OMEXELL板式换热器计算书

OMEXELL板式换热器计算书

Plate Heat Exchanger

Omexell Technical Specification

欧梅塞尔欧梅塞尔板式换热器板式换热器板式换热器技术技术技术参数参数

型号: M04022-0.75TK-PN10

项目: 荔源大厦

日期: 4/11/2014

_______________________________________________________________________________

Hot side 热侧 Cold side 冷侧 Fluid 流体 Water Water Density 密度

kg/m3 987.00 991.11 Specific heat Capacity 比热 kJ/(kg*K) 4.18 4.18 Thermal conductivity 导热系数 W/(m*K) 0.64 0.63 Mean viscosity 平均粘度 cP 0.54 0.63 Wall viscosity 壁面粘度 cP 0.63 0.54

Volume flow rate 流量 kg/s 35.89 35.89 Inlet temperature 进口温度 °C 55.0 40.0 Outlet temperature 出口温度 °C 50.0 45.0 Pressure drop 压力降

Kpa 59.77 55.86

Heat exchanged 热负荷 kW 750

O.H.T.C. service 传热系数 W/(m2*K) 4838.71/5593.55 heat Exchange surface 换热面积 m2 15.50

Number of plates 板片数 50 Number of passes 流程

1

1

Plate material/thickness 板片材质/厚度 AISI 304 / 0.50 mm Sealing material 密封垫材质 EPDM OMEX-LOCK EPDM OMEX-LOCK Connection diameter 接口尺寸 mm 100 100 Nozzle orientation 接口方向 S1 -> S2 S4 <- S3

Flange rating 法兰标准 GB Design pressure 设计压力 bar 10.0 10.0 Test pressure 试验压力 bar 12.5

12.5

Length 长 x width 宽 x height 高 mm 875x 480 x 1082 Net weight 净重

kg

554

__________________________________________________________________________ Performance is conditioned on the accuracy of customer's data and customer's ability to supply equipment and products in conformity therewith.

中央空调常用管道保温厚度数据表

hvacrbk制冷百科是制冷快报旗下专业的制冷技术知识分享公众号,制冷百科将为您提供最全面、最实用、最前沿的暖通、空调、制冷技术知识。一、冷冻水管道(≥5℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房15~252515~2525 32~803032~8030≥10035≥10035 室外 15~253515~2530 32~804032~8035 ≥10050≥10040二、热水、冷热合用管(5~60℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直径厚度管道公称直径厚度 房间吊顶内、机房 ≤5030≤4035 70~1503050~10040≥20035125~25045 ≥30050 室外 ≤5035≤4040 70~1503550~10045≥20040125~25050

≥30055三、热水、冷热合用管(0~95℃) 聚氨酯硬质泡沫(直埋)(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房 ≤3230≤5050 40~2003570~15060≥25045≥20070 室外 ≤3235≤5060 40~2004070~15070 ≥25050≥20080四、蓄冰管道(≥-10℃) 柔性泡沫橡塑(mm)聚氨酯发泡(mm) 室内 15~403530 50~1004040≥1255050板式换热器35-槽、罐6050 室外 15~404040 50~1005050 ≥1256060 槽、罐7070五、空调凝结水管道

柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 空调房间吊 顶内 1010 非空调房间1515 六、空调风管道 柔性泡沫橡塑板(mm)玻璃棉板、毡(mm) 送风温度≥14℃在非空调房间内2040在空调房间内2030 送风温度≥4℃在非空调房间内2550在空调房间内2540 七、冷媒管道(分体空调,VRV) 安装说明要求的保温层的最小厚度 1、通过空调空间19mm 2、通过非空调空间19mm 3、贯穿浴室吊顶空间25mm 八、导热系数 离心玻璃棉λ=0.031+0.00017tmW/m.K 柔性泡沫橡塑λ=0.03375+0.000125tmW/m.K 聚氨酯λ=0.0275+0.0009tmW/m.K 聚氨酯硬质泡沫(直埋)λ=0.02+0.00014tmW/m.K

换热器的传热系数K

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在800~2200W/m2·℃围。

列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。 螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃围。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃围。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管,以便于清洗管子。 (2) 腐蚀性的流体宜走管,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

板式换热器换热面积与传热系数的关系

传热效率高: 板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。 一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。 随机应变: 由于换热板容易拆卸,通过调节换热板的数目或者变更流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。 热损失小: 因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。 使用安全可靠: 在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。 有利于低温热源的利用: 由于两种介质几乎是全逆 流流动,以及高的传热效果,板式 换热器两种介质的最小温差可达到 1oC。用它来回收低温余热或利用低 温热源都是最理想的设备。

冷却水量小: 板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。 占地少,易维护: 板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。 阻力损失少: 在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 投资效率高: 在相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和板材薄,设备更显经济。

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

如何提高板式换热器传热效率

如何提高板式换热器传热效率 很多人对智能换热设备不是很了解,其实智能换热设备的功能是非常大的,传热效率也非常高,尤其是在冬季,它的作用就越发的明显。下面艾瑞德板式换热器有限公司就来说一下如何进一步提高智能换热设备的传热效率。 第一,选用热导率高的板片。板片的材质可选择不锈钢、钛合金、铜合金等等; 第二,提高板片的表面传热系数。由于智能换热设备的波纹能使流体在较小的流速下产生瑞流,因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关; 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式换热器维护服务(PHE MAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。

板式换热器换热系数或传热系数

板式换热器是一种高效、紧凑的换热设备。尽管其发展已有近百年历史,且在国民经济的少数部门(如食品、制药)有着比较广泛的应用,但是由于耐温、耐压、耐腐蚀能力而制约其在各个部门的全面推广和应用。进入80年代以来,由于制造技术、垫片材料的不断进步以及传热理论的不断完善,板式换热器的应用越来越受到工业生产部门的重视。 要确定一项强化传热新技术是否先进,必须对其进行评价。但在实际的使用中,出现了多种评价强化传热的方法与评价指标。有人主张采用换热量Q与消耗的泵(或风机)的功率N的比值,即能量系数作为评价指标,类似的也广泛采用K/ΔP以及无因次化的Nu/ζ来进行评价,为了更准确地反映强化传热的性能,进一步也可以使用K/ΔP1/3及Nu/ζ1/3作为指标。随着传热技术的发展,换热器日益向体积小、重量轻的方向发展,同时在提高效率的前提下,要求操作费用降低。在综合分析的基础上,提出了一套较为完整的性能评价数据,即维持输送功率、传热面积、传热负荷3因素中的两因素不变,比较第3因素的大小以评定传热性能的好坏。 这些评价都只是分析换热器的能量在数量上转换、传递、利用和损失的情况,即以热力学第一定律为基础。为了更准确地反映热量交换过程能量在质量上的损失,在理论研究中也提出了许多基于热力学第二定律的评价方法,即分析换热器中火用的转换、传递、利用和损失的情况。而进行技术推广应用时,还应考虑采用强化换热技术后管子等价格的增加和运行费用的变化,运用经济核算的方法进行评价,即热经济学的评价方法。 而在实际的使用过程中,进行强化传热新技术、新方法的研究更多采用简单易用的单一参数K,ΔP以及单一参数组合而成的K/ΔP,K/ΔP1/3来进行评价[9~11]。而基于热力学第二定律的方法在设计过程中可用来判断换热器的性能,作为进一步改善的依据,但在工程上缺乏实用性。 a.提高板片的表面传热系数 由于板式换热器的波纹能使流体在较小的流速下产生湍流( 雷诺数一1 5 0时 ),因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关。板片的波形包括人字形、平直形、球形等。经过多年的研究和实验发现,波纹断面形状为三角形 ( 正弦形表面传热系数最大,压力降较小,受压时应力分布均匀,但加工困难…) 的人字形板片具有较高的表面传热系数,且波纹的夹角越大,板间流道内介质流速越高,表面传热系数越大。 b.减小污垢层热阻 减小换热器的污垢层热阻的关键是防止板片结垢。板片结垢厚度为1mm时,传热系数降低约10%。因此,必须注意监测换热器冷热两侧的水质,防止板片结垢,并防止水中杂物附着在板片上。有些供热单位为防止盗水及钢件腐蚀,在供热介质中添加药剂,因此必须注意水质和黏性药剂引起杂物沾污换热器板片。如果水中有黏性杂物,应采用专用过滤器进行处理。选用药剂时,宜选择无黏性的药剂。 c.选用热导率高的板片 板片材质可选择奥氏体不锈钢、钛合金、铜合金等。不锈钢的导热性能好,热导率约14.4W/( m·K),强度高,冲压性能好,不易被氧化,价格比钛合金和铜合金低,供热工程中使用最多,但其耐氯离子腐蚀的能力差。 d.减小板片厚度 换热器板片的设计厚度与其耐腐蚀性能无关,与换热器的承压能力有关。板片加厚,能提高换热器的承压能力。采用人字形板片组合时,相邻板片互相倒置,波纹相互接触,形成了密度大、分布均匀的支点,板片角孑L及边缘密封结构已逐步完善,使换热器具有很好的承压能力。国产可拆式板式换热器最大承压能力已达到了2.5M P a 。板片厚度对传热系数影响很大,厚度减小 0.1mm,对称型板式换热器的总传热系数约增加 6 0 0W/( m ·K),

板式换热器计算程序说明

上海化工机械二厂 板式换热器计算程序V6.0使用说明 一、概述 1、板式换热器是一种高效紧凑型热交换设备。它具有传热效率高,阻力损失小,结构紧凑,拆装方便,操作灵活等优点。目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域。 2、在以往工程设计中,板式换热器设计计算均采用手算,方法有以下两种: ⑴简易算法:假定理论传热系数,求出换热面积,选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。 ⑵标准算法:选定厂家,根据角孔流速确定换热器型号,从手册查出在设计工况下冷、热介质的各种物理参数,根据厂家样本提供的传热经验公式及流阻经验公式进行热工计算,求出传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算结果准确;缺点是计算复杂,步骤多,时间长。 3、利用计算机进行板式换热器设计计算,充分发挥了计算机运算速度快的特长,一个计算在微机上几秒钟内就能完成,且结果的准确性是手算难以达到的。另一个主要特点是程序中存贮了计算所需的不同水温时水的各种物理参数及板式换热器定型设备的所有参数,设计人员在计算机上进行计算时只需输入工艺条件(如水量、水温、流阻等)就能马上得出计算结果,这为设计人员提供了极大的方便。计算人员还可以输入不同的工艺条件(如水量、水温相同,流阻不同等)得出不同的计算结果,或更换换热器型号以得出不同的计算结果,通过对结果的比较、优化,最终选定既经济合理又性能可靠的板式换热器。 二、编制依据 《板式换热器的设计计算》张治川著; 《热交换器设计手册》〔日〕尾花英朗著; 《换热器》邱树林、钱滨江著; 《换热设备的污垢与对策》杨善让、徐志明著; 《换热器设计手册》钱颂文主编; 三、应用范围 程序仅用于计算上海化工机械二厂生产的板式换热器。 四、使用方法 1、打开显示器、打印机、计算机主机电源开关,操作系统应为WIN98或更高版本,文字处理采用OFFICE97或更高版本,打印纸选择A4 2、将带有板式换热器计算程序的安装盘插入光盘驱动器,执行安装命令SETUP.EXE,按屏幕提示进行。若复制文件发生访问冲突时,选择“忽略”,直至安装完毕。 3、单击“开始”按钮,执行“程序”菜单中的“板式换热器计算程序”,开始运算。整个运算过程全部采用人机对话,操作者只需按照屏幕的提示进行操作即可得到满意的计算结果。

板式换热器设计计算与校核计算

题目:板式换热器设计及其选用 目录 一、说明书 (2) 二、设计方案 (3) 三、初步选定 (4) (1)已知两流体的工艺参数 (2)确定两流体的物性数据 (3)计算热负荷和两流体的质量流速 (4)计算两流体的平均传热温差 (5)初选换热器型号 四、验证 (6) (1)算两流体的流速u (2)算雷诺数Re (3)计算努塞尔特数Nu (4)求两流体的传热系数α (5)求污垢热阻R (6)求总传热系数K,并核算 五、核算 (7) (1)压强降△P核算 (2)换热器的换热量核算 六、结论 (7) 七、设计结果 (8) 八、附录 (9) 表1:板式换热器的污垢热阻 图1:多程流程组合的对数平均温差修正系数 九、参考文献 (9)

一、说明书 现有一块建筑用地,建筑面积为12500 m2,采用高温水在板式换热器中加热暖气循环水。高温水进入板式换热器的温度为100℃,出口的温度为75℃;循环水进入板式换热器的温度为65℃,出口的温度为90℃。供暖面积热强度为293 kJ/(m2·h)。要求高温水和循环水经过板式换热器的压强降均不大于100 kPa。请选择一台型号合适的板式换热器。(假设板壁热阻和热损失可以忽略) 已知的工艺参数: 二、设计方案 (1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差; (2) 参考有关资料、数据,设定总传热系数K,求出换热面积S,根据已知数据初选换热器的型号; (3) 运用有关关联式验证所选换热器是否符合设计要求;

(4) 参考有关资料、数据,查出流体的污垢热阻; (5) 根据式???? ??++++=2211111 αλδαR R K O O 求得流体的总传热系数,该值应不 小于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算; (6) 如果大于初设值,则再进一步核算两流体的压强降和换热量,是否满足设计要求,否则改换其他型号的换热器,由(3)开始重新计算; (7) 当所选换热器均满足设计要求时,该换热器才是合适的。 三 、初步选定 (1) 已知两流体的工艺参数 高温水 t 1′= 100℃ t 1〞= 75℃ △P 1≤100 kPa 循环水 t 2′= 65℃ t 2〞= 90℃ △P 2≤100 kPa (2) 确定两流体的物性数据 高温水的定性温度为:C t ?=+=5.872 751001 循环水的定性温度为:C t ?=+= 5.77290652 根据定性温度,分别查取两流体的有关物性数据: ① 热的一侧(高温水)在87.5℃下的有关数据如下: 密度 ρ1 = 970.17 kg /m 3 定压比热容 c p 1 = 4.196 kJ /(kg ·℃)

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

中央空调常用管道保温厚度数据表

中央空调常用管道保温厚度数据表 hvacrbk制冷百科是制冷快报旗下专业的制冷技术知识分享公众号,制冷百科将为您提供最全面、最实用、最前沿的暖通、空调、制冷技术知识。一、冷冻水 管道(>5 ) 柔性泡沫橡塑管壳(mm) 玻璃棉管壳(mm) 管道公称直 径厚度管道公称直 径 厚度 15 ?25 25 15 ?25 25 房间吊顶内、 机房 32 ?80 30 32 ?80 30 > 100 35 > 100 35 15 ?25 35 15 ?25 30 室外32 ?80 40 32 ?80 35 > 100 50 > 100 40 二、热水、冷热合用管(5 ?60 C) 柔性泡沫橡塑管壳(mm) 玻璃棉管壳(mm) 管道公称直径厚度管道公称直径厚度 < 50 30 < 40 35 房间吊顶内、 70 ?150 30 50 ?100 40 机房> 200 35 125?250 45 > 300 50 < 50 35 < 40 40 室外70 ?150 35 50 ?100 45 > 200 40 125?250 50

55 > 300 三、热水、冷热合用管(0 ?95 C) 聚氨酯硬质泡沫 (直埋)(m 玻璃棉管壳(mm) m) 管道公称直径厚度管道公称直径厚度 < 32 30 < 50 50 房间吊顶内、 40 ?200 35 70 ?150 60 机房 > 250 45 > 200 70 < 32 35 < 50 60 室外40 ?200 40 70 ?150 70 > 250 50 > 200 80 四、蓄冰管道(>10 C) 柔性泡沫橡塑(mm) 聚氨酯发泡(mm) 15 ?40 35 30 50 ?100 40 40 室内> 125 50 50 板式换热器35 - 50 槽、罐 60 15 ?40 40 40 50 ?100 50 50 室外 > 125 60 60 槽、罐70 70

换热器的传热系数

1 介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水850~1700 水气体17~280 水有机溶剂280~850 水轻油340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在 2 800~2200W/m2·℃范围内。列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100) 下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济

板式换热器计算书

终版 曲树明 2013-5-22 巨元瀚洋板式换热器工艺计算书 01 用户名称山东陵县供热公司编号JYR1304018G3 02 项目名称御府花都一期设备号 03 设计人曲树明审核人姜享成 04 设备型号TH15BW-1.6/150-91 日期2013-4-23 05 设备参数 06 单位回路A 回路B 07 流体名称水水 08 总流量m3/h 104.5 359.1 09 -液体m3/h 104.5 359.1 10 -汽体m3/h 0.0 0.0 11 -不凝气m3/h 0.0 0.0 12 单台流量m3/h 52.3 179.6 13 液相密度/汽相密度kg/m3966.9 / - 990.2 / - 14 比热容kJ/(kg.K) 4.2 4.1765 15 导热系数W/(m.K) 0.677 0.64 16 平均粘度cP 0.32 0.607 17 潜热kJ/kg - - 18 进口温度/出口温度°C 105.0 / 70.0 40.0 / 50.0 19 板间流速m/s 0.18 0.62 20 计算压降/允许压降kPa 1.69 / 50.0 19.39 / 50.0 21 总热负荷kW 4125. 22 富裕量% 108.1 23 换热面积(单台)m240.1 24 并联台数 2 25 总传热系数W /(m2.K) 2598. 26 平均温差°C 41.2 27 结构参数 28 工作压力MPa / / 29 设计压力/试验压力MPa 1.6 /2.08 1.6 /2.08 30 设计温度°C 150.0 150.0 31 流程数 1 1 32 板片数91 (X91) 33 板片厚度mm 0.6 34 净重/工作重量kg 1065 / 1237 35 长/宽/高mm / 36 板片材料316L 37 垫片材料EPDM 38 框架材料Q235-A 39 设计标准/ 接口标准NB/T47004-2009 / JB/T81-1994 40 接口口径DN150 DN150 41 接口材料EPDM Lining EPDM Lining 42 备注: 两台换热器并联运行,单台承担50%热负荷。

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式: F=Wq/(K*△T) 式中 F —换热面积 m2 Wq—换热量 W K —传热系数 W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

板式换热器选型计算

板式换热器选型计算

(四)计算换热量 Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W (五)设备选型 根据样本提供的型号结合流量定型号,主要依据于角孔流速。即:Wl=4*Q/(3600*π*D2) ≤3.5~4.5m/s Wl—角孔流速m/s Q —介质流量m3/h D —角孔直径m (六)定型设备参数(样本提供) 单板换热面积s m2 单通道横截面积 f m2 板片间距l m 平均当量直径de m (d≈2*l) 传热准则方程式Nu=a*Re b*Pr m 压降准则方程式Eu=x*Re y Nu—努塞尔数Eu—欧拉数 a.b.x.y—板形有关参数、指数 Re—雷诺数 Pr—普朗特数 m —指数热介质m=0.3 冷介质m=0.4 (七)拟定板间流速初值Wh 或Wc Wc=Wh*Qc/Qh (纯逆流时) W取0.1~0.4m/s (八)计算雷诺数 Re=W*de/ν W —计算流速m/s de—当量直径m ν—运动粘度m2/s (九)计算努塞尔数 Nu=a*Re b*Pr m

(十)计算放热系数 α=Nu*λ/de α—放热系数W/m2·℃ λ—导热系数W/m·℃ 分别得出αh、αc热冷介质放热系数(十一)计算传热系数 K=1/(1/αh+1/αc+r p+r h+r c) W/m2·℃ r p—板片热阻0.0000459m2·℃/W r h—热介质污垢热阻0.0000172~0.0000258m2·℃/W r c—冷介质污垢热阻0.0000258~0.0000602m2·℃/W (十二)计算理论换热面积 Fm=Wq/(K*△T) (十三)计算换热器单组程流道数 n=Q/(3600*f*W) (圆整为整数) Q—流量m3/h f—单通道横截面积m2 W—板间流速m/s (十四)计算换热器程数 N=(Fm/s+1)/(2*n)N为≥1的整数s—单板换热面积m2 (十五)计算实际换热面积 F=(2*N*n-1)*s (纯逆流) (十六)计算欧拉数 Eu=x*Re y (十七)计算压力损失 △P=Eu*γ*W2*N*10-6 MPa γ—介质重度Kg/m3 W—板间流速m/s N—换热器程数

固定管板式换热器

化工原理化工设备 课程设计任务书 设计题目:年处理2.6万吨原油列管式换热器学生姓名: 专业班级: 学号: 指导教师: 宜宾学院 化学与化工学院 2012年12月23 日

列管式换热器设计任务书 一、设计目的 培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力 二、设计目标 设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的 三、设计题目 列管式换热器设计 四、设计任务及操作条件 1. 设计任务 设备型式:列管式 处理任务:如下表所示: 2. 操作条件 (1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据 煤油定性温度下的物性数据 ()()C m W C kg kJ c s Pa m kg o o o po o o ?=?=??==-/14.0/22.21015.7/82543 λμρ导热系数定压比热容粘度密度 原油定性温度下的物性数据 () () C m W C kg kJ c s Pa m kg o o o po o o ?=?=??==-/128.0/2.2100.3/81533 λμρ导热系数定压比热容粘度密度 柴油定性温度下的物性数据:

()()C m W C kg kJ c s Pa m kg o o o po o o ?=?=??==-/133.0/48.2104.6/71543 λμρ导热系数定压比热容粘度密度 五、设计内容 1. 设计方案的选择 2. 设计计算 (1) 计算总传热系数 (2) 计算传热面积 3. 主要设备工艺尺寸设计 (1)管径尺寸和管内流速的确定 (2)传热面积、管程数、管数和壳程数的确定 4. 换热器核算 5. 设计结果汇总 6. 绘制换热器简图

板式换热器选型计算书

板式换热器选型计算书 SANY GROUP system office room 【SANYUA16H-

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水) 7 8、附表二(空调采暖,汽-水) 8 9、附表三(卫生热水,水-水) 9 10、附表四(卫生热水,汽-水) 10 11、附表五(散热片采暖,水-水) 11 12、附表六(散热片采暖,汽-水) 12 板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0Kcal/Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以内时可按上表取值) Δt max -Δt min T1Δ

Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T2’ T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3 /h –m 3 /s )、 A S —单通道截面积(具体见下表)、n —流道数 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9m 2板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) 1、使用参数 一次水进水温度:90℃一次水流量:50m 3/h 一次水出水温度:70℃ 二次水进水温度:10℃二次水流量:20m 3/h 二次水出水温度:60℃ 2、 热负荷 Q=cm Δt =1×50×1000×(90-70) =1,000,000Kcal/h 3、 初选换热面积 平均温差 Δt m =(70-10)-(90-60)/ln(70-10)/(90-60) =43.3℃

相关文档
最新文档