办公楼脚手架立杆受力分析

办公楼脚手架立杆受力分析
办公楼脚手架立杆受力分析

办公楼脚手架立杆受力分析

一、计算参数:

双排脚手架,搭设高度45.3米,24.0米以下采用双管立杆,24.0米以上采用单管立杆。立杆的纵距1.50米,立杆的横距0.85米,内排架距离结构0.35米,立杆的步距1.80米。钢管类型为48×3.0,施工活荷载为3.0kN/m2,同时考虑2层施工。脚手板采用竹笆片,荷载为0.15kN/m2,按照铺设25层计算。栏杆采用竹笆片,荷载为0.15kN/m,安全网荷载取0.0050kN/m2。

二、脚手架荷载计算

作用于脚手架的荷载包括静荷载、活荷载和风荷载。

1、静荷载标准值包括以下内容:

(1)每米立杆承受的结构自重标准值(kN/m);本例为0.1070

NG1 = 0.107×45.300+24.000×0.038=5.767kN

(2)脚手板的自重标准值(kN/m2);本例采用竹笆片脚手板,标准值为0.15 NG2 = 0.150×25×1.500×(0.850+0.350)/2=3.375kN

(3)栏杆与挡脚手板自重标准值(kN/m);本例采用栏杆、竹笆片脚手板挡板,标准值为0.15

NG3 = 0.150×1.500×25/2=2.813kN

(4)吊挂的安全设施荷载,包括安全网(kN/m2);0.005

NG4 = 0.005×1.500×45.300=0.340kN

经计算得到,静荷载标准值 NG = NG1+NG2+NG3+NG4 = 12.295kN。

2、活荷载计算

活荷载为施工荷载标准值产生的轴向力总和,内、外立杆按一纵距内施工荷载总和的1/2取值。

经计算得到,活荷载标准值 NQ = 3.000×2×1.500×0.850/2=3.825kN 3、风荷载标准值应按照以下公式计算

经计算得到,风荷载标准值Wk = 0.7×0.550×1.250×1.092 = 0.526kN/m2。

考虑风荷载时,立杆的轴向压力设计值计算公式

N = 1.2NG + 0.85×1.4NQ

经过计算得到,底部立杆的最大轴向压力N=1.2×12.295+0.85×1.4×3.825=19.305kN

(立杆间距:1.5*0.85)

管道支架受力计算

地下三层3-8/D-E轴空调冷却水管道支 架受力计算 管道受力计算步骤如下: 1)对图纸进行支架的深化设计 首先对现有的图纸进行支架的深化设计,确定各个部位支架的间距,并在图纸上标明具体位置。并以洽商或工作联系单的形式经过专业设计人员的签认。 2)支吊架拉力计算 第一步、根据图集《室内管道支架及吊架》(03S402,中国建筑标准设计研究所2003.5.1实行)查出管道(如为保温管道应为带保温的管道)重量。 根据长城金融工程空调冷却水施工设计说明要求(DN450采用螺旋焊接钢管),钢管规格为为Φ478*9。 对于加厚管道,应根据每米钢管质量的计算公式计算出它的每米重量A:1*24.6616*δ*(D —δ)/1000,其中D为外径,δ为壁厚。 冷却水管重量:24.6616×9×(478-9)÷1000=104.6 kg/m 第二步、计算管道满水重量和支架自重 每米管道水重量: T=π*(管内径)2*水密度(kg/m3) 3.14×(0.45÷2)2×1000÷1000=159 kg/m 第三步、根据设计签认的“支吊架”深化图纸及上述计算数据,用下式计算出每个的膨胀螺栓须承受的力B(KN):

槽钢自重(t):2.85m×14.2kg/m=40.47 kg 总重量(t):(104.6+159)×66.4+40.47×7=17786.33 kg 膨胀螺栓承受的力:17786.33÷(8×7)÷100=3.18 KN 第四步、从图集《室内管道支架及吊架》(03S402)中P9关于M16的锚栓抗拉极限荷载为9.22KN,抗剪极限荷载为5.91KN,均大于深化设计荷载,故M16的膨胀螺栓的选取满足本工程需要。

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

模板支架受力分析要点讲解

模板支架受力分析要点讲解 (1)、《建筑施工扣件式钢管脚手架安全技术规范》对模板支架计算规定: 1)、模板支架立杆轴向力设计值 不组合风荷载时:N=1.2∑NGk+1.4∑NQk 组合风荷载时:N=1.2∑NGk+0.85×1.4∑NQk 式中∑NGk——模板支架自重、新浇砼自重与钢筋自重标准值产生的轴向力总和; ∑NQk——施工人员及施工设备荷载标准值、振捣砼时产生的荷载标准值产生的轴向力总和。 2)、模板支架立杆的计算长度l0 l0=h+2a 式中h——支架立杆的步距; a——模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度。 3)、对模板支架立杆的计算长度l0=h+2a的理解 为保证扣件式钢管模板支架的稳定性,规范中支架立杆的计算长度是借鉴英国标准《脚手架实施规范》 (BS5975-82)的规定,即将立杆上部伸出段按悬臂考虑,这有利于限制施工现场任意增大伸出长度。若步高为1.8m,伸出长度为0.3m,则计算长度为l0=h+2a=1.8+0.6=2.4m,其计算长度系数μ=2.4/1.8=1.333,比目前通常取μ=1 的值提高33.3%,对保证支架稳定有利。 (2)、扣件抗滑承载力的计算复核:

扣件钢管支架的双扣件抗滑试验用钢管扣件搭设模板支架,水平杆将荷载通过扣件传给立杆。步高在1.8m以内时,其承载力主要由扣件的抗滑力决定。 双扣件抗滑试验表明: 扣件滑动:2t 扣件抗滑设计:1.2t

(3)、扣件钢管支模计算实例: 预应力大梁1000*2650mm,27m跨。钢管排架间距600 *600mm 1)荷载计算 恒载 砼:1×2.65×2.4=6.36t/m 钢筋:1×2.65×0.25=0.66t/m 模板:(1+2.51+2.51) ×0.03=0.18t/m

SolidWorks支架受力分析报告

管道支吊架受力分析总结 管道安装在机电安装工程中占较大的比重,而管道支吊架的制安在管道安装中扮演着主要的角色,它直接关系到管道的承重流向及观感。有些支吊架不但影响观感,更存在着安全隐患,为了消除管道支吊架存在的各种隐患,使管道支吊架制安达到较高水平,有必要对管道支吊架进行荷载受力分析,确保支吊架荷载在安全范围以内。 选取宝鸡国金中心-购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 f2=πr2ρ介质l=3.14*0.1062*1000*6kg=211.688kg=2116.88N 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 分析过程: 1、支架建立 1)在REVIT导出要进行分析的支架剖面,然后打开solidworks软件,打开保存好的CAD支架剖面图;

2)通过草图绘制工具绘制支架轮廓; 3)通过插入-焊件-结构构件选择50*5等边角钢,并在绘制好的轮廓图上依次描图(如果没有需要的型钢号,可以下载国标型钢库放在solidworks指定的文件夹); 绘制型钢轮廓型钢的选择支架建立 4)赋材质:对支架模型赋予普通碳钢材质; 2、支架加载 1)定义受力面:对横担的水管投影区域进行分割,便于为下一步载荷选择指定面(我们等效管道的作用力集中在水平中心截面); 2)边界条件、载荷的定义:对支架的上端进行固定,保证在力的加载过程中不晃动,对支架进行加载,力的大小为2535.85N; 定义受力面力的加载 3、受力分析 从图中可以看出屈服力大小为220.594MPa,而最大应力只有164.125MPa,最大应力小于屈服力的大小,型钢处于弹性应力应变阶段。 1)应力、应变关系如下: 绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化不明显,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查得50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应力最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固,可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;2、通过选择更大规格的型钢来试验,直到满足设计要求为止。 通过上述例子,如果我们选择40*4的等边角钢来试验,通过计算和分析校核,发现可以满足使用要求,从而更加节省了型钢的用量。 以上分析只考虑了垂直方向的载荷,实际上对于有压管道,同时存在水平方向的受力,所以我们分开单独分析一下。 二、支架水平方向受力

大口径支架受力分析

1.支架荷载分类与计算 1.1 管道及介质载荷 管道及介质载荷包括管道自重、内衬保温层、管道附件、管架、介质重量。对于大口径管道,其轻质保温层和管道附件重量相对管道自重可忽略不计。在图2 中,支架1#承受的管道自重力为Pz 1.2 管道补偿反弹力 空调系统管道一般使用波纹补偿器图1 中,运行时,波纹补偿器上下管段因伸缩分别产生方向相反的补偿反弹力Pa1、Pa2,2#支架上,反弹力Pa2, 与向下作用的管道及介质等重量部分抵消,有利于支架的受力,而1#支架上,向下的反弹力Pa2 与管道及介质等的重力迭加,故两支架中.1#为受力不利支架.其补偿反弹力的计算式为P =Kw *Ex, Kw ——波纹补偿器总刚度.E ——设计补偿量。 1.3管道轴向不平衡内力 立管运行或试压时,因补偿器一侧的阀门关闭产生的作用力使管道承轴向内力不平衡(见图2) ,1#支架为最不利情况的最不利部位。管道系统试验压力高于工作压力,因此,试压时,系统承受的压力最大.为最不利状态,故应以试验压力为计算基础。1#支架轴向不平衡内力Pn=Po*Ai Po 一一管内介质试验压力,Ai 一一波纹补偿器有效截面面积。 1.4活动管架摩擦力为保证立管稳定,在1、2#固定支架之间设立活动支架,为减少磨 擦阻力.活动支架的抱箍卡般采用圆钢或扁钢管卡.抱箍安装不宜过紧其摩擦力较小.可忽略 1.5 试压用水的重量 试压水重量为两阀门之间试压管段所容水量的重量(Pr ) 。 1.6 振动载荷 管路系统振动会导致管道位移,位移产生应力。一般情况下.制冷系统设备运行时,其振动经过隔振处理和多处减振,传递至垂直立管的振动已经很小,几乎感觉不到,而试压时.管道本身没有振动故此项载荷可忽略。 1.7 积物及其它荷载此类荷载包括管内沉积物、操作平台荷载等。空调系统介质为清水,按常规维护要求,管路系统应定期作水质处理,系统内基本无沉积物。另外,一般情况下,楼层层高有限,管井内无需专门设立操作平台。故此类载荷亦可忽略。

支架受力分析

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下:

绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;

支架、模板受力方案分析解析

支架方案 一、工程概况 1.概况: 工程名称:深圳市福龙路工程Ⅷ标 工程地点:深圳市龙华镇 桥梁工程概况:本标段桥梁工程包括ZX9+469.599—ZX9+737.258 (ZX737.462)的和平立交东、西主线桥;桩号 10+138.700---10+547.282的高峰水库东、西主线桥;桩号 10+168.777---10+288.127高峰水库高架桥东辅线桥。 1、和平立交东、西主线桥位于福龙路跨越和平路段,分东、西主线桥,东主线桥ZX9+469.599---ZX9+737.258;西主线桥ZX9+469.599--- ZX9+737.462。 东、西主线桥桥面全宽各为13.25米,桥面横向布置为:0.5米(防护栏)+12.25米(车行道)+0.5米(防护栏)。 桥梁上部结构采用等高度预应力砼连续箱梁,横截面为单箱双室,箱梁底宽8.25米,两侧翼缘各宽2.5米,梁高1.5米,采用C50砼现浇。其中东线桥分三联:3*30米三跨+(30+33+20.5)米三跨+3*30米三跨;西线桥分三联:3*30米三跨+(30+33+20.5)米三跨+3*30米三跨。 全桥基础采用Φ1.4和Φ1.2米钻孔灌注桩(有三个基础采用明挖基础),Φ1.5米的双柱圆墩,在共用墩处设钢筋砼盖梁,桥台为重力式桥台。桥面铺装用5CM厚沥青玛蹄脂碎石混合料和6CM厚砼垫层。

2、高峰水库东、西主线桥位于福龙路北段,分东、西主线桥,高峰水库东侧,桩号10+138.700---10+547.282。 东、西主线桥桥面全宽各为12.24米,桥面横向布置为:0.5米(防护栏)+12.25米(车行道)+0.5米(防护栏)+0.99米(预备电力管位)。 桥梁上部结构:跨水塘段采用三跨钢—砼组合连续梁,其他段采用等高度预应力砼连续箱梁,东线桥分四联:(45+65+45)米三跨+3*25米三跨+4*25米四跨+3*25米三跨;西线桥分四联:(45+65+45)米三跨+3*25米三跨+4*25米四跨+(2*25+24.143)米三跨。 砼连续箱梁横截面为单箱双室,箱梁底宽9.24米,两侧翼缘各宽2.5米,梁高1.3米,采用C50砼现浇。 全桥基础采用Φ1.4和Φ1.2米钻孔灌注桩,Φ1.9、Φ1.5、Φ1.3米三种双柱圆墩,在共用墩处设钢筋砼盖梁,桥台为重力式桥台。桥面铺装用5CM厚沥青玛蹄脂碎石混合料和6CM厚砼垫层。 3、高峰水库高架桥东辅线桥位于福龙路北段,高峰水库主线桥东侧,桩号10+168.777---10+288.127,桥梁全长119.35米。 桥面全宽各为11.2米,桥面横向布置为:0.5米(防护栏)+8米(车行道)+2米(人行道)+ 0.7米(给水管)。 桥梁上部结构采用等高度预应力砼连续箱梁,横截面为单箱双室,箱梁底宽6.2米,两侧翼缘各宽2.5米,梁高1.5米,采用C50砼现浇。全桥共一联:20+32.5+32.5+30米。 全桥基础采用Φ1.4和Φ1.2米钻孔灌注桩,Φ1.5米的双柱圆墩,桥台为重力式桥台。桥面铺装用5CM厚沥青玛蹄脂碎石混合料和6CM 厚砼垫层。

模板支架受力分析要点讲解

精品文档 模板支架受力分析要点讲解 )、《建筑施工扣件式钢管脚手架安全技术规范》对模板支架计算规定:1(、模板支架立杆轴向力设计值1)N=1.2∑NGk+1.4∑NQk不组合风荷载时:N=1.2∑NGk+0.85×1.4∑NQk组合风荷载时: 模板支架自重、新浇砼自重与钢筋自重标准值产生的轴向力总和;∑NGk——式中施工人员及施工设备荷载标准值、振捣砼时产生的荷载标准值产生的轴向力总和。∑NQk——l02)、模板支架立杆的计算长度l0=h+2a支架立杆的步距;——式中h模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度。——a 的理解、对模板支架立杆的计算长度l0=h+2a3)为保证扣件式钢管模板支架的稳定性,规范中支架立杆的计算长度是借鉴英国标准《脚手架实施规范》(BS5975-82)的规定,即将立杆上部伸出段按悬臂考虑,这有利于限制施工现场任意增大伸出长度。若步高为1.8m,伸出长度为0.3m,则计算长度为l0=h+2a=1.8+0.6=2.4m,其计算长度系数μ=2.4/1.8=1.333,比目前通常取μ=1,对保证支架稳定有利。的值提高33.3%. 精品文档 )、扣件抗滑承载力的计算复核:(2

. 精品文档 扣件钢管支架的双扣件抗滑试验用钢管扣件搭设模板支架,水平杆将荷载通过扣件传给立杆。以内时,其承载力主要由扣件的抗滑力决定。步高在1.8m双扣件抗滑试验表明:2t扣件滑动:1.2t扣件抗滑设计:

)、扣件钢管支模计算实例:3(600 *600mm27m1000*2650mm预应力大梁,跨。钢管排架间距. 精品文档 )荷载计算1恒载1×2.65×2.4=6.36t/m砼:1×2.65×0.25=0.66t/m钢筋:1+2.51+2.51) × 0.03=0.18t/m模板:( 6.36+0.66+0.18=7.2t/m×0.25=0.75t/m1+1+1)活载:(7.2×1.2+0.75× 1.4=9.69t/m支撑设计荷载:)按双扣件抗滑设计2。@600,沿梁纵向钢管排架间距亦5根钢管,横向间距@600梁下按每排梁下每延米钢管排架的承载力(按抗滑复核)可)9.69t/m(5×1.75/0.6=14.58t/m>)按规范给出的公式复核3N=205×0.412×489=41301N=4.1t 每根排架立杆的承载力l0=h+2a=1600+2×200=2000 l0/I=2000/15.8=127其中注:规范对模板支架给出的公式为将立杆顶步的步高作为计算长度的基准,当用可调托插入立杆顶时的受力状l0=h+2aa按悬臂考虑,故况与计算条件吻合,将立杆伸出段:(4)、对扣件钢管高大支模架承载力计算的

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

高中物理受力分析精选习题答案

?高中物理受力分析精选习题 1.下列各图的A物体处于静止状态,试分析A物体的受力情况 2.应用隔离法在每个图的右边画出下列各图中的A物体的受力图,各图的具体条件如下: ⑴⑵图中的A物体的质量均为m,都处于静止状态.⑶图中的A处于静止,质量为m,分析A的受力并求出它受到的摩擦力的大小,并指出A受几个摩擦力。⑷图中各个砖块质量均为m,分析A所受的全部力,并求出A受的摩擦力的大小。 3.物体m沿粗糙水平面运动,⑴图:作出①F sinθ <mg时的受力图;②F sinθ =mg时的受力图.⑵图中的物块沿斜面匀速上滑,物块与斜面间的动摩擦因数为μ.分析物块的受力情况.⑶图中的m1和m2与倾角θ满足条件m2g<m1g sinθ且m1和m2均静止.作出m1的受力图.⑷图中的A,B均静止,竖直墙壁光滑,试用隔离法画出A和B两个物体的受力图. 4.⑴图中的A,B之间,B与地面之间的动摩擦因数均为μ,在A,B都向右运动的同时,B相对于A向左滑动,试分析A,B各自的受力情况;⑵图中的地面光滑,B物体以初速度v0滑上长木板A,B与A之间的动摩擦因数为μ,试分析A,B各自的受力情况.⑶图中的轻绳延长线过球心,竖直墙壁是粗糙的,球静止,画出球的受力图;⑷图中竖直墙壁粗糙,球静止,画出球的受力图.⑸图中的球静止,试画出球的受力图. / . 5.下列图⑴中的A,B,C均保持静止,试画出三个物体的

受力图;图⑵为两根轻绳吊一木板,木板 处于倾斜状态,另一个物块放在木板上, 系统处于平衡状态,试分析木板的受力情 况.图⑶中的A,B保持静止,试分析A 帮B的受力情况. 6.以下三个图中的物体全部处于静止状 态,⑴图和⑵图画出C点的受力图,⑶图画出均匀棒的受力图.球面光滑. ; 7.分析图⑴中定滑轮的受力情况,已知悬挂重物质量为m,并求出杆对滑轮的作用力.图⑵中的绳长L=2.5m,重物质量为m=4kg,不计绳子和滑轮质量,不计滑轮的摩擦.OA=1.5m.,取g =10m/s2.分析滑轮的受力情部并求出绳子对滑轮的拉力大小.图⑶:光滑球在水平推力F作用下处于静止状态,分析小球受力并求出斜面对小球的弹力大小.如图⑷,水平压力F =100N,A, B之间,A与墙壁之间的动摩擦因数均为μ=,A、B 受的重力均为10N.分析A物体的受力情况并求了它所受摩擦力的合力.如图⑸⑹,光滑球A、B放在水平面上,画出A,B的受力图 8.画出下列各图中的光滑球的受力图,各图中的球均处于静止状态. 9.如图所示,A,B两滑块叠放在水平面上,已知A与滑块B所受重力分别为G A= 10N,G B=20N,A与B间动摩擦因数μA=,,B与水平面间的动摩擦因数μB=.水平力F刚好能拉动滑块B,试分析两图中B滑块所受的力.并求出拉动滑块B所需的最小水平拉力分别是多大 % 10.如图⑴所示,三角形支架ABC的边长AB =20cm,BC= 15cm,在A点 通过细绳悬挂一个重20N的物体,求AB杆受拉力的大小及AC杆受压力 的大小 11.如图⑵所示,已知悬挂光滑球的绳子长度与球的半径相等,球的质量为m,求绳子的拉力和墙对球的弹力大小.

管道受力分析(无背景)

管道受力分析

管道受力分析 目录: 一、管道发展历史 1、发展 2、著名管道系统 二、提出问题 三、管道受力研究 1、管道 2、弯头 3、三通 四、小组分工 五、总结 六、参考文献

管道受力分析 关键字:管道受力 一、管道发展历史 管道是用管子、管子联接件和阀门等联接成的用于输送气体、液体或带固体颗粒的流体的装置。 管道的用途很广泛,主要用在给水、排水、供热、供煤气、长距离输送石油和天然气、农业灌溉、水力工程和各种工业装置中。管道作为物料输送的一种特殊设备在现代化工业生产和人民生活中起着很重要的作用,它就像人体中的血管一样,没有它,人的生命就不复存在。 1、“油气集输和储运”技术随着油气的开发应运而生。早在我国汉代,蜀中人民就采用当地盛产的竹子为原料,去节打通,外用麻布缠绕涂以桐油,连接成“笕”,就是我们现在铺设的输气管线。最早的一条原油输送管道,是美国于1865年10月在宾夕法尼亚州修建的一条管径50毫米长9756米从油田输送原油到火车站的管道,从此开始了管道输油工业。但油气管道运输是从1928年电弧焊技术问世,以及无缝钢管的应用而得到发展和初具规模的。管道输送技术的第一次飞跃是在第二次世界大战期间。第二次世界大战以后,管道运输有了较大的发展。 2、目前世界上比较著名的大型输油管道系统有:(1)前苏联的“友谊”输油管道。它是世界上距离最长、管径最大的原油管道,其北、南线长度分别为4412千米和5500千米,管径为426~1220毫米,年输原油量超过1亿吨,管道工作压力4.9~6.28兆帕。(2)美国阿拉斯加原油管道。其全长1287千米,管径1220毫米,工作压力8.23兆帕,设计输油能力1 亿吨/年。(3)沙特阿拉伯的东-西原油管道。其管径1220毫米,全长1202千米,工作压力5.88兆帕,输油能力1.37亿立方米/年。(4)美国科洛尼尔成品油管道系统。该管道系统干线管径为750~1020毫米,总长4613千米,干线与支线总长8413千米,有10个供油点和281个出油点,主要输送汽油、柴油、燃料油等100多个品级和牌号的油品。全系统的输油能力为1.4亿吨/年。 二、提出问题

支架受力分析

支架受力分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为:

F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下: 绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;2、通过选择更大规格的型钢来试验,直到满

钢管支架受力计算及施工

现浇连续梁钢管支架的计算及施工 扣件式钢管脚手架工程是桥梁连续梁施工中常用的且十分重要的临时设施,这项工作的优劣将直接影响工程的质量、安全、速度、效率等。扣件式钢管支架安装,拆卸比较方便,在荷载作用下稳定性较好。现以2005年合肥当涂路现浇连续刚构扣件式钢管支架的计算施工为例,浅述一下我们的应用。 一、工程概述 该桥孔跨布置为:1-8m框架+(20.3+2×17.8+20.3)m连续刚架,梁宽7m,梁厚1m,本桥现浇梁支架采用普通钢管脚手架,350工字钢梁做门洞梁,适用于跨度6m的门洞搭设,以满足既有当涂路交通的正常运营。 二、满堂脚手架的布置 该桥陆地上除门洞外其余梁体浇筑施工均采用满堂支架。支架材料为普通钢管脚手架,支架基础必须经碾压并硬化达到要求后,再搭设支架。地面进行硬化方法为:场地平整后用压路机压实,先铺10㎝碎石垫层,后铺C15砼15㎝(软弱地段换填垫片石和灰土)。支架间距顺桥向0.6m,横桥向0.6m,步长120cm.采用普通脚手钢管满堂支架,间距60×60㎝,步距120㎝.钢管上下均采用可调调节支撑,支架底托下延横桥向垫槽钢,所有支架应依据搭设高度设置剪刀撑。 因为满堂支架是整个梁体最重要的受力体系,所以钢管支撑的杆件有锈蚀,弯曲、压扁或有裂缝的严禁使用;使用的扣件有脆裂、变形、滑丝的扣件禁止使用,扣件活动部位应能灵活转动,当扣件夹紧钢管时,开口处的最小距离应不小于5mm. 三、支架检算如下: 1、模板支架检算(按一米梁长计算,钢管按Φ48计算) (1)钢筋砼断面如图①,荷载按照宽4.5米计算,则长1米的梁自重 N1=4.5×1×1×26=117(KN) (2)模板荷载N2=4.5×1×0.018×9=0.729(KN) (3)5×8方木荷载N3=4×0.05×0.1×4.5×7.5=0.675(KN) (4)15×15方木荷载N4=8×1×0.152×7.5=1.35(KN) (5)人及机具活载N5=20(KN) 则模板支架立杆的轴向力设计值N=1.2×(117+0.729+0.675+1.35)+1.4×20=154.315(KN) 模板支架立杆的计算长度l0=步距1m+2×0.5=2m 长细比λ=l0/I=2/1.58=126.6 则轴心受压件的稳定系数Φ=0.412,f为钢材的抗压强度设计值 =205Mpa; A≥N/Φ。f =154.315/(0.412×205)=18.27cm2 一根Φ48钢管的截面为:4.89cm2;则上述荷载需钢管数=18.27/4.89 =4根

支架受力计算书

福成锅炉房改造支架受力计算书 管道计算参数: D720×10:管道总重q=640kg/m(管道重175.1kg/m,管内水重385 kg/m,保温重80kg/m); D630×10:管道总重q=483.88kg/m(管道重152.89kg/m,管内水重292kg/m,保温重39kg/m); D529×9:管道总重q=353.91kg/m(管道重115.42kg/m,管内水重205.1kg/m,保温重33.50kg/m); D478×9:管道总重q=301.16kg/m(管道重104.1kg/m,管内水重166.5kg/m,保温重30.75kg/m); D426×9:管道总重q=246.63kg/m(管道重92.55kg/m,管内水重130.7kg/m,保温重23.38kg/m); D325×8:管道总重q=156.16kg/m(管道重62.54kg/m,管内水重74.99kg/m,保温重18.63kg/m); 1kgf=9.8N; 聚四氟乙烯板滑动摩擦系数μ=0.1。 一、滑动支架 室内: 1. HN-1 主管一根:D720×10,7m;支管D325×8,4m(锅炉分支)+2.5m(旁通)=6.5m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×7+156.16×6.5) ×1.5×9.8=80777N 水平摩擦力:F=μP=0.1×80777=8078N 2. HN-2 主管一根:D720×10,12m;支管D325×8,4m。 垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×4) ×1.5×9.8=122078N 水平摩擦力:F=μP=0.1×122078=12208N 3. HN-3 主管一根:D720×10,11m;支管325×8,5.35m(锅炉分支)+2.5m(旁通)=7.85m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×11+156.16×7.85) ×1.5×9.8=121508N

管道设计之管道应力分析

管道设计之管道应力分析 开篇 Email: 156578102@https://www.360docs.net/doc/ca14844547.html, 对管道支撑件(如固定支架、止推支架、导向支架、滑动支架、滚动支架、吊架、弹簧支架等)、阻尼件(如阻尼器)、柔性件(如膨胀节)的选型与设置;对与管道相连的设备的定位、操作的理解;对管道走向的调整与斟酌;对管道元件的局部分析与处理(如法兰、支架生根、SIF);对管道开停车工况及其介质特性的理解;对管道可能遭受的偶然载荷(如气液两相流、水锤、气锤、安全阀反力、风载荷、地震载荷)的理解程度,一定程度上体现了一个设计院管道设计的水平。 虽然柔性分析仍然是管道应力分析的主要内容,但与振动有关的破坏也越来越受到重视,所以管道设计需要刚柔并济。话虽这么说,但有时候确实很难,这个时候应该查找相关资料来佐证自己的想法,做到有分寸的考虑相关问题,不能一味按某个不切实际方向去做。1.管道应力专业工作 1.1编写本装置的应力分析统一规定,明确本装置执行的规范及版本,软件及版本; 1.2根据统一规定,编写本装置的应力分析关键管线表; 1.3参与关键管线及其设备的布置研究; 1.4参与关键设备的技术谈判; 1.5的委托条件进行详细应力分析(这部分内容很多,等以后大家都了解后可以针对不同管系展开说明),提出应力计算报告及修改意见; 1.6受报告并解读报告,按要求修改管道走向及选取支架,向土建、设备专业返回受力及扰度要求; 1.7置的三查四定及开车。 2.配管委托条件应包括哪些内容 2.1单线图:

2.2设备总装图:设备外形图、材质、温度等; 2.3调节阀、安全阀数据表:重量、反作用力、压力等级、材质等; 2.4其他应力分析过程中需要的资料:如PID流程图、管道表、材料等级表、当地风、地震等数据等等。 3.如何理解应力分析报告 3.1节点号: 在单线图上感兴趣的点称为节点,通常会在管道端点、支吊点、三通、弯头、大小头、管道属性改变处(如管径、壁厚、保温、温度、压力等)、阀门端面、法兰端面、膨胀节及一些特殊需要而增设等处设置节点号。 3.2 支架类型: 在单线图上应该清楚的表示管道的支架型号示意图,配管专业应按图示要求结合该点的受力、位移要力求选取合适的支架或者组合支架。 【选读材料】 支吊架的强度及刚度应满足该点的受力及位移要求;配管预设管道支架位置,应满足管道的许用跨距;在载荷集中处、弯管和大直径三通分支管附近处应留有支架位置;支架与管道生根处的材质宜与管道同材质;输送介质温度等于或高于400℃的碳钢管道、输送冷冻介质的管道、合金钢、不锈钢、需热处理的管道应尽可能需用抱箍型支架;比较常见的支架类型有: 固定支架:进出装置的边界点宜设置固定支架(应与另一装置负责人协调,至少应告之对方);应力分析管系与非应力分析管系断开点在详细考虑后可设置固定支架;在有冲击载荷的阀门如减温减压阀、有相变的调节阀、安全阀在充分考虑各种工况后在合适的位置设置固定支架;管道柔性元件(如会产生压力推力型的膨胀节)的直管两端合适位置应设置固定支架;复杂管系分为若干简单管系处宜设置固定支架; 防振支架:对往复式压缩机等具有压力脉动的管系应尽可能的设置防振支架,宜独立生根,宜采用抱箍型内嵌缓冲垫,如讲究,对支架还需提刚度要求; 刚性滑动支架:应注意管托长度,使其满足管道膨胀位移量的要求; 刚性可调支架:在泵进出口管道可设置刚性支架的情况,一般选用可调支架; 刚性滚动支架:对管口受力要求苛刻的敏感设备,为了减少摩擦力,有可能会选择滚动支架; 刚性吊架:选取吊杆时应使吊杆长度满足管道膨胀位移量的要求,通常来说,当管道热态时,吊杆与垂直线的夹角应该控制在3o(不同设计院根据不同要求,但是最好不要太大)以内;吊杆与钢结构的生根形式应可偏转,不可固定住(除非特别注明,或者无温度的管道);吊架也可用于对摩擦力有苛刻要求的场合。导向吊架:为了使管道较高的固有频率,抵御风、地震、安全阀排放反力、水击等偶然载荷应在合适的位置设置导向支架;为了保持管道的稳定应在合适的位置设置导向支架;为了控制管道热涨位移在合理的范围内或者控制热涨位移的分配应在合适的位置设置导向支架;有些管道柔性元件的要求(如装有通用型膨胀节的直管道应按规范要求设置导向支架,控制管道沿轴向膨胀及柱稳定;为控制设备管嘴受力、法兰泄露等可在合适的位置设置导向支架; 止推支架:为了使管道较高的固有频率,抵御风、地震、安全阀排放反力、水击等偶然载荷应在合适的位

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

相关文档
最新文档