研究。下面介绍一下各种不同的还有腐蚀环境和影响腐蚀的因素以及腐蚀类型。 海洋腐蚀环境——海水含盐量一般在3%左右,是天然的强电解质。大多数常用的金属结构材料受海水或海洋大气的腐蚀并且材料的耐腐蚀性能随暴露条件的不同而发生很大的变化。为方便起见,通常将海洋腐蚀环境分为5个区带:海洋大气区,海洋飞溅区,海水潮差区,海水全浸区以及海底泥土区。各区环境条件及腐蚀行为见下表: 图1-1——环境的分类 图1-2反映了海洋环境条件及腐蚀行为的情况 海洋大气区----海洋大气环境的腐蚀性,随温度的升高而加强。温度越搞腐蚀性越强。 海洋大气的腐蚀往往受多种因素的影响,是各种不同因素相互作用引起的,包括水分的影响,尘埃的影响,二氧化硫的影响及盐粒的影响等。

1.水分的影响---对大气腐蚀产生重要影响的是表面水分的含量,它直接影响到金属的腐蚀速度和腐蚀机理。根据实验结果,钢、铜、锌等金属在相对湿度50%~70%以下的空气中腐蚀轻微。金属表面所覆盖水膜的厚度和腐蚀度之间的关系如下图示。在Ⅰ区域中,水分子层或不完整的单分子层,腐蚀反应基本是氧化反应,常温下腐蚀速度很低;在Ⅱ区的水分子尽管用肉眼看不见,但其厚度有数10个水分子层甚至100个水分子层,次部分发生金属在水溶液中的电化学腐蚀,一般大气中的腐蚀是在该状态中发生的,随着水膜层厚度的增加腐蚀速度变大;在Ⅲ区水分子的存在可以用肉眼看见,水分子层厚度1微米以上存在的金属表面腐蚀,由于通过水层氧的扩散量所控制,所以腐蚀速度变低,在Ⅳ区域内与浸渍在水溶液中金属的腐蚀相类似。 图1-2为金属表面上水层厚度和腐蚀速度之间的关系 2.尘埃的影响---从大气中,尘埃并附着在金属表面的尘埃与腐蚀性有着密切的关系。附着的尘埃在金属表面上持续一段时间,就会引起腐蚀,尤其易引起点蚀。3.二氧化硫的影响--- S02 的平均浓度在严重污染的地带可达(0.01~0.1)*10^(-4)%,但是S02一般是溶解在金属表面的水分中,在锈层中一般含有FeSO4 的浓度及季节变化而变动。下图表示铁和铝的5个月的晶体,其数量随着S0 2 浓度的关系。其腐蚀原理可用电化学反应解释 的腐蚀量和S0 2 阳极反应:Fe→Fe2+ + 2e- 阴极反应:H O + O2 + 2e- →2OH- 2 Fe2+和OH-相结合生成Fe(OH)2沉淀物,这是大气腐蚀的第一阶段;随着Fe(OH)2的氧化而生成各种氧化物,这是大气腐蚀的第二阶段。

相关文档
最新文档