液体动静压轴承国内外研究现状

液体动静压轴承国内外研究现状
液体动静压轴承国内外研究现状

液体动静压轴承国内外研究现状

动压、静压、动静压轴承的工作原理及装配知识

动压、静压、动静压轴承的工作原理及装配知识 一、静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 利用润滑油的粘性和轴颈的高速旋转,把润滑油带进轴承的楔形空间建立起压力油膜隔开。这种轴承称为动压滑动轴承。靠液体润滑剂动压力形成液膜隔开两摩擦表面并承受载荷滑动轴承。液体润滑剂是被两摩擦面相对运动带入两摩擦面之间。产生液体动压力条件是﹕两摩擦面有足够相对运动速度﹔润滑剂有适当黏度﹔两表面间间隙是收敛。 二、动压滑动轴承的安装 动压轴承结构图 1 装配前的准备 (1)准备所需的量具和工具。 (2)按照图纸要求检查轴套和轴承座的表面情况及配合过盈是否符合要求,然后按轴颈

常见电机轴承型号对照表

常见电机轴承型号对照表 进口轴承常见电机轴承型号对照表 电机型号标准轴承型号电缆接口中心高极数D-end N-end mm 71M2,4,6,86202-2RS/2Z6202-2RS/2Z M24*1.5 80M2,4,6,86204-2RS/2Z6204-2RS/2Z M24*1.5 90S2,4,6,86205-2RS/2Z6205-2RS/2Z M24*1.5 100L2,4,6,86206-2RS/2Z6206-2RS/2Z M30*2 112M2,4,6,86207-2RS/2Z6207-2RS/2Z M30*3 132S2,4,6,86208-2RS/2Z6208-2RS/2Z M30*4 132M2,4,6,86208-2RS/2Z6208-2RS/2Z M30*2 160M2,4,6,86209-2RS/2Z6209-2RS/2Z M36*2 160L2,4,6,86209-2RS/2Z6209-2RS/2Z M36*2 180M2,4,6,86210-2RS/2Z6210-2RS/2Z M36*2 180L2,4,6,86210-2RS/2Z6210-2RS/2Z M36*2 200L2,4,6,86212-2RS/2Z6212-2RS/2Z M48*2 225S4,6,86213-2RS/2Z6213-2RS/2Z M48*2 225M2,4,6,86213-2RS/2Z6213-2RS/2Z M48*2 250M2,4,6,86314/C36214/C3M64*2 280S26314/C46214/C4M64*2 280S4,6,86316/C36216/C3M64*2 280M26316/C46216/C4M64*2 280M4,6,86316/C36216/C3M64*2 315S26316/C46216/C42-M64*2 315S4,6,86319/C36219/C32-M64*2 315M26316/C46216/C42-M64*2 315M4,6,86319/C36219/C32-M64*2 315L26316/C46216/C42-M64*2 315L4,6,86319/C36219/C32-M64*2 355M26319M/C46319M/C42-M64*2

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

动静压轴承

静压轴承与动压轴承 1.静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 l 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到

100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 2.动压与静压SKF轴承特点及应用选例 磨床主轴进口轴承除采用滚动轴承外,一般常用的是动压滑动轴承,其特点是运动平稳,抗振性好,回转速度高。但动压滑动轴承必须在一定的运转速度下才能产生压力 油膜,实现纯液体摩擦,因此不适用于运转速度低的主轴部件,例如工件头架主轴等。另外,主轴在启动和停止时,由于速度太低,也不能建立压力油膜,因而不可避免地要发生轴颈和轴承金属表面的直接接触,引起磨损。 同时启动力矩较大,NSK轴承容易发热。主轴在运转过程中,轴心的偏移将随外载荷和转速等工作条件不同而不同,旋转精度和

轴承型号含义对照表

轴承型号含义对照表, 轴承类型代号 进口轴承常用类型代号(指型号的开头的数字或者字母,比如6200,6开头就是深沟球轴承,NU,NJ为圆柱滚子轴承): 调心球轴承—1; 调心滚子轴承—2; 圆锥滚子轴承—3; 推力球轴承—5 深沟球轴承—6; 角接触球轴承—7; 圆柱滚子轴承—N; 滚针轴承—NA; 如何去看懂一个轴承,6200轴承

最右边两位数字表示轴承的公称内经尺寸当内径在20~480MM范围的时候,内径乘以五就是内径尺寸 10~17。 右起第三位是直径系列代号:直径系列代号有7,8,9,0,1,2,3,4,5等外径尺寸依次递增。 右起第四位是宽度系列代号,用8,0,1,2,3,4,5,6表示宽度尺寸递增。相同内径的同类轴承,外廓尺寸大(外径,宽度)则承载能力强。 轴承类型对照 轴承型号含义------轴承有0-9类(没有5类) 0类:双列角接触球轴承(通常省略)例:(0)3204 A 1类:自调心球轴承例:1201 ETN9 2类:球面滚子轴承、球面滚子推力轴承例:22209 E 29328 E 3类:圆锥滚子轴承例:32016 X/Q 4类:双列深沟球轴承例:4206 ATN9 深沟球轴承尺寸 5类:推力球轴承例:51100 6类:深沟球轴承例:6213-2Z 7类:角接触球轴承例:7305 BECBM 8类:圆柱滚子推力轴承例:81111 TN N类:圆柱滚子轴承第二个字母,有时候第三个字母,用来确定法兰结构,例如:NJ,NU,NUP; 双列或多列圆柱滚子轴承的型号总是以NN开头。 例:NU 2317 ECJ C类:CARB轴承C 2205 QJ类:四点接触球轴承例:QJ 217 MA。 轴承类型特点作用型号对照 双列角接触球轴承:能承受较大的径向和轴向联合负荷和力矩负荷,用于限制轴和外壳双向轴向位移的部件中。常见的双列角接触球轴承型号:3200ATN轴承、3203A-ZTN轴承、3205ATN轴承、3207ATN轴承等 推力滚子轴承:推力圆锥滚子轴承,推力圆柱滚子轴承用于承受轴向载荷为主的轴、径向联合载荷,但径向载荷不得超过轴向载荷的55% 。与其他推力滚子轴承相比,此种轴承摩擦因数较低,转速较高,并具有调心性能。常见的推力滚子轴承型号:81120轴承、81209 轴承、81217轴承等 圆锥滚子轴承:圆锥滚子轴承可以承受大的径向载荷和轴向载荷。由于圆锥滚子轴承只能传递单向轴向载荷,因此,为传递相反方向的轴向载荷就需要另一个与之对称安装的圆锥滚子轴承。常见圆锥滚子轴承型号:52375/52637轴承、30312JR轴承、H913849轴承等 深沟球轴承:深沟球轴承主要承受径向载荷,也可同时承受径向载荷和轴向载荷。当其仅承受径向载荷时,接触角为零。常见的深沟球轴承型号:6200轴承,6308轴承,6201轴承,6000轴承,6309轴承等深沟球

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

液体静压轴承原理

液体静压轴承 靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。 简史 1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。1948年法国开始把液体静压轴承用于磨床上。现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。 分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型] )。它有供油压力恒定和供油流量恒定两种系统。供油压力恒定系统较为常用。

作用原理图2 [供油压力恒定系统的液体静压轴承]为供油压力恒定系 统的液体静压轴承和轴瓦的构造。外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油面与轴颈间的间隙从油腔压力降至环境压力。多数轴承在轴不受外力时,轴颈与轴承孔同心,各油腔的间隙、流量、压力均相等,这称为设计状态。当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化,这时轴承外力与各油腔油膜力的向量和相平衡。补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性能会影响轴承的承载能力、油膜刚度等。供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流器小孔节流器滑阀节流器、薄膜节流器等多种。供油流量恒定系统中的补偿元件有定量泵和定量阀补偿元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较] )由于轴的旋转,在轴承封油面上有液体动压力产生,有利于提高轴承的承

声发射检测技术用于滚动轴承故障诊断的研究综述_郝如江

振 动 与 冲 击 第27卷第3期 J OURNAL OF V IBRAT I ON AND SHOCK Vo.l 27No .32008 声发射检测技术用于滚动轴承故障诊断的研究综述 基金项目:863计划(2006AA04Z438)资助;河北省自然科学基金(E2007000649)资助 收稿日期: 2007-06-25 修改稿收到日期:2007-07-12 第一作者郝如江男,博士生,副教授,1971年生 郝如江1,2 , 卢文秀1 , 褚福磊 1 (1.清华大学精密仪器与机械学系,北京 100084;2.石家庄铁道学院计算机与信息工程分院,石家庄 050043) 摘 要:声发射是材料受力变形产生弹性波的现象,故障滚动轴承在运转过程中会产生声发射。从几个方面综合 阐述了国内外轴承故障声发射检测技术的研究和发展现状,即轴承故障声发射信号的产生机理,故障声发射信号的传播衰减特性,声发射信号的参数分析法和波形分析法对故障特征的描述,轴承故障声发射源的定位问题,根据信号特征进行 故障模式识别以及声发射检测和振动检测的比较问题。通过分析总结出滚动轴承声发射检测技术下一步的研究方向,并指出滚动轴承故障的声发射检测是振动检测的有力补充工具,特别是在轴承低转速和故障早期的检测中更能发挥作用。 关键词:声发射;滚动轴承;故障诊断 中图分类号:TH 113,TG 115 文献标识码:A 滚动轴承是各种旋转机械中最常用的通用零部件之一,也是旋转机械易损件之一。据统计,旋转机械的故障有30%是轴承故障引起的,它的好坏对机器的工 作状况影响极大[1] 。滚动轴承主要损伤形式有:疲劳、 胶合、磨损、烧伤、腐蚀、破损、压痕等[2] 。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。因此,对重要用途的轴承进行工况检测与故障诊断是非常必要的。 滚动轴承故障的检测诊断技术有很多种,如振动信号检测、润滑油液分析检测、温度检测、声发射检测等。在各种诊断方法中,基于振动信号的诊断技术应用最为广泛,该技术分为简易诊断法和精密诊断法两种。简易诊断利用振动信号波形的各种参数,如幅值、波形因数、波峰因数、概率密度、峭度系数等,以及各种解调技术对轴承进行初步判断以确认是否出现故障;精密诊断则利用各种现代信号处理方法判断在简易诊断中被认为是出现了故障的轴承的故障类别及原因。振动信号检测并非在任何场合都很适用,例如在汽轮机、航空器变速箱及液体火箭发动机等鲁棒性较低的系统中,轴承的早期微弱故障就会导致灾难性的后果,但是早期故障的振动信号很微弱,又容易被周围相对幅度较大的低频环境噪声所淹没,从而无法有效检测出故障的存在[3] 。由于声发射是故障结构本身发出的高频应力波 信号,不易受周围环境噪声的干扰[4] ,因此声发射检测方法在滚动轴承的故障诊断中得到了应用。 1 滚动轴承故障声发射检测机理 111 声发射检测技术原理 材料受到外力或内力作用产生变形或者裂纹扩展 时,以弹性波的形式释放出应变能的现象称为声发射[5] 。用仪器检测、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测技术,它是20世纪60年代发展起来的一种动态无损检测新技术,其利用物质内部微粒(包括原子、分子及粒子群)由于相对运动而以弹性波的形式释放应变能的现象来识别和了解物质或结构内部状态。 声发射信号包括突发型和连续型两种。突发型声发射信号由区别于背景噪声的脉冲组成,且在时间上可以分开;连续型声发射信号的单个脉冲不可分辨。实际上,连续型声发射信号也是由大量小的突发型信号组成的,只不过太密集而不能分辨而已。目前对于声发射信号的分析方法主要包括参数分析法和波形分析法。112 滚动轴承故障声发射源问题 滚动轴承在运行不良的情况下,突发型和连续型的声发射信号都有可能产生。轴承各组成部分(内圈、外圈、滚动体以及保持架)接触面间的相对运动、碰摩所产生的赫兹接触应力,以及由于失效、过载等产生的诸如表面裂纹、磨损、压痕、切槽、咬合、润滑不良造成的的表面粗糙、润滑污染颗粒造成的表面硬边以及通过轴承的电流造成的点蚀等故障,都会产生突发型的声发射信号。 连续型声发射信号主要来源于润滑不良(如润滑油膜的失效、润滑脂中污染物的浸入)导致轴承表面产生氧化磨损而产生的全局性故障、过高的温度以及轴承局部故障的多发等,这些因素造成短时间内的大量突发声发射事件,从而产生了连续型声发射信号。 滚动轴承在运行过程中,其故障(不管是表面损伤、裂纹还是磨损故障)会引起接触面的弹性冲击而产生声发射信号,该信号蕴涵了丰富的碰摩信息,因此可利用声发射来监测和诊断滚动轴承故障。与振动方法不同的是,声发射信号的频率范围一般在20kH z 以上,而振动信号频率比较低,因此它不受机械振动和噪声

液体静压轴承

液体静压轴承 yeti jingya zhoucheng 液体静压轴承 hydrostatic beari ng 靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。 简史1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。1948年法国开始把液体静压轴承用于磨床上。现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。 分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型]田丄.蚁4"上细求的'匹)。它有供油压力恒定和供油流量恒定两种系统。供油压力

恒定系统较为常用。

)由于轴的旋转,在轴承封油面上有液体动压力产生 ,有利于提高轴承的承 统的液体静压轴承和轴瓦的构造。外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油 面与轴颈间的间隙从油腔压力降至环境压力。多数轴承在轴不受外力时 ,轴颈与轴承孔同心,各油腔的间隙、 流量、压力均相等,这称为设计状态。当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化, 这时轴承外力与各油腔油膜力的向量和相平衡。补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性 能会影响轴承的承载能力、油膜刚度等。供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流 器?小孔节流器?滑阀节流器、薄膜节流器等多种。供油流量恒定系统中的补偿元件有定量泵和定量阀 补偿 元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较] 作用原理图2 [供油压力恒定系统的液体静压轴承 为供油压力恒定系 KJtW tfl 3俱笛匹労區定藝呢 二匚圖*卜栏无件池“體世铉直 晁术的就幕-代护扛隹比较

静压轴承与动压轴承

静压轴承与动压轴承 1.动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 l 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 2.动压与静压SKF轴承特点及应用选例 磨床主轴进口轴承除采用滚动轴承外,一般常用的是动压滑动轴承,其特点是运动平稳,抗振性好,回转速度高。但动压滑动轴承必须在一定的运转速度下

才能产生压力油膜,实现纯液体摩擦,因此不适用于运转速度低的主轴部件,例如工件头架主轴等。另外,主轴在启动和停止时,由于速度太低,也不能建立压力油膜,因而不可避免地要发生轴颈和轴承金属表面的直接接触,引起磨损。 同时启动力矩较大,NSK轴承容易发热。主轴在运转过程中,轴心的偏移将随外载荷和转速等工作条件不同而不同,旋转精度和稳定性有一定限制。静压轴承则不同,由于它是靠外界液压系统供给压力油形成压力油膜的,且油膜刚度决定于轴承本身的结构尺寸参数以及节流器的性能等,与主轴转速外载荷无关,因而可以保证轴承在不同的工作情况下都处于稳定的纯液体摩擦状态,轴承磨损很小,可长期保持工作精度。 此外,当采用可变节流器时,SKF轴承的油膜刚度很大,载荷变化时主轴轴心位置变化很小,可保持较高的旋转精度。采用静压轴承的缺点是:需要配备一套专门的供油系统,制造成本较高,占地面积也大,而且对润滑油的过滤要求非常严格,维护比较复杂。近年来有很多磨床的主轴轴承采用了动压轴承或静压轴承,取得了良好的效果。例如:M1080型、M10100型和MGl040高精度无心磨床,其主轴都采用动压FAG轴承,而且是五片式动压轴承。

动静压轴承工作原理和设计

几种典型液体动静压轴承结构特点与应用 2007-1-23 来源: 本文介绍了几种典型的、使用场合较多的液体动静压轴承的结构及特点,并举了各种动静压轴承在机床上应用的实例及效果。 液体动静压轴承精度高、刚度大、寿命长、吸振抗震性能好,主要用于精密加工机械及高速、高精度设备的主轴。既可用于旧机床改造,也可用于新机床配套。采用动静压轴承可以完全恢复机床因主轴轴承问题而丧失的加工精度和表面粗糙度;提高机床主轴精度和切削效率;并可多年连续使用而不需维修。多年来我国一些企业采用动静压轴承为新机床配套和进行国产和进口旧机床设备改造,均获得了满意的使用效果和显著的经济效益。 液体动静压轴承综合了静压轴承的优点,消除了这两种轴承的不足。其特点是采用整体式轴承与表面深浅腔结构油腔轴承系统工作时主轴被一层压力油膜浮起,主轴为经电机驱动已悬浮在轴承之间发生机械摩擦与磨损,从而提高轴承寿命且有良好的精度保持性。当电机驱动主轴旋转时,轴承油腔内由于阶梯效应自然形成动静压承载油膜,轴承成为具有静压压力场的东压滑动轴承。与三块、五块瓦相比,动静压轴承为整体式使结构,轴承与箱体孔接触面积大,为刚性连接,是油膜刚度得到充分的发挥利用。主轴工作时,油膜刚度是轴承静态刚度与动态刚度的叠加,有很强的承载能力。压力油膜的“均化”作用可使主轴回转精度高于轴颈和轴承的加工精度。 一、静压轴承的几种典型结构及特点 液体动静压轴承所采用油腔结构、节流器与静压轴承相比均不相同。静压轴承采用的固定节流器有“小孔”、“毛细管”等,可变节流器大多设置在轴承外部的静止部位,结构复杂,使用时常因节流器出面截流面太小,油液杂质易堆积而发生堵赛。 早期设计的动静压轴承为浅腔结构,分有节流器和无节流器两种。图1为节流器的动静压轴承,深腔与浅腔形成静压腔,浅腔兼备节流功能。压力油ps 进入中间环槽后,流入深腔和浅腔,经两端的轴向封油面排出,当主轴在轴承中高速旋转时,由于浅腔同轴向封油面台阶及主轴中心的轴承中微小偏心,自然形成楔形油膜而产生动压承载油膜。主轴只能按图1所示W方向旋转。

轴承运行状态监测与故障诊断方法研究【文献综述】

毕业设计开题报告 测控技术与仪器 轴承运行状态监测与故障诊断方法研究 1前言 装备制造业是为国民经济和国防建设提供技术的重要产业,而振兴装备制造业的重中之重是提高装备的创新和产品的国产化,轴承产品作为装备制造业中重大装备的基础零件,也必须实现其自主创新和国产化。从文献所知,国务院在《关于加快振兴装备制造业若干意见》中提出,选择16个对国家经济和国防建设有重要影响的关键领域,以重大装备为重点,尽快扩大自主装备的市场占有率[1]。而在这16个关键领域中的重大技术装备中,绝大部分都要装用轴承,并且需要高技术的轴承来保证其精度、性能、寿命和可靠性。据数据显示,至2010年,这16个关键领域每年要配套轴承约 550.5万套,产值约 116.5亿元。滚动轴承作为机械设备中重要的零件,是机械设备的重要故障源之一。统计表明:在使用滚动轴承的机械中,大概有 30%的机械故障是由滚动轴承引起的。在感应电机故障中,滚动轴承故障约占电机故障的40%左右,而齿轮箱各类故障中的轴承故障率仅次于齿轮占20%。有关资料表明,我国现有的机车用的滚动轴承,每年约40%要经过下车检验,其中的33%左右被更换。 因此,改定期维修为状态监控维修,研究机车轴承故障监测和诊断,有重要的经济效益和实用价值[2]。据统计,对机械设备应用状态监测与故障诊断技术,事故发生率可降低75%,维修费用可减少25~50%。滚动轴承的状态监测与故障诊断技术在了解轴承的性能状态和及时发现潜在故障等方面起着至关重要的作用,并且可以有效提高机械设备的运行管理水平及维修效能,具有显著的经济效益。 2主题 现在,我国在滚动轴承监测与故障诊断技术方面的研究经历了2个重要阶段:从70年代末到80年代初,主要吸收国外先进技术,并对一些故障原理和诊断方

Bearing,含油轴承解析

目录Contents 第五章 磁铁(Magnet) . . . . . . . . . . . . . . . . . 1 §5.1 永磁材料(Permanent Magnet Material). . . . . . 1 5.1.1 永磁材料的特性. . . . . . . . . . . . . . . . . . . . . . . . 1 1 剩磁Br 、矫顽力Hcb . . . . . . . . . . . . . . . . . . . . 1 2 内禀矫顽力Hcj . . . . . . . . . . . . . . . . . . . . . . . . 1 3 回复磁导率μr . . . . . . . . . . . . . . . . . . . . . . . . 1 4 最大磁能积 (BH)max . . . . . . . . . . . . . . . . . . 2 5 磁感应温度系数αb 、居里点Tc . . . . . . . . . . 2 6 各向同性輿各向异性 . . . . . . . . . . . . . . . . . . 2 5.1.2 永磁鐵氧體(Ferrite Magnet) . . . . . . . . . . . . . 3 1 鐵氧體的特點(Features of Ferrite) . . . . . . . . . 3 2 濕(Wet)壓成型與干 (Dry)壓成型. . . . . . . . . . 3 3 鋇(Ba)鐵氧體和鍶 (Sr)鐵氧體 . . . . . . . . . . . 4 4 粘接鐵氧體―橡膠磁鐵(Rubber Magnet) . . . 4 5 溫度特性、低溫不可逆去磁 . . . . . . . . . . . . . 5 5.1.3 釹鐵硼(NdFeB) . . . . . . . . . . . . . . . . . . . . . . . 5 5.1.4 鋁鎳鈷(AlNiCo)及稀土鈷(Rare Earth Co) . . 6 5.1.5 国內外電機用永磁材料磁性能 . . . . . . . . . . 6 §5.2 永磁電機對磁鐵的性能要求 . . . . . . . . . . . . 9 §5.3 磁鐵結構設計(Structure Design) . . . . . . . . 11 5.3.1 基本要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.3.2 直流馬達磁铁结构設計 . . . . . . . . . . . . . . . . 12 5.3.2.1 基本结构形式 . . . . . . . . . . . . . . . . . . . . . . 12 5.3.2.2 主要尺寸的确定 . . . . . . . . . . . . . . . . . . . . 12 5.3.3 永磁同步电机磁铁结构設計 . . . . . . . . . . . 15 5.3.3.1 磁路结构形式 . . . . . . . . . . . . . . . . . . . . . . 15 5.3.3.2 主要尺寸的确定 . . . . . . . . . . . . . . . . . . . 16 5.3.4 JEI 常用磁铁 . . . . . . . . . . . . . . . . . . . . . . . . . 18 §5.4 磁鐵裝配 (Magnet Fixing) . . . . . . . . . . . . . 19 5.4.1 彈弓固定 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.2 膠粘劑固定 . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4.3 橡膠磁鐵的裝配 . . . . . . . . . . . . . . . . . . . . . 20 5.4.4 同步電機磁鐵裝配 . . . . . . . . . . . . . . . . . . . 20 §5.5 充磁(Magnetization) . . . . . . . . . . . . . . . . . . . 20 5.5.1 充磁的基本要求 . . . . . . . . . . . . . . . . . . . . . . 21 5.5.2 充磁方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5.3 充磁夾具(Tooling) . . . . . . . . . . . . . . . . . . . . 24 第六章 軸承 (Bearing) . . . . . . . . . . . . . . . . . . . 37 §6.1 杯士(Bushing) . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 概述(Introduction) . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 杯士的工作特性(Operating Characteristics) .. 38 6.1.2.1 滑動特性(Sliding Properties) . . . . . . . . . . . . 38 6.1.2.2 摩擦系數(Friction Coefficient) . . . . . . . . . . . 38 6.1.2.3 工作溫度(Working Temp) . . . . . . . . . . . . . . . 39 6.1.2.4 負載特性(Load Properties) . . . . . . . . . . . . . . 39 6.1.2.5 杯士壽命(Bushing life) . . . . . . . . . . . . . . . . . 40 6.1.3 杯士潤滑(Lubrication for Bushing) . . . . . . . . 40 6.1.3.1 流体潤滑(liquid Lubrication) . . . . . . . . . . . 40 6.1.3.2 邊界潤滑(Boundary Lubrication) . . . . . . . . . 42 6.1.3.3 混合潤滑(Mixing Lubrication) . . . . . . . . . . . 43 6.1.3.4 摩擦特性曲線(stribeck curve) . . . . . . . . . . . . 43 6.1.4 杯士油(Bushing Oils) . . . . . . . . . . . . . . . . . . . . 44 6.1.5 盃士入油(Oil Impregnation) . . . . . . . . . . . . . . 47 6.1.6 盃士設計(Bushing Design) . . . . . . . . . . . . . . . 49 6.1.6.1 盃士的基本結構(Configuration) . . . . . . . . . 49 6.1.6.2 主要尺寸參數 (Dimensional Parameters) . . . 50 6.1.7 盃士的磨損(Wear) . . . . . . . . . . . . . . . . . . . . . . 54 6.1.8 盃士裝配(Assembly) . . . . . . . . . . . . . . . . . . . . 57 §6.2 波盃令(Ball Bearing) . . . . . . . . . . . . . . . . . . . 60 6.2.1 波盃令型號识别(Grade Identification) . . . . . . 60 6.2.2 波盃令外形結構及主要尺寸 . . . . . . . . . . . . . 61 6.2.3 波盃令精度(Precision) . . . . . . . . . . . . . . . . . . 64 6.2.4 波盃令游隙(Play) . . . . . . . . . . . . . . . . . . . . . . 64 6.2.5 波盃令工作特性(Operating Characteristics) . . 65 6.2.5.1 負載能力(Load Capacity) . . . . . . . . . . . . . . 65 6.2.5.2 速度特性(Speed Characteristic) . . . . . . . . .. . 65 6.2.5.3 摩擦特性(Friction Characteristic) . . . . . . .. 65 6.2.5.4 調心性(Self-Align Capacity) . . . . . . . . . . . . 66 6.2.5.5 振動(Vibration) 和噪聲(Noise) . . . . . . . . . . 67 6.2.5.6 壽命(Life) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.6 波盃令潤滑(Lubrication) . . . . . . . . . . . . . . . . . 67 6.2.7 波盃令失效形式(Failure Mode) . . . . . . . . . . . 69 6.2.8 波盃令裝配(Assembly) . . . . . . . . . . . . . . . . . 69 §6.3 盃士與波盃令對比 (Comparison) . . . . . . . . . 70

几种典型液体静压轴承结构特点与应用

几种典型液体静压轴承结构特点与应用 本文介绍了几种典型的、使用场合较多的液体动静压轴承的结构及特点,并举了各种动静压轴承在机床上应用的实例及效果。 液体动静压轴承精度高、刚度大、寿命长、吸振抗震性能好,主要用于精密加工机械及高速、高精度设备的主轴。既可用于旧机床改造,也可用于新机床配套。采用动静压轴承可以完全恢复机床因主轴轴承问题而丧失的加工精度和表面粗糙度;提高机床主轴精度和切削效率;并可多年连续使用而不需维修。多年来我国一些企业采用动静压轴承为新机床配套和进行国产和进口旧机床设备改造,均获得了满意的使用效果和显著的经济效益。 液体动静压轴承综合了静压轴承的优点,消除了这两种轴承的不足。其特点是采用整体式轴承与表面深浅腔结构油腔轴承系统工作时主轴被一层压力油膜浮起,主轴为经电机驱动已悬浮在轴承之间发生机械摩擦与磨损,从而提高轴承寿命且有良好的精度保持性。当电机驱动主轴旋转时,轴承油腔内由于阶梯效应自然形成动静压承载油膜,轴承成为具有静压压力场的东压滑动轴承。与三块、五块瓦相比,动静压轴承为整体式使结构,轴承与箱体孔接触面积大,为刚性连接,是油膜刚度得到充分的发挥利用。主轴工作时,油膜刚度是轴承静态刚度与动态刚度的叠加,有很强的承载能力。压力油膜的“均化”作用可使主轴回转精度高于轴颈和轴承的加工精度。 一、静压轴承的几种典型结构及特点 液体动静压轴承所采用油腔结构、节流器与静压轴承相比均不相同。静压轴承采用的固定节流器有“小孔”、“毛细管”等,可变节流器大多设置在轴承外部的静止部位,结构复杂,使用时常因节流器出面截流面太小,油液杂质易堆积而发生堵赛。 早期设计的动静压轴承为浅腔结构,分有节流器和无节流器两种。图1为节流器的动静压轴承,深腔与浅腔形成静压腔,浅腔兼备节流功能。压力油ps 进入中间环槽后,流入深腔和浅腔,经两端的轴向封油面排出,当主轴在轴承中高速旋转时,由于浅腔同轴向封油面台阶及主轴中心的轴承中微小偏心,自然形成楔形油膜而产生动压承载油膜。主轴只能按图1所示W方向旋转。 图2为纯浅腔结构的动静压轴承。压力又通过环形槽进入两侧的若干浅腔。该轴承结构简单,但静压承载力较低,可双向旋转。

常规深沟球轴承型号尺寸对照表

型号内径外径厚度型号内径外径厚度型号 内径外径厚度型号内径外径厚度型号 内径外径厚度60227 3.562331046333135691 1.55268113160339562441356344165692263681 1.5426044124625516563551966933846822526055145626619663662276944114683373606617662772276377269695513468449460771966288248638828969661556855115608822762992686399301069771756866135609924762001030963001035116988196687714560001026862011232106301123712699920668881656001122886202153511630215421369001022668991756002153296203174012630317471469011224668001019560031735106204204714630420521569021528768011221560042042126205255215630525621769031730768021524560052547126206306216630630721969042037968031726560063055136207357217630735802169052542968042032760073562146208408018630840902369063047968052537760084068156209458519630945100256907355510680630427600945751662105090206310501102769084062126807354776010508016621155100216311551202969094568126808405276011559018621260110226312601303169105072126809455876012609518621365120236313651403369115580136810506576013651001862147012524631470150356912608513681155729601470110206215751302563157516037691365901368126078106015751152062168014026631680170396914701001668136585106016801252262178515028631785180416915751051668147090106017851302262189016030631890190436916801101668157595106018901402462199517032631995200456917851201868168010010601995145246220100180346320100215476918901251868178511013602010015024622110519036632110522549691995130186818901151360211051602662221102003863221102405069201001402068199512013602211017028622412021540632412026055692110514520682010012513型号内径外径厚度型号内径外径厚度型号内径外径厚度型号内径外径厚度型号内径外径厚度671121MR5225 2.5R1-4 1.984 6.350 3.571160001028862200103014672242MR6226 2.5R1-5 2.3807.938 3.57116001122876220112321467336 2.5MR72273R133 2.380 4.762 2.38016002153286220215351467447 2.5MR82 2.58 2.5R144 3.175 2.380 2.77916003173586220317401667558 2.5MR63362R2-5 3.1757.938 3.5711600420428622042047186766103MR6336 2.5R2-6 3.1759.525 3.5711600525478622052552186777113MR8338 2.5R155 3.9677.938 3.175160063055962206306220678812 3.5MR83383R156 4.7627.938 3.175160073562962207357223679914 4.5MR9339 2.5R166 4.7629.525 3.175160084068962208408023670010154MR93394R168 6.3509.525 3.1751600945751062209458523670112184MR74472R188 6.35012.700 3.1751601050801062210509023670215214MR7447 2.5R18107.93812.700 3.967629001022763000102612670317234MR84482R2 3.1759.525 3.967628001019663001122812670420274MR84483R2A 3.17512.700 4.366638001019763002153213670525324MR1044103R3 4.76212.700 4.978638011221763003173514670630374MR1044104R3A 4.76215.875 4.978638021524763004204216670735445MR85582R4 6.35015.875 4.978638031726763005254716670840506MR8558 2.5R4A 6.35019.0507.412620001030963006305519670945556MR9559 2.5R69.52522.2257.4126200112281063007356224671050626MR95593R812.70028.5757.93860/2222441263008406821671155687MR1055103R1015.87534.9258.73162/2222501462300103517MR1177113MR1055104R1219.05041.27511.11363/2222561662301123717MR1377134MR1155114R1422.22547.62512.70060/2828521262302154217MR128812 2.5MR106610 2.5R1625.40050.80012.70062/2828581662303174719MR128812 3.5MR1066103R1828.57553.97512.70063/2828681862304205221MR148814 3.5MR1266123R2031.75057.15012.70060/3232581362305256224MR1488144MR1266124R2234.92563.50014.28862/3232651762306307227MR137 713 3 MR117 711 2.5 R24 38.10063.500 14.288 63/32 327520 62307 358031 633系列691系列681系列附: 常规深沟球轴承尺寸对照表(供参考) 671系列MR系列 R型英制系列薄壁系列 加厚系列 602系列623系列

相关文档
最新文档