光纤通信复习资料必看

光纤通信复习资料必看
光纤通信复习资料必看

复习提纲

第一章知识点小结:

1.什么是光纤通信 3、光纤通信和电通信的区别。

2.基本光纤通信系统的组成和各部分作用。

第二章知识点小结

1、光能量在光纤中传输的必要条件(对光纤结构的要求)。

2、突变多模光纤数值孔径的概念及计算。

3、弱导波光纤的概念。

4、相对折射率指数差的定义及计算。

5、突变多模光纤的时间延迟。

6、渐变型多模光纤自聚焦效应的产生机理。

7、归一化频率的表达式。

8、突变光纤和平方律渐变光纤传输模数量的计算。

第三章知识点小结

1、纤通信中常用的半导体激光器的种类。

2、半导体激光器的主要由哪三个部分组成

3、电子吸收或辐射光子所要满足的波尔条件。

4、什么是粒子数反转分布

5、理解半导体激光产生激光的机理和过程。

6、静态单纵模激光器。

7、半导体激光器的温度特性。 8、DFB激光器的优点。

9、LD与LED的主要区别 10、常用光电检测器的种类。

11、光电二极管的工作原理。 12、PIN和APD的主要特点。

13、耦合器的功能。 14、光耦合器的结构种类。

15、什么是耦合比 16、什么是附加损耗

17、光隔离器的结构和工作原理。

第四章知识点小结

1、数字光发射机的方框图。

2、光电延迟和张驰振荡。

3、激光器为什么要采用自动温度控

4、数字光接收机的方框图。

5、光接收机对光检测器的要求。

6、什么是灵敏度

7、什么是误码和误码率 8、什么是动态范围

9、数字光纤通信读线路码型的要求。 10、数字光纤通信系统中常用的码型种类。

第五章知识点小结

1、SDH的优点。

2、SDH传输网的主要组成设备。

3、SDH的帧结构(STM-1)。

4、SDH的复用原理。

5、三种误码率参数的概念。

6、可靠性及其表示方法。

7、损耗对中继距离限制的计算。 8、色散对中继距离限制的计算。

第七章点知识小结

1、光放大器的种类

2、掺铒光纤放大器的工作原理

3、掺铒光纤放大器的构成方框图

4、什么WDM

5、光交换技术的方式

6、什么是光孤子

7、光孤子的产生机理 8、相干光通信信号调制的方式

9、相干光通信技术的优点

光纤通信复习

第一章

1.什么是光纤通信

光纤通信,是指利用光纤来传输光波信号的一种通信方式

2.光纤通信和电通信的区别。

(1)电通信的载波是电波,光纤通信的载波是光波。

(2)电通信用电缆传输信号,光通信用光纤传输信号。光缆具有比电缆更小的高频率传输损耗

3.基本光纤通信系统的组成和各部分作用。

基本光纤传输系统由光发射机、光纤线路和光接收机三个部分组成

1.光发射机

功能:是把输入电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。核心:光源。要求光源输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。

2. 光纤线路

功能:把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。

光纤线路由光纤、光纤接头和光纤连接器组成。

光纤线路的性能主要由缆内光纤的传输特性决定。

3. 光接收机

功能:把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。

核心:光检测器。对光检测器的要求是响应度高、噪声低和响应速度快。

光接收机把光信号转换为电信号的过程,是通过光检测器的检测实现的。检测方式有直接检测和外差检测两种。

第二章

1、光能量在光纤中传输的必要条件。

设折射率,纤芯为n1;包层为n2,则光能量在光纤中传输的必要条件是n1>n2。

2、突变多模光纤数值孔径的概念及计算。

1. 突变型多模光纤(全反射导光)

(1)相对折射率指数差(纤芯和包层折射率分别为n1和n2)

定义: 2121212))((n n n n n +-=

弱导波光纤中n1和n2相差很少,则 n1+n2 =2 n1

定义临界角θc 的正弦为数值孔径(Numerical Aperture, NA)。根据定义和斯奈尔定律

设Δ=,n1=,得到NA=或θc=°。

NA 表示光纤接收和传输光的能力。

1)NA 越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好。

2)NA 越大 经光纤传输后产生的信号畸变越大

3、弱导波光纤的概念。 纤芯折射率为n1保持不变,到包层突然变为n2。这种光纤一般纤芯直径2a=50~80 μm ,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。带宽只有10~20 MHz ·km ,一般用于小容量(8 Mb/s 以下)短距离(几km 以内)系统。

4、相对折射率指数差的定义及计算。 参考2

5、突变多模光纤的时间延迟。

现在我们来观察光线在光纤中的传播时间。根据图,入射角为θ的光线在长度为L(ox)的光纤中传输,所经历的路程为l(oy), 在θ不大的条件下,其传播时间即时间延迟为

式中c 为真空中的光速。由式得到最大入射角(θ=θc)和最小入射角(θ=0)的光线之间时间延迟差近似为

6、渐变型多模光纤自聚焦效应的产生机理。

渐变型多模光纤的光线轨迹是传输距离z 的正弦函数,对于确定的光纤,其幅度的大小取决于入射角θ0, 其周期Λ=2π/A=2πa/ , 取决于光纤的结构参数(a, Δ), 而与入射角θ0无关。这说明不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在P 点

渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚在同一点上,而且这些光线的时间延迟也近似相等。

这是因为

(1)光线传播速度v(r)=c/n(r)(c 为光速),入射角大的光线经历的路程较长,但大部分路程远离中心轴线,n(r)较小,传播速度较快,补偿了较长的路程。

212

2212n n n -=?有:

121/)(n n n -≈??≈-==2sin 12221n n n NA C θ)2

1(sec 211111θθτ+≈==c L n c L n c l n ?≈==?c L n NA c n L c n L c 12121)(22θτ?2

(2)入射角小的光线情况正相反,其路程较短,但速度较慢。所以这些光线的时间延迟近似相等。

7、突变光纤和平方律渐变光纤传输模数量的计算。

对于突变型光纤,g →∞,M=V 2/2; 对于平方律渐变型光纤,g=2,M=V 2/4。

8、归一化频率的表达式。

V= 见书22应该没有小于等于的 9、单模条件和截止波长。 单模传输条件为 V= 可以看到,对于给定的光纤(n1、n2和a 确定),存在一个临界波长λc ,当λ<λc 时,是多模传输,当λ>λc 时,是单模传输,这个临界波长λc 称为截止波长。由此得到

10、三种色散的定义。

模式色散是由于不同模式的时间延迟不同而产生的, 它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关。

材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光(实际光源不是纯单色光),其时间延迟不同而产生的。这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度。

波导色散是由于波导结构参数与波长有关而产生的, 它取决于波导尺寸和纤芯与包层的相对折射率差。

11、3dB 带宽的表达式及相关计算。

(1)用脉冲展宽表示时, 光纤色散可以写成

Δτ=(Δτ2n+Δτ2m+Δτ2w)1/2

式中Δτn 、Δτm 、Δτw 分别为模式色散、材料色散和波导色散所引起的脉冲展宽的均方根值。

将归一化频率响应|H(f)/H(0)|下降一半或减小3dB 的频率定义为光纤3dB 光带宽f3 dB f 3 dB = 课本是441(分子)

12、光纤损耗产生的机理。

光纤的损耗在很大程度上决定了系统的传输距离。

各种机理产生的损耗与波长的关系,这些机理包括吸收损耗和散射损耗两部分。

(1)吸收损耗

1)SiO2引起的固有吸收(本征损耗)

由电子跃迁引起的紫外吸收;由分子振动引起的红外吸收

2

)2()2(2122v g g n k a g g M +=?+=405.222221≤-n n a λπ405.222221=-n n a C λπ2.405

V 405.2λλλλ==c C V 或)(440Z MH τ?405.222221≤-n n a λ

π

2)杂质引起的吸收。

过渡金属(例如Fe2+、Co2+、Cu2+)、氢氧根(OH-)离子

(2)散射损耗

1)瑞利(Rayleigh)散射(本征损耗)

主要由材料微观密度不均匀引起,与波长λ四次方成反比。

2)由光纤结构缺陷(如气泡)引起的散射

13、非零色散光纤。

是一种改进的色散移位光纤。在密集波分复用(WDM)系统中,当使用波长μm色散为零的色散移位光纤时,由于复用信道多,信道间隔小,出现了一种称为四波混频的非线性效应。这种效应是由两个或三个波长的传输光混合而产生的有害的频率分量,它使信道间相互干扰。如果色散为零,四波混频的干扰十分严重,如果有微量色散,四波混频反而减小。这种光纤在密集波分复用和孤子传输系统中使用,实现了超大容量超长距离的通信

14、光缆缆芯的结构类型。

保护光纤固有机械强度的方法,通常是采用塑料被覆和应力筛选。光缆一般由缆芯和护套两部分组成,光缆的传输特性取决于被覆光纤。

1.缆芯通常包括:

被覆光纤(或称芯线)

加强件通常用杨氏模量大的钢丝或非金属材料例如芳纶纤维(Kevlar)做成。

2. 护套

护套起着对缆芯的机械保护和环境保护作用,要求具有良好的抗侧压力性能及密封防潮和耐腐蚀的能力

缆芯结构的特点,光缆可分为四种基本形式。

(1)层绞式把松套光纤绕在中心加强件周围绞合而构成,采用松套光纤的缆芯可以增强抗拉强度,改善温度特性

(2)骨架式把紧套光纤或一次被覆光纤放入中心加强件周围的螺旋形塑料骨架凹槽内而构成。这种结构的缆芯抗侧压力性能好,有利于对光纤的保护。

(3)中心束管式把一次被覆光纤或光纤束放入大套管中,加强件配置在套管周围而构成。这种结构的加强件同时起着护套的部分作用,有利于减轻光缆的重量。

(4)带状式把带状光纤单元放入大套管内,形成中心束管式结构,也可以把带状光纤单元放入骨架凹槽内或松套管内,形成骨架式或层绞式结构。带状式缆芯有利于制造容纳几百根光纤的高密度光缆,这种光缆已广泛应用于接入网。

15、光纤特性参数的测量方法。(光纤的特性参数很多,基本上可分为几何特性、光学特性和传输特性三类。)每个特性参数有多种不同的测量方法

基准法:严格按照定义进行测量的方法。

替代法:在某种意义上与定义相一致的测量方法。

当两者有争议时,应以基准法为准。

光纤损耗测量有两种基本方法:一种是测量通过光纤的传输光功率,称剪断法和插入法;另一种是测量光纤的后向散射光功率,称后向散射法。(看书)

第三章

1、光纤通信中常用的半导体激光器的种类。

半导体激光二极管(LD ) 发光二极管(LED ) DFB

2、半导体激光器的主要由哪三个部分组成

激励源、激光物质和谐振腔

3、电子吸收或辐射光子所要满足的波尔条件。电子在低能级E 1的基态和高能级E 2的激发态之间的跃迁有三种基本方式:受激吸收 自发辐射 受激辐射

电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,

E2-E1=hf 12

式中,h=×10-34J ·s ,为普朗克常数,f 12为吸收或辐射的光子频率。

4、什么是粒子数反转分布

设在单位物质中,处于低能级E1和处于高能级E2(E2>E1)的原子数分别为N1和N2。当系统处于热平衡状态时,存在下面的分布:

式中, k=×10-23J/K ,为波尔兹曼常数,T 为热力学温度。由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。

吸收物质:如果N1>N2,即受激吸收大于受激辐射。当光通过这种物质时,光强按指数衰减。 激活物质:如果N2>N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用。 N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称为粒子(电子)数反转分布。

5、理解半导体激光产生激光的机理和过程。

过程:由于限制层的带隙比有源层宽,施加正向偏压后,P 层的空穴和

N 层的电子注入有源层。P 层带隙宽,对注入电子形成了势垒, 注入到有源层的电子不可能扩散到P 层。同理,注入到有源层的空穴也不可能扩散到N 层。有源层的折射率比限制层高,产生的激光被限制在有源区内。 书本52页 机理:半导体激光器是向半导体PN 结注入电流,实现粒子数反转,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡。

6、静态单纵模激光器。

随着驱动电流的增加,纵模模数逐渐减少, 谱线宽度变窄。这种变化是由于谐振腔对光波频率和方向的选择,使边模消失、主模增益增加而产生的。当驱动电流足够大时,多纵模变为单纵模,这种激光器称为静态单纵模激光器。

7、半导体激光器的温度特性。

注:激光器输出光功率随温度而变化有两个原因: 一是激光器的阈值电流Ith 随温度升高而增大,二是外微分量子效率ηd 随温度升高而减小。温度升高时,Ith 增大,ηd 减小, 输)ex p(1212kT

E E N N --=

出光功率明显下降,达到一定温度时,激光器就不激射了。当以直流电流驱动激光器时,阈值电流随温度的变化更加严重。当对激光器进行脉冲调制时,阈值电流随温度呈指数变化。

8、DFB激光器的优点。

①单纵模激光器。

②谱线窄,波长稳定性好。

③动态谱线好。

④线性好。广泛用于模拟调制的有线电视光纤传输系统中。想详细点就看书(57)

9、LD与LED的主要区别(课件只是两点,可看课后小结)

(1)LD发射的是受激辐射光,LED发射的是自发辐射光。

(2)LED不需要光学谐振腔,没有阈值。

10、常用光电检测器的种类。

PIN光电二极管雪崩光电二极管(APD)

11、光电二极管的工作原理。

光电二极管(PD)把光信号转换为电信号的功能,是由半导体PN结的光电效应实现的。(课本61)

12、PIN和APD的主要特点。

由于PN结耗尽层只有几微米,大部分入射光被中性区吸收,因而光电转换效率低,响应速度慢。为改善器件的特性,在PN结中间设置一层掺杂浓度很低的本征半导体(称为I),这种结构便是常用的PIN光电二极管。

随着反向偏压的增加,开始光电流基本保持不变。当反向偏压增加到一定数值时,光电流急剧增加,最后器件被击穿,这个电压称为击穿电压UB。APD就是根据这种特性设计的器件参考课本66 有性能的比较,上面只是概念

13、耦合器的功能。

功能:把一个输入的光信号分配给多个输出,或把多个输入的光信号组合成一个输出。

对光纤线路的影响:插入损耗,反射和串扰噪声

14、光耦合器的结构种类。

1)T形耦合器功能是把一根光纤输入的光信号按一定比例分配给两根光纤,或把两根光纤输入的光信号组合在一起,输入一根光纤。主要用作不同分路比的功率分配器或功率组合器2)星形耦合器功能是把n根光纤输入的光功率组合在一起,均匀地分配给m根光纤, m 和n不一定相等。这种耦合器通常用作多端功率分配器。

3)定向耦合器其功能是分别取出光纤中向不同方向传输的光信号。。定向耦合器可用作分路器,不能用作合路器。

4)波分复用器/解复用器这是一种与波长有关的耦合器,波分复用器的功能是把多个不同波长的发射机输出的光信号组合在一起,输入到一根光纤;解复用器是把一根光纤输出的多个不同波长的光信号,分配给不同的接收机。

15、什么是耦合比

是一个指定输出端的光功率Poc 和全部输出端的光功率总和的比值,用%表示。

16、什么是附加损耗

由散射、吸收和器件缺陷产生的损耗,是全部输入端的光功率总和Pit 和全部输出端的光功率总和Pot 的比值,用分贝表示

Le=10lg 17、光隔离器的结构和工作原理。(必考)

隔离器就是一种非互易器件,其主要作用是只允许光波往一个方向上传输,阻止光波往其他方向特别是反方向传输。

主要用在激光器或光放大器的后面,以避免反射光返回到该器件致使器件性能变坏。

插入损耗和隔离度是隔离器的两个主要参数,对正向入射光的插入损耗其值越小越好,对反向反射光的隔离度其值越大越好

课本72

第四章

1、数字光发射机的方框图。(必考)

功能:把电端机输出的数字基带电信号转换为光信号,并用耦合技术有效注入光纤线路。 数字光发射机的方框图如图所示,主要有光源和电路两部分。光源是实现电/光转换的关键器件,在很大程度上决定着光发射机的性能。电路的设计应以光源为依据,使输出光信号准确反映输入电信号。 课本79

2、光电延迟和张驰振荡。

输出光脉冲和注入电流脉冲之间存在一个初始延迟时间,称为电光延迟时间td ,其数量级一般为ns 。 当电流脉冲注入激光器后,输出光脉冲会出现幅度逐渐衰减的振荡, 称为张弛振荡,其振荡频率fr(=ωr/2π)一般为~2 GHz 。

张弛振荡和电光延迟通信系统的影响(限制调制速率):

(1)当最高调制频率接近张弛振荡频率时,波形失真严重,会使光接收机在抽样判决时增加误码率,因此实际使用的最高调制频率应低于张弛振荡频率。

(2)电光延迟要产生码型效应。当电光延迟时间td 与数字调制的码元持续时间T/2为∑===N n on oc Ot OC p p P P CR 1

?

?????=∑∑==N n N

n ot it Pin Pin p P 11lg 10拉弟转器

振器射光阻塞

入偏SO P

相同数量级时,会使“0”码过后的第一个“1码的脉冲宽度变窄,幅度减小,严重时可能使单个“1”码丢失, 这种现象称为“码型效应”

3、激光器为什么要采用自动温度控制

1)温度升高,阈值电流增加,外微分量子效率减小,输出光脉冲幅度下降。

2)由于激光器结区温度的变化使得输出光脉冲的形状发生变化,这种效应称为“结发热效应”,“结发热效应”将引起调制失真

4、数字光接收机的方框图。(必考)

直接强度调制、直接检测方式的数字光接收机方框图示于图,主要包括光检测器、前置放大

器、主放大器、均衡器、 时钟提取电路、取样判决器以及自动增益控制(AGC)电路。

2)主放大器和AGC 决定着光接收机的动态范围

3)均衡器:目的是对放大器出来的已产生畸变(失真)的电信号进行补偿,使输出信号的波形适合于判决,以消除码间干扰,减小误码率。

4)再生电路:包括判决电路和时钟提取电路,它的功能是从放大器输出的信号与噪声混合的波形中提取码元时钟,并逐个地对码元波形进行取样判决,以得到原发送的码流。时钟提取的目的是为了实现收发同步。

5、光接收机对光检测器的要求。

光检测器是光接收机实现光/电转换的关键器件,其性能特别是响应度和噪声直接影响光接收机的灵敏度。对光检测器的要求如下:

(1) 波长响应要和光纤低损耗窗口 μm 、 μm 和 μm)兼容;

(2) 响应度要高, 在一定的接收光功率下, 能产生最大的光电流;

(3) 噪声要尽可能低, 能接收极微弱的光信号;

(4) 性能稳定, 可靠性高, 寿命长, 功耗和体积小。 目前,适合于光纤通信系统应用的光检测器有PIN 光电二极管和雪崩光电二极管(APD)。

6、什么是灵敏度

灵敏度Pr : 在保证通信质量(限定误码率或信噪比)的条件下, 光接收机所需的最小平均接收光功率〈P 〉min ,并以dBm 为单位。由定义得到 Pr=10lg 灵敏度表示光接收机调整到最佳状态时,能够接收微弱光信号的能力。提高灵敏度意味着能够接收更微弱的光信号

7、什么是误码和误码率

误码:把发射的“0”码误判为“1”码,或把“1”码误判为“0”码。误码率:光接收机对码元误判的概率称为误码率(在二元制的情况下,等于误比特率,BER), 用较长时间间隔内,在传输的码流中,误判的码元数和接收的总码元数的比值来表示 光检测器偏压控制器AGC 电路均衡器判决器

时钟提取再生码流光信号)](10)min([3dBm w P -><

8、什么是动态范围

动态范围(DR)的定义是:在限定的误码率条件下,光接收机所能承受的最大平均接收光功率〈P 〉max 和所需最小平均接收光功率〈P 〉min 的比值,用dB 表示。根据定义 DR=10lg

动态范围是光接收机性能的另一个重要指标,它表示光接收机接收强光的能力,数字光接收机的动态范围一般应大于15 dB 。 由于使用条件不同,输入光接收机的光信号大小要发生变化,为实现宽动态范围,采用AGC 是十分有必要的。AGC 一般采用直流运算放大器构成的反馈控制电路来实现。对于APD 光接收机,AGC 控制光检测器的偏压和放大器的输出; 对于PIN 光接收机,AGC 只控制放大器的输出。

9、数字光纤通信读线路码型的要求。

在光纤通信系统中,从电端机输出的是适合于电缆传输的双极性码。光源不可能发射负光脉冲,因此必须进行码型变换,以适合于数字光纤通信系统传输的要求。数字光纤通信系统普遍采用二进制二电平码,即“有光脉冲”表示“1”码, “无光脉冲”表示“0”码。 数字光纤通信系统对线路码型的具体要求有:

(1) 能限制信号带宽,减小功率谱中的高低频分量。这样就可以减小基线漂移、提高输出功率的稳定性和减小码间干扰, 有利于提高光接收机的灵敏度。

(2) 能给光接收机提供足够的定时信息。因而应尽可能减少连“1”码和连“0”码的数目,使“1”码和“0”码的分布均匀, 保证定时信息丰富。

(3) 能提供一定的冗余码,用于平衡码流、误码监测和公务通信。但对高速光纤通信系统,应适当减少冗余码,以免占用过大的带宽。

10、数字光纤通信系统中常用的码型种类。

扰码、mBnB 码 (特点可以查看94) 插入码

第五章

1、SDH 的优点。

与PDH 相比, SDH 具有下列特点:

(1) SDH 采用世界上统一的标准传输速率等级。最低的等级也就是最基本的模块称为STM-1,传输速率为s ; 4个STM1 同步复接组成STM-4,传输速率为4× Mb/s= Mb/s 。

(2) SDH 各网络单元的光接口有严格的标准规范。因此, 光接口成为开放型接口,任何网络单元在光纤线路上可以互连, 不同厂家的产品可以互通,

(3) 在SDH 帧结构中,丰富的开销比特用于网络的运行、 维护和管理,便于实现性能监测、故障检测和定位、故障报告等管理功能。

(4) 采用数字同步复用技术,其最小的复用单位为字节,不必进行码速调整,简化了复接分接的实现设备,由低速信号复接成高速信号,或从高速信号分出低速信号,不必逐级进行。

(5) SDH 采用了DXC 后,大大提高了网络的灵活性及对各种业务量变化的适应能力。

2、SDH 传输网的主要组成设备。

SDH 终端复用器TM 、分插复用设备ADM 、数字交叉连接设备DXC 等网络单元以及连接它们的(光纤)物理链路构成。

3、SDH 的帧结构(STM-1)。

)(min max dB p p ><><

SDH 帧结构是实现数字同步时分复用、保证网络可靠有效运行的关键。图 给出SDH 帧一个STMN 帧有9行,每行由270×N 个字节组成。这样每帧共有9×270×N 个字节,每字节为8 bit 。帧周期为125μs ,即每秒传输8000帧。对于STM1 而言,传输速率为9×270×8×8000= Mb/s 。字节发送顺序为:由上往下逐行发送,每行先左后右。

4、SDH 的复用原理。

看书作总结107

5、三种误码率参数的概念。

误码率是衡量数字光纤通信系统传输质量优劣的非常重要的指标,它反映了在数字传输过程中信息受到损害的程度。 BER 是在一个较长时间内的传输码流中出现误码的概率,它对话音影响的程度取决于编码方法。

(1)劣化分(DM) :误码率为1×10-6时,感觉不到干扰的影响,选为BERth 。选择取样时间T0为 1 min 。选择TL 为1个月。定义误码率劣于 1×10-6的分钟数为劣化分(DM)。HRX 指标要求劣化分占可用分(可用时间减去严重误码秒累积的分钟数)的百分数小于10%。

(2)严重误码秒(SES) :由于某些系统会出现短时间内大误码率的情况,严重影响通话质量,因此引入严重误码秒这个参数。选择监测时间TL 为1个月,取样时间T0为1s 。定义误码率劣于 1×10-3的秒钟数为严重误码秒(SES)。HRX 指标要求严重误码秒占可用秒的百分数小于%。

(3)误码秒(ES) :选择监测时间TL 为1个月,取样时间T0为1s , 误码率门限值BERth=0。定义凡是出现误码(即使只有1bit)的秒数称为误码秒(ES)。HRX 指标要求误码秒占可用秒的百分数小于8%。相应地,不出现任何误码的秒数称为无误码秒(EFS), 指标要求无误码秒占可用秒的百分数大于92%。

6、可靠性及其表示方法。

对光纤通信系统而言,可靠性包括光端机、中继器、光缆线路、辅助设备和备用系统的可靠性。 图 SDH 帧的一般结构 SO H 12AU -P TR

345SO H

…9STM-N 载荷(含P OH )9×N 261×N 270×N 发送顺序

确定可靠性一般采用故障统计分析法,即根据现场实际调查结果,统计足够长时间内的故障次数,确定每两次故障的时间间隔和每次故障的修复时间。

可靠性:是指在规定的条件和时间内系统无故障工作的概率,它反映系统完成规定功能的能力。

1. 可靠性表示方法 (1) 可靠性R 和故障率φ。故障率φ:是系统工作到时间t ,在单位时间内发生故障(功能失效)的概率。φ的单位为10-9/h, 称为菲特(fit), 1fit 等于在109 h 内发生一次故障的概率。

(2) 故障率φ和平均故障间隔时间MTBF 。

(3) 可用率A 和失效率PF 。可用率A 是在规定时间内,系统处于良好工作状态的概率 (课件)

7、损耗对中继距离限制的计算。

如果系统传输速率较低,光纤损耗系数较大,中继距离主要受光纤线路损耗的限制。在这种情况下,要求S 和R 两点之间光纤线路总损耗必须不超过系统的总功率衰减,即 L(αf+αs+αm)≤Pt-Pr-2αc-Me 或者

L ≤

式中,Pt 为平均发射光功率(dBm),Pr 为接收灵敏度(dBm),αc 为连接器损耗(dB), Me 为系统余量(dB),αf 为光纤损耗系数(dB/km), αs 为每km 光纤平均接头损耗(dB/km), αm 为每km 光纤线路损耗余量(dB/km), L 为中继距离(km)。

8、色散对中继距离限制的计算。

如果系统的传输速率较高,光纤线路色散较大, 中继距离主要受色散(带宽)的限制。为使光接收机灵敏度不受损伤, 保证系统正常工作,必须对光纤线路总色散(总带宽)进行规范。 我们要讨论的问题是,对于一个传输速率已知的数字光纤线路系统,允许的线路总色散是多少, 并据此计算中继距离。

对于数字光纤线路系统而言,色散增大,意味着数字脉冲展宽增加,因而在接收端要发生码间干扰,使接收灵敏度降低, 或误码率增大。

对于实际的单模光纤通信系统,受色散限制的中继距离L 可以表示为

式中, F b 是线路码速率(Mb/s),与系统比特速率不同,它要随线路码型的不同而有所变化。C 0是光纤的色散系数(ps/(nm ·km)),它取决于工作波长附近的光纤色散特性。σλ为光源谱线宽度(nm),对多纵模激光器(MLMLD),为rms 宽度,对单纵模激光器(SLMLD), 为峰值下降20 dB 的宽度。 ε是与功率代价和光源特性有关的参数,对于MLMLD, ε=, 对于SLMLD ,ε=。

例子:以140 Mb/s 单模光纤通信系统为例计算中继距离。设系统平均发射功率Pt=-3 dBm, 接收灵敏度Pr=-42 dBm ,设备余量Me=3 dB ,连接器损耗αc=对,光纤损耗系数αf= dB/km, m s f c c r t

a a a M a p p ++---2λσε06

10c f L b ?=

光纤余量αm= dB/km ,每km 光纤平均接头损耗αs= dB/km 。把这些数据代入式, 得到中继距离

又设线路码型为5B6B, 线路码速率Fb=140×(6/5)=168 Mb/s, |C0|= ps/(nm ·km),σλ= nm 。把这些数据代入式,得到中继距离

在工程设计中,中继距离应取74 km 。 在本例中中继距离主要受损耗限制。

但是,如果假设|C0|= ps/(nm ·km),σλ=3 nm ,而上述其他参数不变,根据式计算得到的中继距离L ≈65 km , 则此时中继距离主要受色散限制,中继距离应确定为65 km 。

注:对于波长为 μm 的多模光纤,由于损耗大,中继距离一般在20 km 以内。单模光纤在长波长工作, 损耗大幅度降低,中继距离可达100~200 km 。在μm 零色散波长附近,当速率超过1 Gb/s 时, 中继距离才受色散限制。在 μm 波长上,由于色散大,通常要用单纵模激光器,理想系统速率可达5 Gb/s , 但实际系统由于光源调制产生频率啁啾,导致谱线展宽,速率一般限制为2 Gb/s 。采用色散移位光纤和外调制技术,可以使速率达到20 Gb/s 以上。

第七章

1、光放大器的种类

(1)半导体光放大器(SOA )半导体光放大器的优点是小型化,容易与其他半导体器件集成; 缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。

(2)光纤放大器

掺铒光纤放大器(EDFA )

分布光纤拉曼放大器(DRA )——非线性光纤放大器

2、掺铒光纤放大器的工作原理

如图,在掺铒光纤(EDF)中,铒离子(Er3+)有三个能级: 其中能级1代表基态, 能量最低;能级2是亚稳态,处于中间能级;能级3代表激发态, 能量最高。

1)当泵浦(Pump, 抽运)光的光子能量等于能级3和能级1的能量差时,铒离子吸收泵浦光从基态跃迁到激发态(1→3)。

(2)但是激发态是不稳定的,Er3+很快返回到能级2(无辐射跃迁)。

(3)如果输入的信号光的光子能量等于能级2和能级1的能量差,则处于能级2的Er3+将跃迁到基态(2→1),产生受激辐射光,因而信号光得到放大。

)(741

.003.035.03.023)42(3km L ≈++?-----=)(971

.20.316810115.06

km L ≈+??=

注:从掺铒光纤放大器的工作原理可以看出,光放大是由于泵浦光的能量转换为信号光的结果。为提高放大器增益,应提高对泵浦光的吸收,使基态Er3+尽可能跃迁到激发态,

3、掺铒光纤放大器的构成方框图(必考)

(1)光隔离器:防止反射光影响光放大器的工作稳定性。

(2)光耦合器(波分复用器):把信号光和泵浦光混合起来。

(3)掺珥光纤:长约10~100m, Er 3+浓度约为25mg/kg。

(4)泵浦光源:形成粒子数反转分布。光功率为10~100mW,工作波长为μm。

4、什么是WDM

光波分复用(WDM: Wavelength Division Multiplexing)技术是在一根光纤中同时传输多个波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端,因此将此项技术称为光波长分割复用,简称光波分复用技术。

注:目前,“掺铒光纤放大器(EDFA)+密集波分复用(WDM)+非零色散光纤(NZDSF,即光纤)+光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。

5、光交换技术的方式

光交换主要有三种方式:

(1)空分光交换

(2)时分光交换

(3)波分光交换

1、空分光交换的功能是使光信号的传输通路在空间上发生改变。空分光交换的核心器件是光开关。

2、时分光交换是以时分复用为基础,用时隙互换原理实现交换功能的。时分复用是把时间划分成帧,每帧划分成N个时隙,并分配给N路信号,再把N路信号复接到一条光纤上。

3、波分光交换(或交叉连接)是以波分复用原理为基础,采用波长选择或波长变换的方法实现交换功能的。

6、什么是光孤子

光孤子(Soliton):经光纤长距离传输后,其幅度和宽度都不变的超短光脉冲(ps数量级)。光孤子的形成是光纤的群速度色散和非线性效应相互平衡的结果。利用光孤子作为载体的通信方式称为光孤子通信。

注:光纤通信的传输距离和传输速率受到光纤损耗和色散的限制。

7、光孤子的产生机理

光孤子的形成是光纤的群速度色散和非线性效应相互平衡的结果。(可看课件)

8、相干光通信信号调制的方式

相干光通信:在发射端对光载波进行幅度、频率或相位调制;在接收端,则采用零差检测或外差检测,这种检测技术称为相干检测。

光强调制-直接检测(IM-DD)方式

优点:调制和解调简单,容易实现,成本较低。

缺点:只用到振幅,没有利用光载波的频率和相位信息,限制了系统性能的进一步提高。

9、相干光通信技术的优点

相干光通信的优点:

(1)和IM-DD方式相比,相干检测可以把接收灵敏度提高20dB,相当于在相同发射功率下,若光纤损耗为 dB/km,则传输距离增加100 km。

(2)采用相干检测,可以更充分利用光纤带宽。我们已经看到,在光频分复用(OFDM)中,信道频率间隔可以达到10 GHz以下,因而大幅度增加了传输容量。

所谓相干光,就是两个激光器产生的光场具有空间叠加、相互干涉性质的激光。实现相干光通信,关键是要有频率稳定、相位和偏振方向可以控制的窄线谱激光器。

注:相干光接收方式是适用于所有调制方式的通信体制。

光纤通信课程设计

《光纤通信》课程设计 学院: 姓名: 班级: 学号: 指导老师: 高速光纤通信中的偏振模色散及其补偿技术 目录

1.引言 (03) 2.光纤中偏振模色散的定义 (03) 3.偏振模色散的测量方法 (05) 4.偏振模色散的补偿技术 (05) 4.1光补偿方案之一 (05) 4.2光补偿方案之二 (05) 4.3电补偿方案之一 (06) 4.4电补偿方案之二 (06) 5.偏振模色散的研究动态 (07) 6.结束语 (08) 摘要偏振模色散已成为当前发展下一代高速长距离光纤传输系统的主要限制因素。 介绍了偏振模色散的概念、描述方法以及测试和补偿技术。根据国外的研究情况和我国的具 体实情,指出研究偏振模色散的测试和补偿技术对提高高速光纤通信技术的水平具有重大意 义。最后在此基础上提出了开展相关研究的建议。 关键词高速光纤通信,偏振模色散,补偿技术 1.引言 当代社会是信息化的社会,用户对通信容量的需求日益增加。在这种需求的推动下, 作为现代长途干线通信主体的光纤通信一直在朝着高速率、大容量和长距离的方向发展。在 单信道速率不断提升的同时,密集波分复用技术(DWDM)也已日趋成熟并商用化。 从技术的角度来看,限制高速率信号长距离传输的因素主要包括光纤衰减、非线性和 色散。掺铒光纤放大器(EDFA)的研制成功,使光纤衰减对系统的传输距离不再起主要限制作 用。而非线性效应和色散对系统传输的影响随着非零色散位移光纤(NZDSF)的引入也逐渐 减小和消除。随着单信道传输速率的提高和模拟信号传输带宽的增加,原来在光纤通信系统 中不太被关注的偏振模色散(PMD)问题近来变得十分突出。与光纤非线性和色散一样,PMD 能损害系统的传输性能,限制系统的传输速率和距离,并被认为是限制高速光纤通信系统传 输容量和距离的最终因素。正是由于PMD对高速大容量光纤通信系统有着不可忽视的影响, 所以

光纤通信课程设计

湖南工业大学 课程设计 资料袋 计算机与通信学院(系、部)2013 ~ 2014 学年第 2 学期课程名称数字光纤通信指导教师刘丰年职称副教授学生姓名专业班级学号 题目图像、声音的光纤传输系统 成绩起止日期2014 年05月16 日~2014年05月22 日 目录清单

湖南工业大学 课程设计任务书 2013—2014学年第2学期 计算机与通信学院通信工程专业班级课程名称:数字光纤通信 设计题目:图像、声音的光纤传输系统 完成期限:自 2014 年 5 月 16日至 2014 年5月22 日共 1 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

数字光纤通信 设计说明书 声音、图像光纤传输系统 起止日期: 2014年 05 月 16 日至 2014年 05 月 22 日 学生姓名 班级 学号 成绩 指导教师(签字) 计算机与通信学院 2014年 05 月 22 日

指导教师(签字):年月日系(教研室)主任(签字):年月日

图像、声音光纤传输系统 一、设计原理 1、GT-RC-II 型光纤通信实验系统简介: (1)、电源模块:提供实验箱各模块电源。 (2)、1310nm光发送模块:实现模拟信号、数字信号在1310nm光发送机中的光传输及自动光功率控制功能(采用电路来实现)。 (3) 1550nm光发送模块:实现模拟信号、数字信号在1550nm光发送机中的光传输及自动光功率控制功能(采用专用芯片来实现)。 (4) 1310nm光接收模块:实现1310nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 (5)1550nm光接收模块:实现1550nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 实验系统主要由光发模块、光收模块、光无源器件和辅助通信模块等组成。光发端机完成将电信号直接调制至光载波上去,采用强度调制(IM);光接收机完成光信号的解调,采用直接检测(DD),属于非相干解调。光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。 2、模拟光纤通信系统的结构 模拟基带直接光强调制(DIM)光纤传输系统由光发射机(光源通常为发光二极管)、光纤线路和光接收机(光检测器)组成,这种系统的方框图如图1所示。 图1 模拟光纤通信系统由以下五个部分组成: (1)光发送机:光发送机是实现电/光转换的光端机。它由光源、驱动器和调

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 1、导言 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 2、光纤通信技术的发展历史总结

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。 光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。 上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0. 2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。 由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。 3、光纤通信技术的现状研究

现代光纤通信技术

第一章通信网技术概述 1.1概述 1.2通信设备 构成通信网的最基本的设备是用户端设备、传输链路设备和转接交换设备。 1.3广域网分类 1.4通信协议 1.4.1 协议 通常将网络分层结构以及各层协议的集合称为网络体系结构。比较著名的网络体系结构有国际标准化组织ISO(International for Standardization)提出的开放系统体系结构OSI(Open System Interconnection);美国国防部提出的传输控制协议TCP/IP;国际电信联盟提出的公共数据网X系列协议;IBM公司提出的系统网络体系结构SNA等。 1.4.2 标准化组织 1. 国际标准化组织ISO 2. 国际电信联盟-电信标准化部ITU-T(International Telecommunication Union) 一直负责制定电信网的标准系列。 3. 因特网工程任务组IETF(Internet Engineering Task Force) 负责研究因特网的体系结构以及新一代因特网标准规范的研究和制定 第二章数字通信技术 第三章光纤通信技术 3.1 光纤通信 3.1.1光纤通信的发展 3.1.2 光纤通信的特点 1. 传输频带宽,通信容量大。由信息理论知道,载波频率越高,通信容量就越大。 2. 损耗低。目前实用的光纤均为石英系光纤,要减小损耗,主要是靠提高玻璃纤维的纯度。 3. 在运用频带内,光线对每一频率成分的损耗几乎一样。因此,系统中才去的均衡措施比传统的电信系统简单,甚至可以不必采用。 4. 光纤内传播的光能几乎不辐射,因此很难被窃听,也不会造成统一光缆中各光纤之间串扰 5. 不受电磁干扰。因为光纤是非金属的介质材料。 6. 线径细、重量轻,便于敷设。 7. 资源丰富。制作玻璃光纤的原料是适应,其来源十分丰富。 3.1.3 通信系统中主要技术指标 1.分贝dB 分贝dB 是以常用对数表示的两个电压或两个功率之比的一种计量单位。

《光纤通信》课程设计

《光纤通信》课程设计报告 设计名称:光纤中光孤子传输特性 专业:08光信息科学与技术 成员姓名:张XX、胡X、 成员学号: 指导老师:李X

光纤中光孤子传输特性 光孤子理论的出现,对于现代通信技术的发展起到了里程碑的作用。因为现代通信技术的发展一直朝着两个方向的努力:一是大容量的传输,二是延长中继距离。光孤子传输不变形的特点决定了他在通信领域的应用前景。普通的光纤通信必须每隔几十千米设立一个中继站,经对信号的脉冲整形放大误码检查后再发射出去,而用光孤子通信则可不设中继站,只要对光纤损耗进行增益补偿,即可把光信号无畸变的传输到很远的地方。 光孤子形成的机理 光孤子是光纤中两种最基本的物理现象,即群速度色散和SPM 共同的作用形成的。光纤中的强度引起的折射率非线性SPM效应(光学柯尔效应),在反常区导致的光脉冲压缩可以抵消GVD效应形成的光脉冲展宽,从而保持光脉冲传输过程中的形状不变。光孤子的形成机理是光纤中群速度色散和自相位调制效应在反常区的精确平衡。二而光纤耗损造成的脉冲能量的损失,则用每一段传输距离后的光放大器来补偿,保持其非线性效应作用的存在。 光孤子传输 1.系统的构成 将光孤子作为信息的载波可实现光孤子通信,其传输系统如下图: 图 光纤孤子传输系统的基本构成 该系统由5个基本功能组成: 1.光孤子发送终端(TX ) 2.光孤子接受终端(RX ) 3.光孤子传输光纤(STF ) 4.光孤子能量补偿放大器(OA,OA1-OAn) 5.光孤子传输控制装置(TCS) 图中SS为光孤子源,MOD为光调制器,TS为测试设备。 系统中的TX由超短脉冲半导体或掺饵光纤激光器,光调制器,信息源和光纤功率放大器构成,用于产生光孤子脉冲信号;RX由宽带光接收机或频谱分析仪,误码仪与条纹相机构成,用于测试系统的传输特性或通信能力;STF由普通单模光纤或色散位移光纤DSF构成,OA1--OAn由EDFA或SOA组成,TCS由导频滤波器,强度或相位调制器,非线性元件和色散补偿光纤等组成,设置在沿传输系统不同的区域,用于克服或降低由放大器放大带来的放大自 ss mod OA OA1 STF OA2 STF STF TCS OAn STF TS TX RX

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

光纤通信技术的发展史及其现状_论文[1]

光纤通信技术的发展史及其现状 【内容摘要】 光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。 本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。 【关键词】 光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。 一、光纤通信技术的形成 (一)、早期的光通信 光无处不在,这句话毫不夸张。在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。 打手势是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。 另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。望远镜的出现则又极大地延长了这类目视形式的光通信的距离。 这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。 近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。 光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。其所利用的自然光为非相干光,方向性不好,不易调制和传输;而以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

浅谈现代光纤通信传输技术的应用

龙源期刊网 https://www.360docs.net/doc/c99166810.html, 浅谈现代光纤通信传输技术的应用 作者:杨华宇 来源:《数字技术与应用》2019年第06期 摘要:本文探讨了现代光纤通信传输技术的特点,分析了光纤通信技术的应用现状,研究了现代光纤通信传输技术的应用。 关键词:光纤通信传输技术;实际应用;信号传输 中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2019)06-0043-02 1 现代光纤通信传输技术的特点 1.1 通信传输容量较大 光纤通信技术是以光波为媒介的通信传输方式,光波的电磁波比正常的无线电波的频率高,但是波长低于无线电波的波长。从中可以看出,光纤传输技术的传输频带十分的宽,这样的带宽提高了通信过程中传送数据的能力,在一定的单位时间内,传输信息数据的人员借助光纤通信技术能够传输大容量的数据。它不仅仅具有通信传输数据容量大的特点,而且其通信传输速度非常快。 1.2 节省传输成本 目前,光纤通信传输使用的材料是石英,石英比其他的通信传输介质相比,是目前损耗最低的材料,开展跨度较大的距离中继传输时,能够较少石英材料的消耗,节省整体通信系统的建设投资。其次,在光纤的建设过程中,光纤的线芯径十分的细,大约为零点一毫米,直径也很小,如此能够节省大量的金属材料,建设设计光纤时所占用的传输空间较小。另外,光纤自身的重量非常轻,比正常的电缆要轻上好几倍,质地柔软,原材料的建设成本较低。使用光纤通信传输技术能够大大地节省了建设成本,具有经济性。 1.3 抗干扰力强,保密性较强 由于光纤是绝缘性材料,所以在通信信息传输过程中不会受到外界的干扰,而致使通信数据受损,光纤通信传输技术的数据保护性强,具有很强的抗干扰力。另外,光纤通信传输的信息数据在传输过程处于光缆之中,光缆的芯径十分地细,即便通信信息传输遇到转弯处,泄露的通信信息光波也非常地微弱,难以被人截取信号,信息几乎不可能从光纤中泄漏出去。即便是泄露了信号光波,也会被光纤表面的不透明的包皮包裹着,而致使外面的人接收不到光波信号。而且,光纤在进行传输信号的过程中,不论是存在多少的光纤,也可实现无串音干扰,这保证了光纤通信传输技术使用时通信信息的高度保密性。

光通信课程设计

光通信技术课程设计 一、系统功能描述 此系统是一个通过红外通信进行简单信号传输的装置,分为发送和接收两部分。发送装置接有简易键盘,按下按键后,单片机采集信号处理后通过红外发送出去。接收装置收到信号后,进行解析,然后通过数码管显示出相应的码型。 二、系统所用元器件及设备 发送端: AT89C52×1、红外发射二极管×1、8050×1、按键开关×10、11.0592M晶振×1 电容:10μF×1、20pF×2 电阻:1k?×2、100?×1 接收端: 74LS273×1、AT89C52×1、按键开关×1、7段共阳极数码管×2、8550×2、11.0592M晶振×1、红外接收器SM0038×1 电容:10μF×2、20pF×2 电阻:100?×2、1k?×1、4.7k?×2 设备: 稳压电源5v 示波器 三、系统实现功能原理 发送端: 输入方式采用3×3阵列(9按键)键盘,一共6根信号线,接入单片机P1口。每个按键在单片机P1口上对应唯一8位2进制值。当按下键盘上的不同按键时,通过编码器产生与之相应的特定的二进制脉冲码信号。将此二进制脉冲码信号先调制在38KHz的载波上,经过放大后,激发红外发光二极管转发成波长940nm的红外线光传输出去。 接收端: 红外接收器采用一体化红外遥控接收器SM0038,红外线数字信号则经过红外接收器取出数字信号数据经单片机译码,最后送到显示电路。 主要芯片AT89C51: 引脚图: 功能介绍: AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4K BYTES的可反复擦写的只

读程序存储器(PEROM)和128 BYTES的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和FLASH存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。 AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和FLASH存储器结合在一起,特别是可反复擦写的FLASH存储器可有效地降低开发成本。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 P3口也可作为AT89C51的一些特殊功能口,如下表所示: 口管脚备选功能 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 /ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可

光纤通信技术的特征

光纤通信技术的特征 光纤通信技术(opticalfibercommunications)从光通信中脱颖而出, 己成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。 一、光纤通信技术 光纤即为光导纤维的简称,光纤通信是利用光作为信息载体、以光纤作为传输媒介的一种通信方式。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤

的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;⑶信号的传输和放大;(4)信号的分离;⑸信号的接收。 二、光纤通信技术的特点 (2)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。 对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量, 特别是现在的密集波分复用技术极大地增加了光纤的传输容量。 (2)损耗低,中继距离长。在同轴电缆组成的系统中,最好的电缆 在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输l.Blum的光,每公里损耗在0.35dB 以下。 若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。此 外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相

光纤通信技术介绍

光纤通信技术介绍 光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm 的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 1. 有源光纤 这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显著作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。 2. 色散补偿光纤(Dispersion Compensation Fiber,DCF) 常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,最近又开发出一种既补偿色散又能补偿色散斜率的"双补偿"光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,

相关文档
最新文档