MQ烟雾传感器的工作原理

MQ烟雾传感器的工作原理
MQ烟雾传感器的工作原理

MQ-2烟雾传感器的应用介绍

鉴于网上关于MQ-2烟雾传感器的技术资料少之甚少,本人正好现在在做关于《储备粮仓环境监测系统》的项目。因此自己总结关于MQ-2的技术文档,与大家共享,共同学习!

一、MQ-2烟雾传感器的应用领域

可用于家庭和工厂的气体泄漏监测装置,适宜于液化气、苯、烷、酒精、氢气、烟雾等的探测。故因此,MQ-2可以准确来说是一个多种气体探测器。

MQ-2的探测范围极其的广泛。它的优点:灵敏度高、响应快、稳定性好、寿命长、驱动电路简单。

二、MQ-2的工作原理

MQ-2型烟雾传感器属于二氧化锡半导体气敏材料,属于表面离子式N型半导体。处于200~300摄氏度时,二氧化锡吸附空气中的氧,形成氧的负离子吸附,使半导体中的电子密度减少,从而使其电阻值增加。当与烟雾接触时,如果晶粒间界处的势垒收到烟雾的调至而变化,就会引起表面导电率的变化。利用这一点就可以获得这种烟雾存在的信息,烟雾的浓度越大,导电率越大,输出电阻越低,则输出的模拟信号就越大。

三、MQ-2的特性

1、MQ-2型传感器对天然气、液化石油气等烟雾有很高的灵敏度,尤其对烷类烟雾更为敏感

具有良好的抗干扰性,可准确排除有刺激性非可燃性烟雾的干扰信息。

(经过测试:对烷类的感应度比纸张木材燃烧产生的烟雾要好的多,输出的电压升高的比较快)

2、MQ-2型传感器具有良好的重复性和长期的稳定性。初始稳定,响应时间短,长时间工作性能好。需要注意的是:在使用之前必须加热一段时间,否则其输出的电阻和电压不准确。

3、其检测可燃气体与烟雾的范围是100~10000ppm

(ppm为体积浓度。1ppm=1立方厘米/1立方米)

4.电路设计电压范围宽,24V以下均可,加热电压5±0.2V

需要注意:加热电压。如果过高,会导致内部的信号线熔断,从而器件报废。

四、MQ-2的结构

引脚及封装图

MQ-2的外形图

从图中可以看出(从左到右)

第一个:由于加热电压过大,导致内部信号细线被烧断而无法正常工作。但是加热功能依旧存在。所以我们必须注意加热丝的电压,最好串个小电阻。

第二个:是MQ-2底面引脚图

第三个:外观图

五、MQ-2的计算与校准

用MQ-2烟雾传感器来检测火灾烟雾的最好办法是通过其输出电压与门限电压比较得出。(门限电压需要经过烟雾测试)

1、MQ-2的计算公式

阻值R与空气中被测气体的浓度C的计算关系式

log R = mlog C + n (m,n均为常数)

常数n:与气体检测灵敏度有关,除了随传感器材料和气体种类不同而变化外,还会由于测量温度和激活剂的不同而发生大幅度的变化。

常数m:表示随气体浓度而变数的传感器的灵敏度(也称作为气体分离率)。对于可燃性气体来说,m 的值多数介于1/2至1/3之间。

2、传感器的电阻的计算

3、MQ-2传感器的输出电压

根据MQ-2的工作原理(其电导率随着气体浓度的增大而增大,其电阻是电导率的倒数,所以电阻是随之减小的。其特性就相当于一个滑动变阻器)。

一、

烟雾传感器电路图

工作原理:

MQ-2的4脚输出随烟雾浓度变化的直流信号,被加到U1A的2脚,Rp构成的。当烟雾浓度较高输出电压高于时,输出(0v),此时LED亮报警;当浓度降低的输出电压低于时,比较器翻转输出(Vcc),LED熄灭。

调节Rp,可以调节比较器的门槛电压,从而调节报警输出的灵敏度。

R1串入的加热回路,可以保护免受冷上电时的冲击。

MQ-2传感器对甲烷的探测范围是5000~20000ppm,即0.5%-2%,在跟MQ-2串联的电阻那里得到参考电压,经过AD转换后得到数字电压,就这么一个数字电压,怎样可以得到当时空气中甲烷的PPM 值,即浓度。(参考了网上传的使用MQ-2做基于单片机的烟雾报警系统的朋友,那份资料就存在这个特大问题,并不止这一个,大错的地方很多,请注意!)希望有经验的同志帮忙解决这一难题~送分~ 就这么一个数字电压,当然可以知道浓度了,前提是要设计和标定好,主要过程就是:

1 5000~20000ppm,如果输出为0-5V(中间量,也可以是别的电压范围,或4-20mA信号),ad是将模拟转化的,

2 后得到是,也就是数据,如:12位ad(分辨率是1/4096)转换后,那么则5000-20000PPM(0-5V)对应就是0-4096,这样就有了比例关系,当是0时,对应就是5000,4096时就是20000,通过方程得出2048对应就是12500ppm,就是这么简单的一个函数,取下就得出浓度.

3,其实就是个比例关系式,只要有在,其他的都是简单运算而已了.

追问

你好,应该没这么简单吧?比如,当时的浓度为0,或者是低于5000

PPM,那么这时得到的数字电压会是什么呢?

回答

如果是0.5%-2%(对应0-5V),当然0.5%以下是数字信号就是0呀,

如果量程0%-2%,当然就不是了

提问者评价

因为传感器灵敏度是非线性的,所以转换也是非线性的

本文的控制部分主要用的是ARM部分,它与传统的51单片机相比功能更加的强大,如芯片内部的Flsah、EEPROM、SRAM容量较大、支持在线编程烧写ISP、每个IO口都可以以推挽驱动的方式输出高、低电平,驱动能力强,内部资源丰富,一般都集成A/D、D/A模数转换器、PWM、SPI、USART、I2C、I2S等接口,以及拥有丰富的中断源等。这些因素使得ARM与51单片机相比更加的高性能,低功耗。

利用ARM来设计的自动监测系统的高效、方便、准确的特点决定了它将更加广泛的应用于工业控制各个领域,同时现在基于ARM嵌入式系统在控制、通信领域应用的更加广泛。

各类传感器介绍

目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。 一、压力传感器 压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、绝压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于 0.05% 直流稳压电源: 精度优于0.05%。 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要) 压力传感器使用注意事项 压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,压力传感器及压力变送器周围应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,简单介绍一些常用传感器原理及其应用:

生物传感器分析解析

阅读报告 生物传感器 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位:机电工程学院 完成时间: 电子科技大学中山学院教务处制发

生物传感器 摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 关键词:传感器生物传感器

目录 1 生物传感器 (1) 1.1生物传感器简介 (1) 2 生物传感器的介绍 (2) 2.1组成结构及工作原理 (2) 2.2技术特点 (2) 2.3国内外应用发展情况及应用案例 (3) 2.3.1国内应用发展 (3) 2.3.2国外应用发展 (3) 2.3.3应用案例 (4) 参考文献 (6)

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

j激光测距传感器代码

#include #include unsigned char code displaybit[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f}; unsigned char code displaycode[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00,0x40}; unsigned char code dotcode[32]={0,3,6,9,12,16,19,22, 25,28,31,34,38,41,44,48, 50,53,56,59,63,66,69,72, 75,78,81,84,88,91,94,97}; unsigned char displaycount; unsigned char displaybuf[8]={16,16,16,16,16,16,16,16}; unsigned char timecount; unsigned char readdata[8]; sbit DQ=P3^7; bit sflag; bit resetpulse(void) { unsigned char i; DQ=0; for(i=255;i>0;i--); DQ=1;

for(i=60;i>0;i--); return(DQ); for(i=200;i>0;i--); } void writecommandtods18b20(unsigned char command) { unsigned char i; unsigned char j; for(i=0;i<8;i++) { if((command & 0x01)==0) { DQ=0; for(j=35;j>0;j--); DQ=1; } else { DQ=0; for(j=2;j>0;j--); DQ=1; for(j=33;j>0;j--); } command=_cror_(command,1); } }

传感器及其工作原理 说课稿 教案

传感器及其工作原理 【三维目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

各类传感器的工作原理

传感家族-各类传感器的工作原理 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量;

各类传感器简介

1.BY-1型土压力传感器 钢弦式表面应变传感器主要用于量测混凝土、钢筋混凝土、钢结构、网状钢结构的表面应变;也可用于已产生微裂的混凝土、钢筋混凝土工程裂缝变化的观测;或用于混凝土应力解除和温度应力的测量。 2.JXW-1型位移传感器 主要用于测试隧道岩层之间、土层之间及其它工程地基基础等受压力后产生的位移量。 3.钢筋应力传感器 除用于量测钢筋混凝土结构中的钢筋应力外还可将其串接起来用于量测隧道及地下结构锚杆的应力分布。 4.孔隙水压力传感器 主要用于测试软基处理和病害水坝整治等工程中的岩石和土壤地下水的流动状态和水压力的大小,并把水压力从所量测的总土压力中分离出来;也可用孔隙水压力传感器量测孔隙水压力的大小和分布。 5.BY-1型土压力传感器 采用双油腔结构形式,它的最大特点是,当传感器受力时,传感器油腔中的液体可使力传递均匀,同时由于弹性敏感元件的变形比弹性传力元件的变形增大若干倍,提高了传感器 的灵敏度。该产品主要用于路基、挡土墙、坝体及隧道等地下结构工程,动静态的测试。 6.基泰VSL570系列振弦式静力水准沉降系统 广泛适用于测量土石坝、港口建设、公路、输(气)油管道、储油罐等基础填方结构的沉降(浮升)。本系统为解决一族多个高程相近监测点的垂直位移及相对沉降变化提供了技术先进的解决方案。数据采集可以用CTY-203型振弦读数仪人工读取,亦可接入其他振弦式自动化测量模块获取。

7.高智能型单点沉降计 属于岩土工程监测设备或岩土工程测试仪器,是位移传感器的一种;单点沉降计是由位移计、测杆、锚头、沉降板组成。钻孔后将单点沉降计埋入土体基础内部,测量锚头与沉降板之间的相对位移变化。单点沉降计主要应用于公路、铁路、水利大堤等各种基础沉降、边坡位移的变形测量。 8.分层沉降计 属于岩土工程监测设备或岩土工程测试仪器,是位移传感器的其中一种;分层沉降计是由多个位移计通过安装套件串联组成。钻孔后将分层沉降计埋设于软土路基,测量软基的分层沉降变形情况。 9.分层沉降仪(沉降磁环) 分层沉降仪是一种地基原位测试仪器。它适用于测量地基、路基、尾矿坝、基坑、堤防等地下各分层沉降量。根据测试数据的变化,可计算出沉降趋势,分析其稳定性,监控施工过程等。分层沉降仪与CX―I型高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔方式埋入地下待测的各点位,当传感器通过磁感应环时,产生电磁感应信号送至地面仪表显示,同时发出声光报警。读取孔口标记点上对应钢尺的刻度数值,即为沉降环的深度。每次测量值与前次测值相减即为该测点的沉降量。 探头结构牢固,密封性好。钢尺电缆一体化,整机为便携式,重量轻,采用直流电源供电,适合各种野外环境。

DS18B20温度传感器使用方法以及代码

第7章DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2.引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式DS18B20的原理图。 3.工作原理 单片机需要怎样工作才能将DS18B20中的温度数据独取出来呢?下面将给出详细分析。

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

传感器代号

传感器代号 代号:依次为主称(传感器)被测量—转换原理—序号 ①主称——传感器代号C ②被测量—用一个或两个汉语拼音的第一个大写字母标记。 ③转换原理——用一个或两个汉语拼音的第一个大写字母标记。 ④序号——用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用) 例: 应变式位移传感器:C WY-YB-20 光纤压力传感器:C Y-GQ-2 常用被测量代码表 被测量被测量简称代号被测量被测量简称代号 加速度 加加速度 亮度 细胞膜电位 磁 冲击 磁透率 磁场强度 磁通量 胆固醇 呼吸频率 转速 生物化学需氧量硬度 线加速度 心电[ 图] 线速度 心音 角度 角加速度 肌电[ 图] 可见光 角速度 角位移 力 露点 力矩 流量 离子 密度 [ 气体] 密度加 加加 胞电 磁透 磁强 磁通 胆固 呼吸 生氧 线加 心电 线速 角 角加 肌电 角速 [ 气] 密 [ 液] 密 马赫 粘 脑电 厚 葡糖 气 热通 视电 射量 蚀厚 A AA AD BD C CJ CO CQ CT DC HP HS HY I IA ID IS IY J JA JD JG JS JW L LD LJ LL LZ M [Q]M 电流 电场强度 电压 色度 谷氨酸 温度 照度 红外光 呼吸流量 () 离子活 [ 浓] 度 声压 图像 温度 [ 体] 温 物位 位移 位置 血 血液电解质 血流 血气 血容量 血流速度 血型 压力 膀胱内压 胃肠内压 颅内压 食道压力 [ 分] 压 电强 色 谷氨 红外 呼流 活[ 浓] 血电 血容 血速 压 [ 膀] 压 [ 胃] 压 [ 颅] 压 [ 食] 压 眼电 浊 紫光 真空 H + Na + Cl - O 2 CO DL DQ DY E GA H HD HG HL ()H[N] SY TX W [T]W WW WY WZ X XD XL XQ XR XS XX Y [B]Y [E]Y [L]Y ?敎?潒慭n [S]Y [F]Y

各类传感器原理及说明

热电式红外传感器原理及说明 热电式红外传感器是被动式的红外传感器,其内部核心芯片为Biss0001。 下面对biss0001做重点介绍: Biss0001有如下特点: .CMOS工艺 .数模混合 .具有独立的高输入阻抗运算放大器 .内部的双向鉴幅器可有效抑制干扰 .内设延迟时间定时器和封锁时间定时器 .采用16脚DIP封装 图3-1B ISS0001引脚图 表3.1 BIS0001引脚及其功能介绍 引 名称I/O 功能说明 脚 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复触 发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳变沿触发,使Vo输出从低电平跳 变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的 上跳变时,Vo保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端

7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器复 位 9 VC I 触发禁止端。当VcVR时允许触发 (VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端 13 2IN- I 第二级运算放大器的反相输入端 14 1IN+ I 第一级运算放大器的同相输入端 15 1IN- I 第一级运算放大器的反相输入端 16 1OUT O 第一级运算放大器的输出端 引脚名称I/O 功能说明 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复 触发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳变沿触发,使Vo输出从低电平跳 变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的上跳变时,Vo 保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端 7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器 复位 9 VC I 触发禁止端。当VcVR时允许触发(VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端

传感器种类的介绍

传感器种类介绍 传感器凡是利用一定的物性(物理、化学、生物)法则、定理、定律、效应等进行能量转换与信息转换,并且输出与输入严格一一对应的器件和装置均可称为传感器;传感器又被称为变换器、转换器、检测器、敏感元件、换能器和一次仪表等。 传感器具有以下作用与功能:1、测量与数据采集;2、检测与控制作用;3、诊断与监测作用;4、辅助观测仪器;5、资源探测与环境保护;6、医疗卫生和家用电器; 传感器的基本组成:传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还加上辅助电源。 1、力学量传感器:光电式位移、位置传感器; 光纤陀螺是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。 2、热学量传感器:光纤温度传感器; 一类是利用光导纤维本身具有的敏感功能而使光纤起温度测量作用,同时利用光纤的特性将温度信号以光的形式传输,该类型属于功能型光纤温度传感器;另一类是光导纤维仅起传输光波的作用,感温功能必须由在光纤端面加装其他敏感元件来完成,属于传输型光纤温度传感器。 光纤温度传感器具有测量精度高、抗电磁干扰、安全防爆、可绕性好等特点。

目前光纤温度传感器具体可分为晶体光纤温度传感器、半导体吸收光纤温度传感器、双折射光纤温度传感器、光路遮断式光纤温度传感器、荧光光纤温度传感器、Fabry-Rerot标准器光纤温度传感器、辐射式光纤温度传感器和分布参数式光纤温度传感器等。 3、流体量传感器: 光纤传感器流量计:光纤传感器涡轮流量计; 液位传感器: 一:浮力式液位传感器(恒浮力式、变浮力式;) 二:吹气式液位传感器; 三:电容式液位传感器; 四:压力传感器式液位计; 五:超声波式液位传感器; 六:放射线式液位传感器; 七:雷达式液位计; 光纤液位传感器: 图1为光纤液位传感器的原理示意图。 4、光学量传感器:光纤传感器;近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。 光纤传感器凭借着其大量的优点已经成为传感器家族的后起之

电化学生物传感器

目录 1. 电化学生物传感器简介 (2) 1.1 电化学生物传感器的原理 (2) 1.2 电化学生物传感器的发展 (3) 2.电化学生物传感器分类.... 错误!未定义书签。 2.1电化学免疫传感器 .......................................... 错误!未定义书签。 2.2电化学适体传感器 (5) 2.3电化学DNA传感器 (5) 3.信号放大技术在电化学生物传感器中的应用错误! 未定义书签。 3.1酶催化信号放大技术在电化学生物传感器中的应用错误!未定义书签。 3.2纳米粒子信号放大技术在电化学生物传感器中的应用 3.3 链式反应信号放大技术在电化学生物传感器中的应用 4. 电化学生物传感器研究新进展 (8) 参考文献及英文摘要与关键词. 错误!未定义书签。

电化学生物传感器的研究 摘要本文介绍了电化学生物传感器的发展状况和最新研究方向,综述了近年来电化学生物传感器检测技术的原理和分类,以及信号放大策略在电化学生物传感器中的应用,并概括了电化学生物传感器检测技术的新进展。 关键词电化学生物传感器免疫适体 DNA 信号放大 电化学生物传感器(Electrochemical biosensor)是将生物活性物质如酶、抗原/抗体、DNA、适体等作为分子识别物质固定在电极上,以电化学信号为检测信号的分析器件。电化学生物传感器以其选择性好、灵敏度高、响应快、操作简便、可实现在线、活体分析等特点,在分析化学的研究中起着越来越重要的地位,已广泛用于生命科学、环境分析、药物分析等领域。 1.电化学生物传感器简介 1.1 电化学生物传感器的原理 电化学生物传感器是指由生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。其原理结构[9]如下图 1 所示。 图1 电化学生物传感器的基本构成示意图 1.2 电化学生物传感器的发展 电化学生物传感器的应用广范,它已经渗透到医药领域、食品卫生、环境检测等生活实践中去,只要应用有:细茵及病毒感染类疾病诊断[24],基因诊断[25,26],药物分析[27],DNA 损伤研究[28]等。由此可见,电化学生物传感器的研究对临床医学和遗传工程的研究具有深远的意义和应用价值。 2.电化学生物传感器分类 2.1 电化学免疫传感器

表1 X坐标各位置传感器代码一览表

数控车床坐标轴故障维修实例 摘要:数控车床的坐标轴故障,是数控车床中常见和最主要的故障。本文所叙述的肖伯林(SCHAUBLIN)数控车床坐标轴故障的维修实例,较详细地介绍了故障产生的原因,现象以及维修、调试过程。它从一个侧面反映了该类机床坐标轴常见故障的一般规律和具体的维修试验方法,具有一定的代表意义。 关键词:数控车床;坐标轴;故障 瑞士SCHAUBLIN数控车床的主要控制单元采用日本FANUC公司的OTC-CNC系统、交流主轴驱动和交流伺服单元以及PLC可编程控制器,主要电气元件均为德国和欧洲国家的产品。 我们在该类机床的维修工作中曾碰到了几例由于坐标位置传感器损坏(或性能不良),或 坐标基准改变而引起的故障。现将故障排除过程介绍如下。 1由于坐标位置传感器损坏(性能劣化)而引发的机床故障 故障现象:开动机床走参考点时,出现510#报警(该报警号为FANUC系统报警,提示内容为+X方向超程)。 经现场检查,当机床开机走参考点时,经常发生刀架向+X方向运动,尚未到达极限位置 时(CRT显示尚有12mm左右距离)系统就出现510#报警,向-X方向运动时,则未出现过此类报警。 根据经验分析,出现这类报警,一般均与该坐标的位置传感器有关。而故障的报警提示为+X方向超程,因此应把检查的重点放在+X方向和X参考点两个位置传感器的工作状态上。 有关X坐标各位置传感器代码详见表1。 表1 X坐标各位置传感器代码一览表 传感器名称缩写传感器编号 PLC中的I/O代码对应的接线端子 +X极限 +X S B 148 X 3073.7 X 95.4 -X极限 -X S B 145 X 3073.6 X 95.3 X参考点 Refx S B 150 X 3073.1 X 95.5 首先我们可打开机床后部的电气控制箱,找到输入/输出接口组件(机床图册中编号为A132的部件),然后由一人运行机床,另一人观察该组件的显示。可观察到当向+X方向运行时,X3073.7为常亮,到达+X极限位置时,闪烁一下后又常亮;而向-X方向运行机床时,X3073.6的情况与X3073.7相类似;而X参考点传感器SB150(X3073.1)在向X两个方向运动机床时始终不亮,且偶然出现过无规则闪烁。据此可初步判断出SB150工作可能异常。 为了进一步确定故障,我们将位于机床正面工作仓中溜板滑枕上的下端盖板打开,可看 到接线端子X95(由于X轴的三个传感器均安装在其端部的另一仓盒内,不便直接观察,故由接线端子X95测量其工作电压较为方便)。 X95的接线情况如图1所示。 首先用万用表测其1、2两点,得知传感器工作电压为DC24V正常。而后在机床运动状态下分别测量X95.3和X95.4及X95.5三点相对于X95.2的电压。结果发现仍如前所述,即X95.3

霍尔传感器介绍

霍尔传感元器件及A44E介绍 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔器件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1)(2)(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,

最常用的传感器用途简介

目录 1.常用传感器分类 (1) 1.1生活常见类 (1) 1.2光电类传感器 (2) 1.3力学方面传感器 (3) 1.4 其他常见方面的传感器 (4) 2传感器功能分类 (5) 2.3电阻式传感器 (5) 2.4. 变频功率传感器 (5) 2.5称重传感器 (6) 2.6电阻应变式传感器 (6) 2.7压阻式传感器 (6) 2.8热电阻传感器 (6) 2.9 激光传感器 (6) 2.10. 霍尔传感器 (6) 2.11无线温度传感器 (6) 2.12智能传感器 (7) 2.13光敏传感器 (7) 2.14生物传感器 (7) 2.15 位移传感器 (7) 2.16. 压力传感器 (8) 2.17. 24GHz雷达传感器 (8) 2.18 液位传感器 (8) 2.18.1、浮球式液位传感器 (8) 2.18.2、浮简式液位传感器 (8) 2.18.3、静压或液位传感器 (8) 1.常用传感器分类 1.1生活常见类 DS18b20温度传感器 作用:检测温度 湿度传感器: 检测湿度 温湿度传感器 作用:检测室内温度跟湿度 烟雾传感器 作用:检测烟雾浓度

作用:安卓手机上的的屏幕旋转 防水型DS18B20 作用:防水也可测温度 声音检测传感器 作用:可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的 驻极体话筒传感器 作用:声控开关 煤气传感器 作用:预防火灾 1.2光电类传感器 超声波传感器 作用:测距离 红外避障传感器 作用:避障 反射式光电管RP220 作用:可应于小车、机器人等黑白线寻迹 光敏电阻P1201-04传感器 作用:可见光控制电阻阻值 U型光电传感器 作用:常用于工件计数、测量电机的转速、电机转的圈数 红外接收头HS0038 作用:可应于红外信号检测 CHQ1838传感器 作用:接收红外线 红外光电传感器 作用:光电开关,红外光电开关的种类很多,有镜反射式、漫反射式、槽式、对射式和光纤式等。 接触传感器 作用:识别障碍物 开环式电流传感器 作用:测量磁场 闭环式电流传感器 作用:测量磁场 霍尔开关传感器 作用:可用于电机测速/位置检测等场地,主要作为开关使用 防跌落传感器 作用:饭跌落 防碰撞传感器: 作用:防碰撞

生物传感器的发展现状与趋势

生物传感器的应用与发展趋势 摘要:生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术, 是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续检测的特点。生物传感器的高度自动化、微型化与集成化,减少了对使用者环境和技术的要求,适合野外现场分析的需求,在生物、医学、环境监测,视频,医药及军事医学等领域有着重要的应用价值。 关键词:生物传感器;应用;发展趋势 1生物传感器 从几百年以前,人类就已经在使用生物传感器,而生物传感器的研究始于1962年,Clark和Lyons首先提出使用含酶的修饰膜来催化葡萄糖,用pH计和氧电极来检测相应的信号转变。1967年,Updike和Hick 正式提出了生物传感器这一概念,并成功制备了第一支葡萄糖生物传感器,这一工作对生物学来说具有里程碑意义。生物传感器研究的全面展开是从20世纪80年代开始的,1977年,Kambe等用微生物作识别元素制备了生物传感器,为拓宽检测物的范围,所用到的识别元素不断得到扩展,如细胞、DNA、RNA、抗体等识别元素先后被应用于生物传感器的构筑中。换能器的种类和质量也不断得到提高和发展,随后细胞、DNA、RNA、抗体等识别元素也被应用于生物传感器中。逐渐从电化学向光谱学、热力学、磁力、质量及声波等方向拓展,这也使得生物传感器在种类和应用领域上得到发展。 1.1 生物传感器简介 生物传感器指对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器如氧电极、光敏管、场效应管、压电晶体等等及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器:微生物、免疫、酶免疫和细胞器传感器,研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。 在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。 1.2 生物传感器的分类 生物传感器主要有下面三种分类命名方式: 1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器,微生物传感器,细胞传感器,组织传感器和免疫传感器。相应的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。 2.根据生物传感器的换能器即信号转换器分类有:生物电极传感器,半导体生物传感器,光生物传感器,热生物传感器,压电晶体生物传感器等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。 3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器、代谢型或催化型生

相关文档
最新文档