年产6000吨锂电池电解液项目环境影响报告表

年产6000吨锂电池电解液项目环境影响报告表
年产6000吨锂电池电解液项目环境影响报告表

建设项目基本情况

理,处理后经1根15m高排气筒排放(1#、内径0.7m,出口

风速7.2m/s)

噪声治理减振机座、橡皮垫等

固废治理

厂区内建设危废临时贮存点,位于生产车间西侧,面积为10m2,一般固废点位于生产车间西侧,面积20 m2,职工生活

垃圾委托环卫部门处理。

3、主要设备

项目使用的主要设备情况见下表:

表2 主要设备一览表

编号设备名称单位数量规格、型号一、生产设备

1 储罐座 5

6m3,用于贮存生产备用碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、1,2-丙二

醇碳酸酯(PC)

2 中间罐座 5 3m3,用于贮存脱水后碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、1,2-丙二醇碳酸酯(PC)

3 电子台秤台 2

4 真空泵台 2

5 溶解搅拌罐台 2 2m3

6 温控系统与压力仪表套 2

7 分子筛台 5

8 制氮机台 1

9 鼓风干燥箱台 4

10 冷水机组台 1

11 干燥机组台 1

12 包装桶个4000

二、分析设备

1 微量水份测定仪台 1 瑞士梅特勒DL-39型

2 电子分析天平台 4 瑞士Mettler

3 酸自动分析仪台

4 瑞士Mettler

4 气相色谱仪台 2 日本岛津2014C

5 溶液电导率仪台 4 瑞士Mettler

注:1、电解质、有机溶剂和添加剂为专罐专用,无原材料和添加剂的储存罐和中间洗罐工序。

2、六氟磷酸锂和碳酸亚乙烯酯利用氮气产生压力将原料压入搅拌釜,中间储罐、储液罐、搅拌釜等之间的原料、成品输送均为管道连接,自动化控制,整个生产过程均为密闭状态,管道密闭、罐和桶密闭、设备密闭,设备内充氮气保护,最后将产品通过导流管压入成品包装罐。

3、项目在仓库各个原料储存区位置设围堰及仓库设围堰,高度均为0.15m,同时在仓库的门口设置高0.15m的门槛,车间产品暂存区围堰高度0.15m,。各原料罐均为特制专用罐,专罐专用,不更换储存品种,无需清洗,不产生清洗废水。

4、厂区内设事故应急池兼消防废水池和生产废水事故池。发生事故后消防废水槽车运出厂区至有资质的水处理单位集中处理或根据实际情况做消除措施后再行排放。

4、拟建项目主要原辅材料

项目所用主要原料纯度为优级纯或电子级纯度。主要原辅材料见表3,主要原药理化性质见表4。

表3 主要原辅材料及能耗情况表

序号原、辅材料名称单位用量来源

1 碳酸二甲酯(DMC)吨/年960.05

2 有机溶剂,液体,不锈钢罐(带快速接头)包

装,氮封

2 碳酸甲乙酯(EMC)吨/年1200.2131 有机溶剂,液体,不锈钢罐(带快速接头)包

装,氮封

3 碳酸乙烯酯(EC)吨/年1200.2131 有机溶剂,液体,不锈钢罐(带快速接头)包

装,氮封

4 碳酸二乙酯(DEC) 吨/年960.052 有机溶剂,液体,不锈钢罐(带快速接头)包

装,氮封

5 1,2-丙二醇碳酸酯(PC) 吨/年600.037 有机溶剂,液体,不锈钢罐(带快速接头)包

装,氮封

6 六氟磷酸锂吨/年750 电解质,固体,桶装,170kg/桶

7 碳酸亚乙烯酯吨/年90 特殊添加剂,不锈钢罐(带快速接头)包装,

氮封

8 氟代碳酸亚乙烯酯吨/年120 特殊添加剂,不锈钢罐(带快速接头)包装,

氮封

9 1,3-丙烷磺酸内酯吨/年120 特殊添加剂,固体,桶装,50kg/桶

10 分子筛吨/年10 从市场按需购入

11 小成品包装桶个/年2000 从市场按需购入

12 大成品包装桶个/年1000 从市场按需购入

13 高纯氮气瓶/年2000 从市场按需购入

表4 主要原辅材料理化性质表

名称理化性质燃烧爆炸性危险特性和毒理性质

碳酸二甲酯

DMC 无色透明液体,有芳香气味,分子量

90.09,相对密度.065(17/17℃),熔点

2~4℃,沸点90.2℃,闪点:(开口)

21.7℃,(闭口)16.7℃,蒸气压

6.27kPa(47mmHg20℃),与叔丁醇钾

发生剧烈反应,与酸、碱混溶;溶于

多数有机溶剂,不溶于水。

中闪点易燃液

体,远离火源。

遇热、明火、氧

化剂易燃

眼睛接触:引起刺激;

皮肤接触:引起刺激;

吸入:刺激呼系统;食

入:可能引起呼吸困

难、恶心呕吐。

毒理毒性:LD50:

1570mg/kg(大鼠经口)

碳酸甲乙酯

EMC 无色透明液体,有刺激性气味。熔点

-14℃,分子量104.1,相对密度1.01,沸点107℃,闪点23℃。是一种优良的锂离子电池电解液的溶剂。可燃

危险特性:吸入、口服

或经皮肤吸收对身体有

害,可能引起呼吸困难、

恶心、呕吐。毒理毒性:

LD50:1570mg/kg(大鼠

经口)。

碳酸乙烯酯

EC 无色针状结晶。熔点38.5~39℃,沸

点248℃,分子量88.06,相对密度

1.32(20/4℃),闪点160℃。易溶于

水及有机溶剂。

可燃固体

危险特性:吸入、口服

或经皮肤吸收对身体有

害,可能引起呼吸困难、

恶心、呕吐。

毒理毒性:LD50:10g/kg

(大鼠吞食)

碳酸二乙酯(DEC) 无色液体,稍有气味;蒸汽压:

1.33kPa/23.8℃,闪点:25℃;熔点:

-43℃;沸点126.8℃;不溶于水,可

混溶于醇、酮、酯等多数有机溶剂;

相对密度1.0;相对密度4.07

易燃,遇明火、

高热有引起燃烧

的危险

LD50:1570mg/kg(大鼠

经口);人吸入

20mg/L(蒸气)×10分钟,

流泪及鼻粘膜刺激

1,2-丙二醇碳酸

酯(PC) 无色透明液体无气味;熔点-48℃,

沸点242℃,闪点132℃、溶于水,可混溶于丙酮、醚、苯、氯仿、乙酸乙酯可燃、具有刺激

低毒:LD50:29000mg/kg

(大鼠经口)

六氟磷酸锂LiPF6白色结晶粉末。熔点200℃;密度1.5。

溶于水。分子量151.91。遇水或酸会

产生HF、PF5、POF3。易溶于水、

还溶于低浓度甲醇、乙醇、丙酮、碳

酸酯类等有机溶剂。主要用于锂离子

动力电池、锂离子储能电池及其他日

用电池。

/

危险特性:皮肤接触,

引起刺激,不会有明显

疼痛,但可能通过皮肤

吸收有毒物质。

眼睛接触:引起刺激或

损伤。

毒理毒性:无数据。

碳酸亚乙烯酯无色透明液体,熔点22℃,沸点

162℃,相对密度1.337

可燃低毒

氟代碳酸亚乙烯酯无色透明液体,易吸水,冬季为固体,

折射率1.4538,熔点19~20℃,熔点

249℃,闪点120℃,

常温下稳定,加

热分解,避免强

氧化剂,避免条

件高温

吞食有毒

1,3-丙烷磺酸内酯无色至淡黄色液体或者结晶,密度

1.392g/ml;熔点30~33℃,沸点

180℃,闪点>110℃

常温下稳定,遇

火燃烧,遇热会

释放硫氧化烟雾

低毒

5、产品及生产规模

本项目产品为锂离子电池电解液。项目产品方案见表5。

表5 建设项目产品方案表

序号产品名称年产量(吨)年生产时间(天)

1 锂离子电池电解液6000 300

本项目电解液由高纯度有机溶剂、电解质锂盐和添加剂物理混合配置而成,根据不同的配比生产,年生产量为6000t。具体产指标详见下表6。

表6 锂电池电解液产品主要技术指标

项目单位指标测试方法

水分ppm ≤20卡尔费休法游离酸(以HF计)ppm ≤50滴定法

电导率(25℃)mS/cm ≥10电导率法

相对密度(25℃)g/ml 1.19~1.34 密度瓶法氯离子ppm 5 浊度法

硫酸根离子ppm 10 浊度法

碱金属离子ppm 5 ICP/Mass法

重金属离子ppm 5 ICP/Mass法色度APHA 50 浊度法

6、公用工程

建设项目所在地自然环境简况

环境质量状况

NO2

年平均40

24小时平均80

1小时平均200

PM10

年平均70

24小时平均150

TSP 24小时平均300

PM2.5

年平均35

24小时平均75

非甲烷总烃日均值2000

《大气污染物综合排放

标准详解》(3)评价方法

采用单因子标准指数法。

式中::i指标j测点指数;

:i指标j测点监测值(mg/m3);

:i指标二级标准值(mg/m3)。

(4)评价结果及分析

环境空气现状监测结果评价见表10:

表10环境空气现状监测值单因子指数计算结果表

监测

点位

监测

项目

采样时

单因子指数计算结果

03-25 03-26 03-27 03-28 03-29 03-30 03-31

项目

建设

区域

二氧化硫

02:00 0.0440.0320.0260.0340.040.0280.032

08:00 0.1020.0860.0680.0820.0620.0520.056

14:00 0.1240.090.080.070.0840.0680.068

20:00 0.050.0340.0240.030.0380.0340.034

日均值0.2330.1730.160.1470.1730.120.14二氧化氮

02:00 0.1850.110.1350.090.080.10.085

08:00 0.340.230.2550.2650.2050.280.22

14:00 0.380.2850.3150.240.2650.2050.29

20:00 0.180.140.10.0750.0850.0850.075

日均值0.63750.38750.5750.5250.41250.4750.3875总悬浮颗

粒物

日均值0.60.5970.490.5170.5730.5330.553 PM10日均值0.760.7070.6130.720.740.6270.653

PM2.5日均值0.8130.840.5330.560.7070.6670.84

非甲烷总

02:00

08:00

14:00

20:00

上表说明,SO2、NO21小时均值、24小时均值及PM10、PM2.5、TSP24小时均值均未出现超标,区域环境空气质量符合《环境空气质量标准》(GB3095-2012)中二级标准。

2、水环境:

(1)现状数据

项目产生的污水经过预处理后排入市政污水管网,进入××县经济开发污水处理厂处理,尾水排入淮河。本评价采用2018年3月25日~26日××工和环境监测有限责任公司对××县经济开发污水处理厂排污口上游500米、下游500米、下游1000米断面监测数据,进行分析评价,监测结果详见下表:

表11地表水水质监测结果单位:mg/L(pH除外)

采样点名称监测日期pH值COD Cr BOD5氨氮总磷

××县经济开发

污水处理厂排污

口上游500米

2018-03-25上午7.21 25 4.4 1.24 0.13

2018-03-25下午7.19 27 4.6 1.20 0.12

2018-03-26上午7.20 22 4.3 1.18 0.13

2018-03-26下午7.18 24 4.5 1.23 0.14 ××县经济开发

污水处理厂排污

口下游500米

2018-03-25上午7.34 32 5.1 1.16 0.18

2018-03-25下午7.42 30 5.3 1.12 0.2

2018-03-26上午7.40 33 4.9 1.11 0.17

2018-03-26下午7.36 29 5.2 1.15 0.15 ××县经济开发

污水处理厂排污

口下游1500米

2018-03-25上午7.10 26 5.8 1.20 0.15

2018-03-25下午7.12 28 5.6 1.19 0.13

2018-03-26上午7.09 27 5.5 1.21 0.12

2018-03-26下午7.13 25 5.7 1.18 0.14 《地表水环境质量标准》(GB3838-2002)Ⅲ类标

6~9 ≤20≤4≤1.0≤0.2(2)评价方法

按照Ⅲ类水质标准,采用单因子水质指数法进行评价。

COD、氨氮等指数Pi计算式为:

式中:C ij——j断面污染物i的监测均值(mg/l);

S ij——j污染物i的水质标准值(mg/l)。

pH指数Pi计算式为:

式中:pH——实测值;

pH sd——地表水水质标准中规定的pH值下限;

评价适用标准

2017年三元锂电池行业分析报告

2017年三元锂电池行业前景 分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月

正文目录 一、全球视角:汽车电动化浪潮来袭,新能源汽车产业崛起 (6) (一)全球的汽车电动化浪潮正在来袭 (6) (二)我国已成为全球最大的新能源汽车消费国 (9) 二、我国情况:政策风云发幻,产业运行砥砺前行 (11) (一)政策引领我国新能源汽车行业砥砺前行 (12) (二)新能源汽车产销量逐步恢复,下半年逐月增长 (14) 三、三元锂电池大势所趋,行业回暖高增长可持续 (15) (一)三元锂具备高能量密度,引领电池技术发展方向 (17) (二)三元锂贴合政策要求,推荐目录见微知著 (19) 2.1 补贴政策——高能量密度电池车型可获得1.1~1.2倍补贴 (20) 2.2 积分政策——高能量密度电池车型获得1.2倍积分概率更大 (21) 2.3推荐目录——三元锂电池比例提升至约70% (23) (三)海外Model 3放量在即,指明三元锂方向 (26) (四)三元锂材料价格已进入上行通道,印证行业需求持续回暖 (28) (五)三元锂需求测算,到2020年渗透率达80%,复合增速88% (30) 四、湿法隔膜锦上添花,逐步突破海外封锁 (33) (一)隔膜决定电池安全性能,行业壁垒较高 (33) (二)湿法隔膜能够提升能量密度,干法工艺转湿法有难度 (35) (三)湿法隔膜国产化率有望稳步提升,未来三年需求持续增长 (39) 五、主要公司分析 (40) (一)当升科技 (40) (二)国轩高科 (41) (三)科恒股份 (42) (四)创新股份 (44) 六、风险提示 (45)

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较第一章绪论1.1引言能源、环境和信息技术是2l世纪科技发展的三大主题。从人类文明开始,能源的开发和利用就与人们的生活方式及生活质量密切相关。人类进入工业化社会以来,矿物能源(煤与石油)的消耗巨大,内燃机车辆每年所消耗的石油占全球能源年消耗量的I/3.伴随着矿物燃料的巨大消耗和资源的日益枯竭,温室效应和空气污染以及对入类的生存环境构成了严重的威胁。因此,研究和开发高效、安全、无污染的新型能源成了世界各国政府和科技工作者共同关心的课题。此外近年来。随着微电子技术的迅猛发展,电子仪器设备在不断地小型化和轻便化,如笔记本电脑、数码照相机、手机和无绳电话等,这对电池行业提出了更高的要求,迫切要求电池高容量、长寿命、高安全和环境友好。锂离子电池就是在这个背景下发展起来的,并在短短的十几年内,迅速的成为了能源行业的关注焦点。 1.2锂离子电池简介锂离子电池相对传统的水溶液二次电池而言,具有比能量高,循环寿命长和对环境友好的显着优点,是一种很有发展潜力的电池体系,目前已经在移动电话、笔记本电脑等便携式电子产品上得到了广泛应用。随着2007年6月欧盟电池指令草案的通过,锂离子电池也开始逐步进入无绳电动工具市场。同时,近年来

由于环境和石油等问题日益突出,以各种二次电池为动力的电动车 和混合动力车越来越受 到了人们的重视,由于以磷酸铁锂为正极材料的锂离子电池具有相 当好的安全性和比能量,因此成为各种电动车电源的首选。同时由 于价格便宜,使得磷酸铁锂锂离子电池单位能量的价格大幅下降, 这样相对氢镍电池受镍价格大幅波动的影响以及铅酸、镉镍电池的 高污染而言,锂离子电池表现出越来越强劲的竞争力。图1至图4为几种不同的锂离子电池 1.21锂离子电池的工作原理与锂二次电池相比,锂离子电池正负极 材料均采用锂离子可以自由嵌入和脱出的具有层状或隧道结构的锂 离子嵌入化合物,充电时,Li+从正极逸出,嵌入负极,放电时, Li+则从负极脱出,嵌入正极,即在充放电过程中,Li+在正负极间 嵌入脱出往复运这种电池被称为“摇椅”或“羽毛球”电池(“Shuttlecock”battery)。实质上,锂离子电池是一种浓差电池,在充电状态下负极处于富锂态,正极处于贫锂态,随着放电进行,

锂电池行业研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

锂离子电池电解液

锂电池电解液特性 锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。 基本信息 中文名称锂电池电解液 组成锂盐和有机溶剂 含义离子传输的载体 分类电池 锂电池电解液主要成分介绍 1.碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg , 243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 2.碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 3.碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能

够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成 ①健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品为轻度刺激剂和麻醉剂。吸入后引起头痛、头昏、虚弱、恶心、呼吸困难等。液体或高浓度蒸气有刺激性。口服刺激胃肠道。皮肤长期反复接触有刺激性。 ②毒理学资料及环境行为 毒性:估计能通过胃肠道、皮肤和呼吸道进入机体表现为中等度毒性。刺激性比碳酸二甲酯大。 急性毒性:LD501570mg/kg(大鼠经口);人吸入20mg/L(蒸气)×10分钟,流泪及鼻粘膜刺激。 生殖毒性:仓鼠腹腔11.4mg/kg(孕鼠),有明显致畸胎作用。 危险特性:易燃,遇明火、高热有引起燃烧的危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 ③泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ④防护措施 呼吸系统防护:空气中浓度较高时,建议佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。

锂电池电解液行业分析报告2012

2012年锂电池电解液行业分析报告 2012年11月

目录 一、预计未来三年全球电解液产能严重过剩 (3) 1、预计从2012年开始,电解液市场产能过剩将会加剧 (3) 2、厂商市场定位、产品技术路线、产品价格三因素或导致国内电解液厂商 发展分化 (4) 二、锂电池电解液发展方向 (7) 1、六氟磷酸锂进口替代加速,电解液成本有望快速下降 (7) 2、动力类电池将拉动电解液需求 (8) 3、高电压电解液给国内厂商带来弯道超车机会 (9) 三、拥有渠道优势,掌握上游六氟磷酸锂技术的国内厂商更具竞争优势 (10) 1、拥有下游优质客户资源的厂商具有一定的先发优势 (10) 2、向产业链上游延伸,可以保持不可或缺的地位 (10) 3、相关公司 (11) (1)新宙邦 (11) (2)广州天赐 (12) 四、风险因素 (12) 1、随着电解液市场产能过剩加剧,电解液产品单价下降速度可能超预期. 12 2、下游锂电池行业增速减缓,可能影响对电解液产品的需求 (13)

一、预计未来三年全球电解液产能严重过剩 1、预计从2012年开始,电解液市场产能过剩将会加剧 电解液生产已完全没有技术壁垒,国产电解液已与日本产品品质相当。国内生产能力千吨级以上的锂电池电解液厂商有12 家,涉及高、中、低端各类市场,能够基本满足国内的电池生产厂商需求,并有部分出口。 据统计,当前全球锂电池电解液厂商产能总计约7.56 万吨/年,其中国外产能2.79 万吨/年(日本2.1 万吨/年),国内产能4.76 万吨/年。由于部分厂商的生产线为近一两年新投产,产能尚未完全释放。2012 年全球电解液6.05 万吨的需求,行业存在产能过剩问题。 截止目前,国内外厂商公布的预投项目将新增产能6.70 万吨/年。结合现有产能,预计总产能可以达到14.25 万吨。其中,日本三菱化

电子化学品锂电池行业分析报告

电子化学品锂电池行业分析报告

目录 一、电子化学品产业链概览 (5) 1、中国电子化学品行业特点 (5) 2、电子化学品产能向中国转移已成为大势所趋 (6) 3、国家政策支持力度加大 (7) 4、中国电子化学品行业增速超全球 (8) 5、电子化学品各子行业分化明显 (8) 二、锂电池化学品:最具应用前景的电子化学品材料 (9) 1、锂电池化学品是最具应用前景的电子化学品材料 (9) 2、中国锂电材料行业下行趋势将反转,在全球价值链底部攀升 (12) 3、原材料碳酸锂行业集中度不断攀升,供需处于紧平衡 (13) 4、3C 领域是锂电发展主战场 (14) 5、移动互联网时代来临强力拉动锂电池尤其是聚合物锂电池大发展 (15) 6、动力电池发展缓慢而曲折 (16) 三、正极材料:高压钴酸锂、锰酸锂和三元材料发展迅猛 (22) 1、高电压高压实钴酸锂(LCO) (24) 2、锰酸锂和磷酸铁锂 (25) 3、高电压镍钴锰酸锂材料(NCM 三元材料) (26) 4、富锂高锰层状固溶体(OLO)和镍锰尖晶石(LNMS) (27) 四、负极材料:石墨类量增价跌,LTO发展空间广阔 (28) 1、钛酸锂(LTO) (30) 2、硅碳复合负极材料 (31) 3、硅合金负极材料 (32) 五、锂电隔膜:国内生产商快速成长,进口替代效应显现 (32) 六、锂电电解液:全球产能释放迅猛,中国厂商迅速崛起 (36) 七、行业重点公司简况 (41)

1、新宙邦:高速成长的电子化学品巨头 (41) 2、江苏国泰:快速发展的锂电电解液龙头 (43) 3、杉杉股份:综合性锂电巨头 (44) 4、沧州明珠:迅速崛起的锂电隔膜巨头 (45)

锂电池电解液基础知识

锂离子电池电解液 1 锂离子电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。目前锂离子电池电解液产品技术也正处于进一步发展中。在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。 国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

2016-2020年全球及中国锂电池电解液行业研究报告

2016-2020年全球及中国锂电池电解液行业研究报告 在新能源汽车和工业储能等新兴应用市场发展的带动下,全球锂电池电解液市场稳步增长,2015年销量达到11.7万吨,同比增长42.1%,预计2020年销量有望突破60万吨。 中国是全球最大的锂电池电解液消费国,2015年中国锂电池电解液销量为6.3万吨,同比增长48.9%;产值为28.6亿元,同比增长52.2%。产值增速大于销量增速主要因为:一、功能型电解液(价格高于常规性电解液)销量占比提升;二、原材料价格大幅上涨推动电解液价格止跌上扬,从2015年初的9万元/吨大幅上涨至年末的20万元/吨以上,预计2016年将继续呈上涨趋势。 从下游应用领域来看,电动汽车、储能将成为锂电池的主要增长点。2015年全球电动汽车动力锂电池出货量达20.8GWh,同比增长超过110%,预计2016-2020年出货量的年复合增长率将维持在50%以上。而以智能手机、平板电脑为代表的消费电子用小型锂电池出货量增速明显放缓,预计未来增速为5%-10%。 从发展趋势看,耐高压、耐高温的电解液将成为未来的发展重点,主要因为:一、消费电子领域,4.35V 以上高压电解液的应用比例现已达到70%左右,未来还将进一步攀升;二、动力及储能电池领域,高电压正极材料发展迅速,而与之匹配的电解液则相对落后,仅日本和美国少数企业掌握了5V高压电解液的生产技术,中国大部分企业虽已着手进行高压电解液的研发,但整体水平与国际存在一定差异。 从竞争格局看,全球锂电池电解液市场集中度相对较高,2015年全球前十大电解液企业市场份额合计约62.2%。其中,新宙邦取代韩国旭成成为全球最大的锂电池电解液生产商,市场份额9.2%,韩国旭成则以8.8%的市场份额排名第二。同期,中国前十大电解液生产商市场份额合计则超过85%。 韩国旭成:最大的锂电池电解液客户是三星SDI,销量占比在55%左右。此外,公司部分电解液专利也是与三星SDI共同拥有。 三菱化学:由于看好中国新能源汽车市场,已在中国布局了锂电池电解液生产基地(常熟)和负极材料生产基地(青岛),其中锂电池电解液产能为10,000吨/年。 新宙邦:2014年,公司通过收购张家港瀚康化工有限公司(生产锂电池添加剂)76%的股权,切入电解液上游产业。2015年将锂电池电解液产能扩充至20,000吨/年,但产能利用率尚待提高。 国泰华荣:2015年,“5,000吨/年的锂电池电解液项目”正式投产,至此公司锂电池电解液产能扩充至10,000吨/年。此外,公司还设立韩国国泰华荣有限会社,配合韩国客户进行锂电池电解液的研发。

电解液各溶剂简称及其参数

锂电池电解液常用溶剂 碳酸丙烯酯:PC 分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。 是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。 特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、 纺丝溶剂、烯烃和芳烃萃取剂等。 特性分子量:102.09 物理性质:外观无色透明液体 熔点-48.8 ℃ 沸点242℃ 闪点132℃ 溶解度参数δ=14.5 相对密度1.2069 溶解度参数[2] δ=14.5 饱和蒸汽压0.004kpa 溶解性:溶于水,可混溶于丙酮、醇,乙醚、苯、乙酸乙酯等有机溶剂. 折光率1.4189 比重1.189 粘度2.5mPa.s 介电常数69c/v.m 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 质量标准项目指标优级品一级品外观无色或淡黄色液体无色或淡黄色液体含 量, %≥99.5≥99.0 水份, %≤0.3≤0.5 溴化物(以溴离子计), %≤0.01≤0.1 密度20oC(g/cm3)1.200±0.0051.200±0.005 用途2电子工业上可作高能电池及电容器的优良介质2高分子工业上可作聚 合物的溶剂和增塑剂。用作胶黏剂和密封剂的增塑剂。还可用作酚醛树脂固化促进剂和水溶性胶黏剂颜填料的分散剂。2化工行业是合成碳酸二甲酯的主要原 料也可用于脱除天然气、石油裂解气中二氧化碳和硫化氢。2另外:还可用于 纺织、印染等工业领域。包装 200公斤镀锌铁桶包装,也可按顾客要求进行包装。储运应储存于阴凉、干燥、通风良好的场所,钢瓶应垂直放置,避免受热

2018年锂电池行业分析报告

2018年锂电池行业分析报告

摘要 作为第三代电池技术,锂电池凭借着储能比能量高、循环寿命长、无污染等优点已经在电子产品领域取得了广泛的应用。同时,随着电动车行业的快速发展,大容量的动力锂电池市场前景广阔。 近年来,全球锂电池发展迅速,2011年全球锂离子电池(可充电的二次锂电池)市场规模达到153亿美元,同比增长29.7%,预计到2018年锂电池产业的产值将达到约320亿美元,其中电动汽车锂电池产值将占50%以上,超过160亿美元。2011年中国锂电池市场规模增速高于全球增速,2011年达到了397亿元人民币,同比增长43%,全年锂电池产量达到29.7亿颗,同比增长28.6%。保守估计,2018年中国锂电池行业市场规模可达到了900亿元人民币。 锂电池巨大的市场潜力除了归功于其性能优点,也离不开近年来相关产业政策的支持。近年来,国家多次明确支持锂电池技术的研发,并且制定了具体的奖励措施,例如国家对锂离子电池出口退税从13%上调至17%。同时我国和世界其他国家对于电动汽车发展的鼓励政策也直接刺激了对动力锂电池的需求。 目前全球锂电池产业目前主要集中在日本、中国和韩国三国,并且值得注意的是,近年来韩国企业发展迅速,去年三星已经取代日本三洋成为世界上最大的锂电池制造企业。中国锂电池制造业基地主要集中在广东、山东、江苏、浙江、天津等地。主要企业有比亚迪、欣旺达电子、天津力神电池等。

锂电池的生产工艺复杂,技术门槛极高。其核心材料主要是正极 材料、电解液和隔膜。其中正极材料是锂电池中最关键的原材料,决 定了电池的安全性能和电池能否大型化,约占锂电池电芯材料成本的 三分之一。目前,正极材料主要是钴酸锂、镍酸锂、锰酸锂、钴镍锰 酸锂、磷酸铁锂等,负极材料为石墨。正是因为锂电池技术门槛高,该行业存在很高的利润水平。整个行业的毛利润率水平在50%以上,其中,隔膜和正极材料生产企业利润率最高。 采用磷酸铁锂作为正极材料的锂电池普遍为业内看好,在磷酸铁 锂电池领域,国内领军企业比亚迪已经制造出了全球首款基于磷酸铁 锂电池的电动汽车F3DM。 目录 摘要 (1) 一、................ 锂电池行业主管部门及相关产业政策4 (一)行业界定 (4) (二)行业主管部门 (4) (三)相关产业政策 (4) 二、行业基本情况 (6) (一)行业概述 (6) (二)市场容量 (10) (三)行业竞争格局 (12)

锂离子电池电解液简介

锂离子电池电解液简介 一、电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 二、电解液组成 2.1有机溶剂 有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC 在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。但在EC 或EC+DMC复合电解液中能建立起稳定的SEI膜。通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。 2.2 电解质锂盐 LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。 2.3添加剂 添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。一般来说,所用的添加剂主要有三方面的作用: (1)改善SEI膜的性能 (2)降低电解液中的微量水和HF酸 (3)防止过充电、过放电 三、锂离子电池电解液种类 3.1液体电解液 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在

锂电池行业风险与投资策略分析报告

深圳中企智业投资咨询有限公司

锂电池行业风险与投资策略分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/c98241176.html, 1

目录 锂电池行业风险与投资策略分析 (3) 第一节锂电池行业风险分析 (3) 一、行业环境风险 (3) 二、行业产业链上下游风险 (3) 三、行业政策风险 (3) 四、行业市场风险 (4) 五、行业其他风险分析 (4) 第二节锂电池投资策略分析 (5) 一、行业总体发展前景及市场机会分析 (5) 二、企业营销策略 (6) 三、企业投资策略 (7) 四、企业应对当前经济形势策略建议 (8) 2

锂电池行业风险与投资策略分析 第一节锂电池行业风险分析 一、行业环境风险 锂离子电池中含有的六氟磷酸锂、聚丙二乙烯(醇)等化学物质会对环境造成有机污染。其含有的钴等重金属元素,也会对环境会造成危害,尤其是钴,含量相对较高,属于稀有贵重金属,具有很高的回收价值。虽然锂电池本身的污染并不严重,但锂金属在提取冶炼过程中,对环境的污染不亚于汽油产生的污染。金属锂的工业生产方法主要有熔盐电解法和真空热还原法。熔盐电解法系采用氯化锂为原料,在熔融电解槽内电解时分解为金属锂和氯气,在阴极析出锂,在阳极析出氯气。电解进行时,氯化锂离解为锂离子,向阴极移动并放电,形成的金属锂通过熔盐逐渐上升到电解槽表面或到锂收集室。在阳极析出的氯气通过熔盐上升至出口排出或收集。该法的最大缺点是电解时产生氯气污染严重,且产品质量不易控制,生产成本高。 二、行业产业链上下游风险 地壳中锂元素的比例约为0.0065%,其丰度在各种元素中居第27位。海水中锂的总储量达2600亿吨,但浓度太小,提炼困难。世界盐湖锂资源主要分布在智利、阿根廷、中国及美国。花岗伟晶岩锂矿床主要分布在澳大利亚、加拿大、芬兰、中国、津巴布韦、南非和刚果。印度和法国也发现伟晶岩锂矿床,但是不具有商业开发价值,目前世界上只有少数国家拥有可经济开发利用的锂资源。中南大学化学电源与材料研究所所长唐有根表示,即便是锂的成本和安全性的问题全部解决了,今后用锂电池替代汽油的话,也满足不了全部需求,因为这相当于用一种紧缺的资源去替代另一种紧缺的资源。此外,上游矿产品升值预期强烈,国内矿石开采能力大幅扩张;锂电池关键材料环节“版图之争”和“供应链之争”加剧;各家厂商的功能差异化新产品数量增加。 三、行业政策风险 相关产业标准体系不够完善,近年来,电动汽车产业作为新能源汽车领域下 3

锂电池行业报告

锂电池行业报告 目录 一、行业和政策研究……P3 1.行业前景 2.政策支持

二、关键技术……P4 1.正极材料 2.负极材料 3.电解液; 4.隔膜 三、产业链分析……P5 1.锂电池的产业链 2.上下游的产业链 四、竞争优势分析……P6 1.锂电池的特性; 2.各种电池性能比较; 五、市场和成本分析……P7 1.市场份额 2.需求预测 3.成本构成 六、公司分析……P8 1.相关公司 2.公司财务 3.相关公司业务与投入 4.推荐公司

一、行业和政策研究 1.行业前景 (1)概述:锂离子电池(Lithium Ion Battery,缩写为LIB),又称锂电 池。锂电池分为液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。 其中,液态锂离子电池是指Li+嵌入化合物为正、负极的二次电池。正极采用锂化合物LiCoO2或LiMn2O4,负极采用锂-碳层间化合物。锂电 池是迄今所有商业化使用的二次化学电源中性能最为优秀的电池,这也是促进锂电池用于电动助力车的一个关键因素。 锂电行业是一个新兴的产业,世界各国都很重视,尤其是动力锂电池更是备受关注。锂离子电池是目前理想的新一代绿色能源,具有储能比能量高、循环寿命长、不会产生污染等优点。随着手机、笔记本电脑、数码相机等的消费和便携式电子产品的持续走强,锂离子电池的市场需求一直保持相当高的增长速度,市场对于锂离子电池的巨大需求也引导锂电池行业的继续走强。 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。随着能源的紧缺和世界的环保方面的压力。锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料电池的出现,更推动了锂电池产业的发展和应用。(2)国内现状:我国锂离子电池产量全球第一,生产量占世界总量的三分之一以上,100多家锂电生产企业对锂离子电池材料需求殷切,不少厂商都计划在今后两年内把产量大幅提高。目前,中国锂电制造企业形成了液态锂电以比亚迪为首,聚合物锂电以TCL电池为首的两大巨

锂离子电池电解液用有机溶剂物性数据

锂离子电池电解液用有机溶剂物性数据 化学名称碳酸二甲酯(DMC)碳酸二乙酯(DEC)碳酸乙烯酯(EC)碳酸丙烯酯(PC)碳酸甲乙烯酯(EMC)碳酸甲丙酯(MPC)碳酸甲异丙酯(MiPC)别名二乙基碳酸酯1,2-丙二醇碳酸酯) 碳酸甲乙酯,乙酸乙酯 英文名称Dimethyl Carbonate Diethyl Carbonate Ethylene Carbonate Propylene carbonate Methyl-Ethyl Carbonate Methylpropyl Carbonate CAS号616-38-6 105-58-8 96-49-1 108-32-7 623-53-0 56525-42-9 分子式C3H6O3C5H10O3C3H4O3C4H6O3C4H8O3/ CH3COOC2H5C5H10O3 分子结构 分子量90.08 118.13 88.06 102.09 104.1 118.13 118.1 浓度≥99.99% ≥99.99% ≥99.99% ≥99.99% ≥99.95% 熔点/沸点/闪点4℃/89℃/18℃-43℃/126℃/33℃39℃/248℃/157℃-48℃/242℃/132℃-55℃/109℃/23℃-43℃/132℃/35℃-55℃/119℃ 密度(20℃) 1.06g/cm3 0.972g/cm2 1.41g/cm3 1.21g/cm3 1.00g/cm3 0.98g/cm3 1.01g/cm3 粘度(40℃)0.59mPa.S 0.75 mPa.S 1.9mPa.S 2.5mPa.S 0.65mPa.S 0.87mPa.S 0.74 mPa.S 介电常数 3.1c/v.m 2.8c/v.m 85.1c/v.m 65c/v.m 2.9c/v.m 2.8 c/v.m 2.9 c/v.m 还原/氧化电位-3.0V/+3.2V -3.0/+3.2V 外观无色透明液体透明液体无色针状或片状结晶, 或白色结晶体 无色透明/微黄色液体 无色透明液体有水果 香味 无色透明液体无色透明液体 特性有较强吸湿性,溶于乙醇、 乙醚等有机溶剂,不溶于水 Q/CH02–2003 具有吸湿性,不溶于水,溶 于醇、醚等有机溶剂。易燃, 易爆。Q/CH014--2003 有较强吸湿性,产品标准 Q/CH04—2003 有较强吸湿性,产品标准 Q/CH01—2003 具有较强吸湿性,不溶于水,溶 于醚、醇。化学性质不稳定,易 分解成醇和二氧化碳, Q/CH13-2003 具有较强吸湿性 用途提高其能量密度、增大放电能 力、提高使用稳定性及安全性。

2020年锂离子电池行业分析报告

2020年锂离子电池行业分析报告 2020年6月

目录 一、行业主管部门、监管体制、主要法律法规及政策 (3) 1、行业主管部门及监管体制 (3) 2、主要法律法规及政策 (3) 二、行业发展情况和未来发展趋势 (5) 1、电池行业概况 (7) 2、锂离子电池行业概况 (8) (1)消费类 (9) (2)动力类 (10) (3)储能类 (12) 三、行业竞争格局和市场化程度 (12) 1、宁德时代新能源科技股份有限公司 (13) 2、比亚迪股份有限公司 (13) 3、国轩高科股份有限公司 (13) 4、惠州亿纬锂能股份有限公司 (14) 四、进入行业的主要障碍 (14) 1、技术壁垒 (14) 2、资金壁垒 (14) 3、品牌壁垒 (14) 五、行业市场供求关系及利润水平 (15) 六、行业技术水平,周期性、区域性和季节性特征 (15) 1、技术水平及技术特点 (15) 2、行业周期性、区域性和季节性特征 (16) 七、行业上下游之间的关联性 (16)

一、行业主管部门、监管体制、主要法律法规及政策 1、行业主管部门及监管体制 锂电池行业的主管部门主要是中华人民共和国工业和信息化部、中华人民共和国国家发展和改革委员会。全国性行业自律组织主要有中国电池工业协会、中国化学与物理电源行业协会。 在本行业内,中华人民共和国工业和信息化部主要负责制定并组织实施行业规划、计划和产业政策,提出优化产业布局、结构的政策建议,起草相关法律法规草案,制定规章,拟订行业技术规范和标准并组织实施,指导行业质量管理工作等。中华人民共和国国家发展和改革委员会的主要职责包括拟订并组织实施国民经济和社会发展战略、中长期规划和年度计划,统筹协调经济社会发展,负责协调解决经济运行中的重大问题,调节经济运行等。中国电池工业协会、中国化学与物理电源行业协会具有协助政府管理的职能,参与国家和行业标准的制定,协助编制、参与论证国家本行业和关联行业的发展规划,收集汇编行业发展信息等。 2、主要法律法规及政策

锂电池电解液概述

锂离子电池电解液概述 一、锂离子电池电解液 电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证。电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成。 1.1有机溶剂 有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。 锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。水分降低至10-6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等。利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC)。 1.2电解质锂盐 电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质。除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI等一系列安全性高、循环性能好的锂盐电解质体系得到关注。

2019年中国锂电池电解液市场现状及趋势分析

2019年中国锂电池电解液市场现状及趋势 分析 锂离子电池工作原理是将电能转化为化学能储备在电极中,在需要的时候可以重新以电能释放。锂离子电池的核心材料主要有正极、负极、电解液和隔膜,其中电解液对综合性能的影响最大。 电解液的主要成分包括溶质、溶剂和添加剂。 电解液成分 由于电解液配方与添加剂的开发与应用是决定电解液产品差异化的核心要素,电解液生产厂商在开发初期具有较高的技术壁垒,但随着锂电子产业链的

整体发展,产品同质化的影响,导致电解液技术壁垒逐步打开,产业逐步进入市场化竞争状态。 电解液的直接下游是锂电池,随着补贴的退坡,产业链利润受到大幅压缩,产业进入阵痛与洗牌期,头部企业集中度高,在产业链中议价能力逐步增强。 电解液价格受上游原材料影响较大,导致国内电解液厂商陆续布局上游市场,控制电解液生产成本。2014年开始,新能源汽车的迅速发展,刺激电解液市场需求激增,由于产能不足,电解液、六氟磷酸锂的价格在2016年达到了历史最高点,随后行业产能大幅扩张造成产能严重过剩,大多数公司产能利用率低下,2018年行业进入了价格战的泥潭,电解液、六氟磷酸锂的价格也随之跌至谷底。2017-2019年,我国六氟磷酸锂价格从快速下跌到逐步企稳,2019年下半年至今,我国六氟磷酸锂价格稳定在8.5-9.5万元/吨之间。 受益于终端下游新能源汽车迅速发展、5G时代来临,国内电解液市场需求量有望继续保持较快速度的增长。 电解液一般是由高纯度的有机溶剂、电解质锂盐和必要的添加剂等主要材料在一定的条件下,按照某一特定的比例配置而成。电解质是最核心的组成部分,约占电解液原材料成本的60%,有机溶剂约占30%,添加剂约占10%。 因为六氟磷酸锂(LiPF6)在电解液总成本中占比较高,因此电解液价格主要受六氟磷酸锂(LiPF6)价格影响,历史上电解液价格走势和六氟磷酸锂(LiPF6)价格走势基本同步。 国内六氟磷酸锂产业化始于2008年,随着技术成熟与进步以及下游电解液需求急剧扩张,行业产能规模极具扩张,截至2019年国内电解液产能突破6万吨,占全球比重超过85%。

2017年锂电池检测行业前景分析报告

2017年锂电池检测行业前景 分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月

正文目录 锂电池检测概述 (4) 锂电池概述 (4) 新能源汽车行业高景气度 (5) 电池检测行业概述 (7) “十三五期间”300亿市场 (10) 电池检测行业的几点思考 (13) 国产品牌本土化优势凸显 (13) 产业化分工是大势所趋 (16) 主要公司分析 (18) 星云股份 (18) 图表目录 图1:锂离子电池原理示意图 (4) 图2:二次电池性能比较 (5) 图3:中国新能源乘用车销量 (6) 图4:新能源汽车鼓励政策频出 (7) 图5:锂离子电池产业链 (8) 图6:锂离子电池检测的国内发展历程 (9)

图7:锂离子电池检测产品 (9) 图8:国内电池检测领域的主要企业 (11) 图9:全国锂电池产能扩张计划(累计值) (11) 图10:全国锂电池设备预计投资额 (12) 图11:2014年国产动力锂电设备产值细分 (12) 图12:锂电池检测设备预计市场规模 (13) 图13:国外锂离子电池检测设备制造商 (14) 图14:Aerovironment公司盈利状况 (15) 图15:Aerovironment公司收入拆分 (15) 图16:Aerovironment公司海外收入状况 (16) 图17:电池检测企业与锂电池企业毛利率对比 (17) 图18:电池检测企业与锂电池企业营业收入对比(亿元) (17) 图19:星云股份营业收入及增速 (19) 图20:星云股份归母净利润及增速 (19) 图21:星云股份毛利率和净利率 (20) 图22:星云股份产品收入按应用结构变化 (20) 图23:星云股份股权结构图 (21) 图24:星云股份募投项目(单位:万元) (21)

锂离子电池电解液研究现状及展望

锂离子电池电解液研究现状及展望 锂离子电池电解液研究现状及展望 摘要:锂离子电池电解液及其关键材料的研究日益受到广泛地重视。电解液作为锂离子电池重要组成部分,其性能优劣对锂离子电池的发展是极大地制约。以锂离子电池工作环境要求不同,电解液可分为高温型电解液、低温型电解液和安全型电解液,阐述了近几年锂离子电池电解液的技术研发现状,展望了锂离子电池电解液的未来发展趋势。 关键词:锂离子电池;电解液;溶剂;锂盐;添加剂 锂离子电池自1990年实现规模生产以来,以比其它二次电池(铅酸电池、镍氢电池、镍镉电池)所不能比拟的优越电性能及外型可变优势迅速占领了许多市场领域,得到了迅猛的发展。已广泛应用于手机、笔记本电脑、PDA、摄像机、数码相机、移动DVD、MP3、电动车、电动工具等领域,已成为各种现代化移动通讯设备、电子设备、交通设备等不可缺少的部件。 锂离子电池电解液是锂离子电池必需的关键材料,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。伴随着锂离子电池的快速发展,我国锂离子电池所需的电解液生产也从无到有、从小到大发展壮大起来,对锂离子电池的发展起到了非常重要的支撑作用。 本文按照锂离子电池的工作环境要求,将锂离子电池电解液分为以下三个方面:高温型电解液、低温型电解液、安全型电解液,阐述了近几年锂离子电池电解液的技术研发现状。 1.锂离子电池高温型电解液研究 锂离子电池在长时间工作状态下,电池内部温度会升高,局部温度可能达到70~80℃,普通电解液在高温下可能会发生一些副反应,影响电池的性能。通过在普通电解液中加入功能添加剂制备成高温型电解液,在不影响常规性能的前提下,可以提高电池的高温性能。 1.1 磺酸酯添加剂研究 固体电解质相间界面(solid electrolyte interphase,简称SEI)膜在锂离子电池中具有重要的意义,SEI膜的质量对提高锂离子

锂离子电池电解液

Q/XZB 锂离子电池电解液 Electrolytes for Lithium-ion Battery 深圳新宙邦科技股份有限公司发布

前言 锂离子电池电解液没有国家标准及行业标准。因此本企业依据《标准化工作导则、指南和编写规则》GB/T1.2-2000和GB/T1.1-2000之规定制定了本标准。 本标准由深圳新宙邦科技股份有限公司提出 本标准由深圳新宙邦科技股份有限公司品管部归口管理 本标准起草单位:深圳新宙邦科技股份有限公司 本标准起草人:周达文、郑仲天、高家勇、梅芬 本标准发布时期:2008年7月

锂离子电池电解液 1 范围 本标准规定了锂离子电池电解液的技术要求、检验方法、检验规则以及标志、包装、运输、贮存和安全要求。 本标准主要适用锂离子电池电解液。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T9282 透明液体—以铂钴等级评定颜色 GB/T 6283 化工产品中水含量测定卡尔.费歇法(通用方法)(eqv ISO760:1978) GB/T 3049 化工产品中铁含量测定通用方法邻菲啰啉分光光度法 GB/T 6682 分析实验室用水规格和试验方法(neq ISO3696:1987) GB/T 2540 石油产品密度测定法比重瓶法 GB/T 9282 透明液体--以铂钴等级评定颜色 GB/T 1250 极限数值的表示方法和判定方法 GB/T 6678 化工产品采样总则 GB/T 6679 固体化工产品采样通则 GB6682 验室用水规格和试验方法(neq ISO3696:1987) 3 技术要求 3.1 外观 锂离子电池电解外观应符合表1的要求 表1外观

相关文档
最新文档