智能变电站合并单元标准化作业指导书

智能变电站合并单元标准化作业指导书
智能变电站合并单元标准化作业指导书

智能变电站

模拟量输入式合并单元调试作业指导书

批准:

审核:

编写:

作业负责人:

目次

1.应用范围 (1)

2.引用文件 (1)

3.调试流程 (1)

4.调试前准备 (3)

4.1 准备工作安排 (3)

4.2 作业人员要求 (3)

4.3 试验仪器及材料 (4)

4.4 危险点分析与预防控制措施 (4)

5.单体调试 (5)

5.1 电源和外观检查 (5)

5.2 绝缘检查 (6)

5.3 配置文件检查 (7)

5.4 光纤链路检查 (7)

5.5 GOOSE开入/开出检查 (8)

5.6 采样值特性检验 (8)

5.7 同步采样性能测试 (9)

5.8 对时性能测试 (10)

5.9 通道延时测试 (10)

5.10 电压切换/并列功能检查 (11)

5.11 检修压板闭锁功能检查 (12)

5.12 异常告警功能检查 (12)

6.联调试验 (13)

6.1 与保护装置的联调试验 (13)

6.2 与测控及监控后台的联调试验 (13)

7.送电试验 (13)

8.竣工 (13)

附录:调试报告 (15)

1.应用范围

本指导书适用于智能变电站模拟量输入式合并单元的现场调试工作,规定了现场调试的准备、调试流程、调试方法和标准及调试报告等要求,对采用电子式互感器的合并单元可参照执行。

2.引用文件

下列标准及技术资料所包含的条文,通过在本作业指导书中的引用,而构成为本作业指导书的条文。本作业指导书出版时,所有版本均为有效。所有标准及技术资料都会被修订,使用作业指导书的各方应探讨使用下列标准及技术资料最新版本的可能性。

GB 14285 继电保护和安全自动装置技术规程

GB/T 15147 电力系统安全自动装置设计技术规定

DL/T 281 合并单元测试规范

DL/T 282 合并单元技术条件

DL/T 478 继电保护和安全自动装置通用技术条件

DL/T 587 微机继电保护装置运行管理规程

DL/T 769 电力系统微机继电保护技术导则

DL/T 782 110kV及以上送变电工程启动及竣工验收规程

DL/T 860 变电站通信网络和系统

DL/T 995 继电保护及电网安全自动装置检验规程

Q/GDW 161 线路保护及辅助装置标准化设计规范

Q/GDW 175 变压器、高压并联电抗器和母线保护及辅助装置标准化设计规范

Q/GDW 267 继电保护和电网安全自动装置现场工作保安规定

Q/GDW 396 IEC 61850工程继电保护应用模型

Q/GDW 414 变电站智能化改造技术规范

Q/GDW 426 智能变电站合并单元技术规范

Q/GDW 431 智能变电站自动化系统现场调试导则

Q/GDW 441 智能变电站继电保护技术规范

Q/GDW 689 智能变电站调试规范

Q/GDW XXX 智能变电站标准化现场调试规范

国家电网安监〔2009〕664号国家电网公司电力安全工作规程(变电部分)

3.调试流程

根据调试设备的结构、校验工艺及作业环境,将调试作业的全过程划分为以下校验步骤顺序,见图1:

图1 调试流程图

4.调试前准备4.1 准备工作安排

4.2 作业人员要求

4.3 试验仪器及材料

4.4 危险点分析与预防控制措施

5.单体调试

5.1 电源和外观检查5.1.1 电源检查

5.1.2 装置外观检查

5.2 绝缘检查

按照DL/T 995-2006标准的6.2.4和6.3.3的要求,采用以下方法进行绝缘检查:

a)新安装时对装置的外引带电回路部分和外露非带电金属部分及外壳之间,以及电气上无联系的各回路之间,用500V兆欧表测量其绝缘电阻值应大于20MΩ。

b)新安装时对二次回路使用1000V摇表测量各端子之间的绝缘电阻,绝缘电阻值应大于10MΩ。

c)对二次回路使用1000V摇表测量各端子对地的绝缘电阻,新安装时绝缘电阻应大于10MΩ,定期检验时绝缘电阻应大于1MΩ。

注:1)绝缘电阻摇测前必须断开交、直流电源;摇测结束后应立即放电,恢复接线。

2)检查结果记录于调试报告表5。

5.3 配置文件检查

5.3.1配置文件版本及SCD虚端子检查

a)检查SCD文件头部分(Header)的版本号(version)、修订号( revision)、和修订历史(History)确认SCD文件的版本是否正确。

b)采用SCD工具检查本装置的虚端子连接与设计虚端子图是否一致。

注:检查结果记录于调试报告表格表6.1。

5.3.2 装置配置文件一致性检测

a)检查待调试装置和与待调试装置有虚回路连接的其它装置是否已根据SCD文件正确下装配置。

b)采用光数字万用表接入待调试装置各GOOSE接口,解析其输出GOOSE报文的MAC地址、APPID、GOID、数据通道等参数是否与SCD文件中一致;光数字万用表模拟发送GOOSE报文,检查待调试装置是否正常接收。

c)检查待调试装置下装的配置文件中GOOSE的接收、发送配置与装置背板端口的对应关系与设计图纸是否一致。

注:检查结果记录于调试报告表6.2。

5.4 光纤链路检查

5.4.1 发送光功率检验

将光功率计用一根尾纤(衰耗小于0.5dB)接至合并单元的发送端口(Tx),读取光功率值(dBm)即为该接口的发送光功率。要求合并单元数据光口发送功率不小于-23dBm。5.4.2 接收光功率检验

将合并单元接收端口(Rx)上的光纤拔下,接至光功率计,读取光功率值(dBm)即为该接口的接收光功率。

接收端口的接收光功率减去其标称的接收灵敏度即为该端口的光功率裕度,装置端口接收功率裕度不应低于3dBm。

5.4.3 光纤连接检查

a)检查合并单元光口和与之光纤连接的各装置光口之间的光路连接是否正确,通过依次拔掉各根光纤观察装置的断链信息来检查各端口的SV/GOOSE配置是否与设计图纸一致。

b)将合并单元和与之光纤连接的各装置SV/GOOSE接收压板投入,检修压板退出,检查合并单元无SV或GOOSE链路告警信息。

注:检查结果记录于调试报告表7。

5.5 GOOSE开入/开出检查

5.5.1 GOOSE开入检查

a)母联断路器位置开入检查(仅母线PT合并单元)

若一次设备具备传动条件,可实际分合母联断路器,观察装置的开入状态是否正确;若一次设备不具备传动条件,可用数字式继电保护测试仪模拟断路器变位。

b)各间隔刀闸位置开入检查

若一次设备具备传动条件,可实际分合各间隔刀闸,观察装置的开入状态是否正确;若一次设备不具备传动条件,可用数字式继电保护测试仪模拟刀闸变位。

5.5.2 GOOSE开出检查

用报文分析仪检查合并单元的状态报文输出是否正常,通过模拟故障使合并单元输出GOOSE报文中某一变量变位,从报文分析中观察变位报文输出是否正确。

注:检查结果记录于调试报告表8。

5.6 采样值特性检验

5.6.1 零漂检验

a)电压零漂检验

将合并单元上电并与相关保护/测控装置正确连接,观察5分钟内合并单元的电压零漂采样值稳定在±0.05V以内。

b)电流零漂检验

将合并单元上电并与相关保护/测控装置正确连接,观察5分钟内合并单元的电流零漂采样值稳定在±0.05A以内。

5.6.2 幅值与相位特性检验

a)电压幅值与相位特性检验

通过继电保护测试仪对合并单元的三相电压输入口分别加量40V、50V和60V,相位为正序。观察装置中采样是否正确,要求各通道对应关系正确。

b)电流幅值与相位特性检验

通过继电保护测试仪对合并单元的三相电流输入口分别加量60%IN、80%IN和100%IN,相位为正序。观察装置中采样是否正确,要求各通道对应关系正确。

5.6.3 准确度测试

a)电压通道准确度测试

用标准三相交流信号源给待测合并单元按额定电压的5%、80%、100%、120%加入电压量,将模拟电压量和待测合并单元的SV输出同步接入合并单元测试仪,记录每一个电压通道的比值差和角差,误差特性应满足合并单元基本误差等级指标的要求。

b)电流通道准确度测试

用标准三相交流信号源给待测合并单元按额定电流的5%、20%、100%、120%加入电流量,将模拟电流量和待测合并单元的SV输出同步接入合并单元测试仪,记录每一个电流通道的比值差和角差,误差特性应满足合并单元基本误差等级指标的要求。

注:检验结果记录于调试报告表9。

5.7 同步采样性能测试

5.7.1 电压、电流模拟量相位差测试

用标准三相交流信号源给间隔合并单元加入单相额定电压和单相额定电流,相位差设定为0°。将间隔合并单元输出接至合并单元测试仪,检查间隔电压、电流间的相位差用于测量和保护的不超过0.3°,用于PMU的不超过0.1°。

5.7.2 电压数字量与电压、电流模拟量相位差测试

用标准三相交流信号源给间隔合并单元加入单相额定电压和单相额定电流,同时对母线合并单元施加单相额定电压,各模拟量之间相位差均设定为0°。将母线合并单元与间隔

合并单元级联,并将级联后的间隔合并单元输出接至合并单元测试仪,检查间隔电压、电流间的相位差用于测量和保护的不超过0.3°,用于PMU的不超过0.1°。

注:测试结果记录于调试报告表10。

5.8 对时性能测试

5.8.1 对时误差测试

将标准时钟源给合并单元授时,待合并单元对时稳定。用时间测试仪以每秒测量1次的频率测量合并单元和标准时钟源各自输出的1PPS信号有效沿之间的时间差的绝对值△f,连续测量lmin,这段时间内测得的△f的最大值即为最终测试结果,要求误差不超过1μs。5.8.2 对时异常及恢复测试

将标准时钟源给合并单元授时,待合并单元对时稳定。断开标准时钟源对时信号,检测合并单元是否发出对时异常报警信号。然后输出正常对时信号,检测是否发出恢复信号。要求合并单元能不受对时异常干扰并按正确的采样周期发送报文。

5.8.3 报文抖动误差测试

用合并单元测试仪记录接收到的合并单元每包采样值报文的时刻,并计算出连续两包之间的间隔时间。持续统计10min内间隔时间与额定采样间隔之间的差值应小于10μs。

注:测试结果记录于调试报告表11。

5.9 通道延时测试

5.9.1 电压通道采样延时测试

将合并单元输出与继电保护测试仪输出同时接至合并单元测试仪,用继电保护测试仪给待测合并单元突加电压量,测量合并单元电压通道的采样转换时间,要求不超过2ms。将测量的实际延时,与SV帧携带的迟延时间常数进行比较,要求采样迟延偏差小于5μs。对电压级联情况下的通道采样延时要求与上面一致。

5.9.2 电流通道采样延时测试

将合并单元输出与继电保护测试仪输出同时接至合并单元测试仪,用继电保护测试仪给待测合并单元突加电流量,测量合并单元电流通道的采样转换时间,要求不超过2ms。将测量的实际延时,与SV帧携带的迟延时间常数进行比较,要求采样迟延偏差小于5μs。

注:测试结果记录于调试报告表12。

5.10 电压切换/并列功能检查

5.10.1 电压切换功能检查

在母线电压MU上分别施加50V和60V两段母线电压,母线电压MU与间隔MU级联。模拟I母和II母隔刀位置,按照间隔MU电压切换逻辑表中依次变换信号,在光数字万用表上观察间隔MU输出的SV报文中母线电压通道的实际值,并依此判断切换逻辑。并观察在刀闸为同分或者同合的情况下,间隔MU的告警情况。

5.10.2 电压并列功能检查

模拟母联开关位置信号,分别切换母线合并单元把手至“Ⅰ母强制用Ⅱ母”或“Ⅱ母强制用Ⅰ母”状态,并置并列或解列状态(如果装置支持),在光数字万用表上观察母线电压MU输出的Ⅰ母和Ⅱ母电压,并依此判断并列逻辑。

注:检查结果记录于调试报告表13。

5.11 检修压板闭锁功能检查

5.11.1 检修标志置位功能检查

将合并单元检修压板投入,检查合并单元输出的SV报文中的“TEST”值应为1。再将合并单元检修压板退出,检查合并单元输出的SV报文中的“TEST”值应为0。当合并单元检修压板投入,而GOOSE链路对端装置的检修压板退出时该GOOSE链路告警。

5.11.2 GOOSE报文处理机制检查

分别修改GOOSE报文中刀闸位置的检修位和合并单元检修压板状态,检查合并单元对GOOSE检修报文处理是否正确。当检修状态一致时,合并单元将GOOSE刀闸位置视为有效,当检修状态不一致时,合并单元将GOOSE刀闸位置视为无效。

注:检查结果记录于调试报告表14。

5.12 异常告警功能检查

5.12.1 电源中断告警

断开合并单元直流电源,检查装置告警硬接点应接通。

5.12.2 电压异常告警

断开母线电压合并单元至间隔合并单元光纤,检查间隔合并单元应发告警信息。

5.12.3 装置异常告警

检查装置插件故障时应有告警信号(通信板、CPU等)。

5.12.4 GOOSE异常告警

断开间隔合并单元组网口光纤,检查间隔合并单元应发GOOSE异常告警信息;恢复对应光纤,GOOSE异常告警复归。

注:检查结果记录于调试报告表15。

6.联调试验

6.1 与保护装置的联调试验

从合并单元加量,相关保护装置的采样应正确。拔掉合并单元至保护装置的直采口,保护装置应告警并闭锁相应的保护功能。

6.2 与测控及监控后台的联调试验

从合并单元加量,检查测控及后台采样应正确,模拟合并单元的各种异常状态,检查测控的GOOSE开入及后台报文应正确。

注:试验结果记录于调试报告表16。

7.送电试验

在送电试验时,应核对合并单元送至各保护、测控装置各路电压、电流的的幅值、相位等参数应与实际负荷状况相符,合并单元没有误发信号,运行环境温度在允许范围内。

注:试验结果记录于调试报告表17。

8.竣工

附录:调试报告

XX变电站XX合并单元调试报告

变电站名称:

间隔名称:

装置类型:

生产厂家:

调试负责人:

调试人员:

调试日期:

1.调试依据

GB 14285 继电保护和安全自动装置技术规程

GB/T 15147 电力系统安全自动装置设计技术规定

DL/T 281 合并单元测试规范

DL/T 282 合并单元技术条件

DL/T 478 继电保护和安全自动装置通用技术条件

DL/T 587 微机继电保护装置运行管理规程

DL/T 769 电力系统微机继电保护技术导则

DL/T 782 110kV及以上送变电工程启动及竣工验收规程

DL/T 860 变电站通信网络和系统

DL/T 995 继电保护及电网安全自动装置检验规程

Q/GDW 161 线路保护及辅助装置标准化设计规范

Q/GDW 175 变压器、高压并联电抗器和母线保护及辅助装置标准化设计规范Q/GDW 267 继电保护和电网安全自动装置现场工作保安规定

Q/GDW 396 IEC 61850工程继电保护应用模型

Q/GDW 414 变电站智能化改造技术规范

Q/GDW 426 智能变电站合并单元技术规范

Q/GDW 431 智能变电站自动化系统现场调试导则

Q/GDW 441 智能变电站继电保护技术规范

Q/GDW 689 智能变电站调试规范

Q/GDW XXX 智能变电站标准化现场调试规范

国家电网安监〔2009〕664号国家电网公司电力安全工作规程(变电部分)2.基本信息

2.1 装置基本信息

2.2 仪器设备基本信息

3.电源检查

结论:

4.屏柜及装置外观检查

5.绝缘电阻检查

6.配置文件检查

6.1配置文件版本及SCD虚端子检查

6.2装置配置文件一致性检查

结论:

7.光纤链路检查

结论:

国家电网公司现场标准化作业指导书..

现场标准化作业指导书编制导则 (试行稿) ××××年×月×日发布××××年×月×日实施 ××××发布

目次 前言.......................................................... 1 范围........................................................... 2 规范性引用文件................................................. 3 术语和定义..................................................... 4 作业指导书的编制原则........................................... 5 作业指导书的编制依据........................................... 6 作业指导书的结构内容及格式..................................... 变电检修作业指导书........................................... 变电运行巡视指导书........................................... 高压试验作业指导书........................................... 线路运行巡视指导书........................................... 线路检修作业指导书........................................... 7 现场作业指导书的文本要求....................................... 8 现场作业指导书的应用与管理..................................... 附录A:作业指导书主要编制依据................................. 附录B:×××变电站×××kV××线×××断路器大修定置图及围栏图.............................................................. 附录C:×××变电站×××kV××线×××断路器大修流程图....... 附录D:×××变电站巡视路线图.................................

智能变电站继电保护题库

智能变电站继电保护题库 第一章判断题 1.智能变电站的二次电压并列功能在母线合并单元中实现。 2.智能变电站内智能终端按双重化配置时,分别对应于两个跳闸线圈,具有分相跳闸功能;其合闸命令输出则并接至合闸线圈。 3.对于500kV智能变电站边断路器保护,当重合闸需要检同期功能时,采用母线电压合并单元接入相应间隔电压合并单元的方式接入母线电压,不考虑中断路器检同期。 4.任意两台智能电子设备之间的数据传输路由不应超过4个交换机。当采用级联方式时,允许短时丢失数据。5.智能变电站内双重化配置的两套保护电压、电流采样值应分别取自相互独立的合并单元。 6.双重化配置保护使用的GOOSE(SV)网络应遵循相互独立的原则,当一个网络异常或退出时不应影响另一个网络的运行。 7.智能变电站要求光波长1310nm光纤的光纤发送功率为-20dBm ~-14dBm,光接收灵敏度为-31dBm ~-14dBm。8.智能变电站中GOOSE开入软压板除双母线和单母线接线外启动失灵、失灵联跳开入软压板既可设在接收端,也可设在发送端。 9.有些电子式电流互感器是由线路电流提供电源。这种互感器电源的建立需要在一次电流接通后迟延一定时间。此延时称为“唤醒时间”。在此延时期间,电子式电流互感器的输出为零。 10.唤醒电流是指唤醒电子式电流互感器所需的最小一次电流方均根值。 11.温度变化将不会影响光电效应原理中互感器的准确度。 12.长期大功率激光供能影响光器件的寿命,从而影响罗氏线圈原理中电子式互感器的准确度。 13.合并单元的时钟输入只能是光信号。 14.用于双重化保护的电子式互感器,其两个采样系统应由不同的电源供电并与相应保护装置使用同一直流电源。 15.电子式互感器采样数据的品质标志应实时反映自检状态,不应附加任何延时或展宽。 16.现场检修工作时,SV采样值网络与GOOSE网络可以联调。 17.GOOSE跳闸必须采用点对点直接跳闸方式。 18.220kV智能变电站线路保护,用于检同期的母线电压一般由母线合并单元点对点通过间隔合并单元转接给各间隔保护装置。 19.智能变电站母线保护按双重化进行配置。各间隔合并单元、智能终端均采用双重化配置。 20.智能变电站采用分布式母线保护方案时,各间隔合并单元、智能终端以点对点方式接入对应母线保护子单元。 21.智能变电站保护装置重采样过程中,应正确处理采样值溢出情况。 22.与传统电磁感应式互感器相比,电子式互感器动作范围大,频率范围宽。

智能变电站失步解列装置通用技术规范(范本)

智能变电站失步解列装置通用技术规范(范本)

本规范对应的专用技术规范目录 序号名称编号 1 智能变电站失步解列装置专用技术规范2803002-0000-b1

智能变电站失步解列装置采购标准 技术规范(范本)使用说明 1、本标准技术规范(范本)分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范(范本),通用技术规范(范本)部分条款及专用技术规范(范本)部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。 4、对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5、技术规范(范本)的页面、标题、标准参数值等均为统一格式,不得随意更改。 6、投标人逐项响应专用技术规范(范本)部分中“1 标准技术参数表”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件专用技术规范(范本)部分的“招标人要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求响应表时,如有偏差除填写“技术偏差表”外,必要时应提供相应试验报告。 7、一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用部分中详细说明。

智能变电站技术(详细版)[详细]

智能化变电站技术

内容提要
? 智能化变电站概述 ? 如何实现智能化变电站 ? 关键问题分析 ? 智能化变电站技术规范 ? 国内典型工程案例分析

智能化变电站概述-定义
? 《智能变电站技术导则》给出的定义 采用先进、可靠、集成、低碳、环保的智能设
备,以全站信息数字化、通信平台网络化、信息共 享标准化为基本要求,自动完成信息采集、测量、 控制、保护、计量和监测等基本功能,并可根据需 要支持电网实时自动化控制、智能调节、在线分析 决策、协同互动等高级功能的变电站。
? 智能变电站派生于智能电网

智能化变电站概述-变电站 内部分层
IEC61850将变电站分为三层
远方控制中心 技术服务
7
变电站层
功能A
16
功能B
9 16
8
3
继电保护
控制
间隔层
控制
3
继电保护
45
45
过程层接口
过程层
传感器
操作机构
高压设备

智能化变电站概述-需要区分的概念
? 变电站层 监控系统、远动、故障信息子站等
? 间隔层 保护、测控等
? 过程层 智能操作箱子(或称智能单元) 合并单元 一次设备智能组件等。

智能化变电站概述-需要区分的概念
? IEC61850变电站
特征: 1)两层结构(变电站层、间隔层,没有过程层); 2)一次设备非智能化,间隔层通过电缆与传统互感器和开关连
接; 3)不同厂家的装置都遵循IEC61850标准,通信上实现了互连
互通,取消了保护管理机; 4)间隔层保护、测控等装置支持IEC61850,直接通过网络与
变电站层监控等相连。
市场特征: 该模式在国网和南网都处于大批量推广阶段,所占比例会越来 越大,以后会成为变电站标配。 例如:华东500kV海宁变、湖北500kV武东变等。

最新变电站保护装置合并单元简介

变电站保护装置合并单元简介 传统变电站中所需要的电气量都通过电缆直接接入常规互感器 的二次侧电流、电压,再通过保护、测控等装置自身的采样模块实现对模拟量的采样的A/D转换。智能变电站则是通过某个装置专门完成电气量的采样和A/D转换,再通过光纤将采样的数字量直接传送给保护、测控装置。这个专门的装置就是我们本期要了解的“合并单元”。 1、功能 合并单元(Merging Unit)的功能主要是将互感器输出的电压、电流信号合并,输出同步采样数据,并为互感器提供统一的输出接口,使不同类型的互感器于不同类型的二次设备之间能够互相通信。 按照功能,合并单元一般可以分为间隔合并单元和母线合并单元。 间隔合并单元用于线路、变压器和电容器等间隔电气量的采集,只发送本间隔的电气量数据。一般包括三相电压Uabc,三相保护电流Iabc、三相测量用电流I、同期电压UL、零序电压U0、零序电流I0。对于双母线接线的间隔,合并单元根据本间隔隔离开关的位置,自动实现电压切换的功能。 母线合并单元一般采集母线电压或者同期电压,在需要电压并列时,可通过软件自动实现个母线电压的并列。

目前智能站中合并单元的采样频率和输出频率统一为4kHz,即每工频周期80个采样点,这可以保护、测量装置的需求。对于计量用的合并单元需要专门设计,其采样和输出频率为12.8kHz。 2、技术原理 (1)电气量采集 由互感器输入合并单元的电气量可能是模拟量,也可能是数字量。 对于传统互感器输出的模拟量,模拟信号通过电缆输入合并单元,经过隔离变换、低通滤波后进入CPU进行A/D转换后,变为数字量输出至SV接口。 对于电子式互感器输出地数字量,合并单元有同步和异步两种方式。 同步方式:合并单元向个电子式互感器发送同步脉冲信号,电子式互感器接收到同步信号后,对一次电气量开始采集处理,并将采样数字量发送至合并单元。

智能变电站合并单元技术规范(清晰版)讲解(汇编)

Q / GDW 212 — 2008 ICS 29.240 国家电网公司企业标准 Q / GDW 426 — 2010 智能变电站合并单元技术规范 The technical specification for merging unit in Smart Substation 2010-××-××发布 2010-××-××实施 国家电网公司发布 Q/GDW Q / GDW 426 — 2010 I 目次 前言···································································································································································II 1 范围·····························································································································································1 2 引用标准······················································································································································1 3 基本技术条件··············································································································································1 4 主要性能要求·········································································································

智能变电站与常规变电站的区别

智能变电站与常规变电站的区别 一、了解智能变电站 1、背景 伴随着工业控制信息交换标准化需求和技术的发展,国外提出了以“一个世界,一种技术,一种标准”为理念的新的信息交换标准:IEC61850标准。在国内,现有信息交换技术在变电站自动化领域体现出来的种种弊端严重制约了生产管理新技术的提高,因此,采用IEC61850实现信息交换标准化已经成为国内电力自动化业界的一致共识,同时,国家电网公司又提出了“建设数字化电网,打造信息化企业”的战略方针,如何提高变电站及其他电网节点的数字化程度成为打造信息化企业的重要工作之一。数字化变电站就是在这样的背景下提出来的。因此,数字化变电站是变电站自动化发展及电网发展的结果。 如今,我国微机保护在原理和技术上已相当成熟,常规变电站发

生事故的主要原因在于电缆老化接地造成误动、CT特性恶化和特性不一致引起故障、季节性切换压板易出错等。这些问题在智能(数字)化变电站中都能得到根本性的解决。另外,微机技术和信息、通讯技术、网络技术的迅速发展和现有的成熟技术也促成了数字化技术在电力行业内的应用进程。这几年国内智能化一次设备产品质量提升非常快,从一些试运行站的近期反馈情况可以看出,智能化一次设备已经从初期的不稳定达到了基本满足现场应用的水平。工业以太网是随着微机保护开始应用于电力系统的,更是成为近几年的变电站自动化系统的主流通信方式。在大量的工程实践证明站控层与间隔层之间的以太网通信的可靠性不存在任何问题。而间隔层与过程层的通信对实时性、可靠性提出了更高的要求,但通过近两年的研究与实践,这一难点问题也已经解决。可以说原来制约数字化变电站发展的因素目前已经得到逐一排除。 智能(数字)化变电站按照变电站自动化系统所要完成的控制、监视和保护三大功能提出了变电站内功能分层的概念:无论从逻辑概念上还是从物理概念上都可将变电站的功能分为三层,即站级层、间隔层和过程层。智能(数字)化变电站作为变电站的发展方向,主要解决现有变电站可能存在的以下问题:传统互感器的绝缘、饱和、谐振等;长距离电缆、屏间电缆;通信标准等。 智能(数字)化变电站与传统变电站相比,主要需对过程层和间隔层设备进行升级,将一次系统的模拟量和开关量就地数字化,用光纤代替现有的电缆连接,实现过程层设备与间隔层设备之间的通

智能变电站发展前景及其关键技术分析

智能变电站发展前景及其关键技术分析 摘要:在时代迅速发展的带领下,我国对于电力的数量需求以及质量要求越来 越严苛,电力行业也是不负众望,为我国的电力用户提供安全、稳定的电力。但 由于数字技术的提高以及能源政策的调整,传统的电力自动化系统已经落后,智 能变电站的建设和发展成为必然的发展趋势。本文将简单介绍智能变电站的定义 和优点,分析其关键技术,并探究其在当今社会条件下的展望。 关键词:智能变电站;发展;关键技术 一、智能变电站概述 智能变电站是由智能设备和变电站全景数据平台两个核心部分组成。智能设 备能够通过通信光纤之间的连接来获取实时的智能变压器的工作参数和信息,所以,当其工作状态产生变动时,智能设备能够依照控制系统的电压和功率来判断 分接头的调度;当其工作状态遇到障碍时,智能设备能够产生警报且提供相应的 工作参数和数据信息等,另外,智能设备中的高压开关这一设备拥有稳定高效的 开关和控制功能,能够实时监测设备运行状态并及时诊断出设备的问题所在,帮 助工作人员快速高效地排除和修复所遇到的障碍,有效地减少了设备的管理费用,降低运行风险,使其稳定性得到合理的保障。变电站全景数据平台能够采集变电 站电力系统各状态下的工作参数和设备运行数据,能够将变电站的信息源头进行 简单化和一致化处理,实现横纵方向的信息透明化、共享化,进而规范相关信息 的处理方式和接口访问,以满足智能变电站信息库的性能要求,为变电站中一系 列的高级应用功能打下坚实的基石。 二、智能变电站的发展前景展望 当今社会条件下,人们对生活的水平和质量有着更高的要求和期望,生活更 加智能,智能的同时是带来不断增长的电力需求量,随之而来的必然是用电量的 持续上涨,那么只有我国的电力行业不断强化自身的发展,全面保障安全稳定的 持续电力供应,才能满足人们的相应需求。而传统的电力自动化系统已然跟不上 智能化的现代生活,这就要求传统电力网络向智能化发展,只有建立起智能电网,才能够实现智能供电,而智能变电站在智能电网的建立过程中具有举足轻重的地位。 我国的一二五计划中也提到了关于智能电网的发展规划,在2015年,我国已成功建成规格110-750千伏的智能变电站上万座。另外,我国政府在智能变电站 的投资在一二五期间达到160000亿元,所以不论从社会需求还是国家的重视度 都可以看出智能变电站的发展前景是非常可观的。那么为什么智能变电站能得到 国家的认可,原因就在于智能变电站的能够涉及到发电、点的传输与调配、通信 等等方面,能更好的实现电力资源的分配,另外,智能的变电站在设备的检修方 面也有很大的优势,通过网络大数据的使用,可以更好的对各电站的输电环境以 及设备进行监测。 当然,虽然智能变电站的发展前景是非常可观的,但是在发展的过程也避免 不了问题和挑战。首先,智能变电站的发展前提是网络技术的支持,我们必须要 有成熟的网络技术支持。第二,对与智能变电站,我们也需要特殊的材料,那么 这方面的研究也是智能变电站发展的基础。总的来说,智能变电站的是机遇与挑 战并存的,但是在社会发展迅猛的今天,我认为智能变电站的发展已成为必然趋势,所以发展的大方向还是好的。 三、智能变电站的关键技术分析

标准化作业指导书范本

附件 供电公司 农电典型标准化作业指导卡范本 二〇〇八年十月

目录 110kV变电站作业类: 110kV变电站日常巡视作业指导卡 (5) 110kV变电站特殊巡视作业指导卡 (15) 110kV主变高压试验作业指导卡 (26) 110kV开关大修作业指导卡 (32) 110kV开关安装作业指导卡 (39) 110kV主变大修作业指导卡 (46) 110kV电流互感器安装作业指导卡 (53) 110kV变电站接地电阻试验作业指导卡 (59) 110kV变电站主变保护校验作业指导卡(微机) (63) 110kV变电站主变保护校验作业指导卡(继电器) (70) 110kV变电站站用交直流电源检修作业指导卡 (76) 110kV变电站站用蓄电池充放电作业指导卡 (80) 110kV变电站清扫作业指导卡 (84) 110KV输电线路作业类: 110KV线路日常巡视作业指导卡 (93) 110KV线路特殊巡视作业指导卡 (100) 110KV停电更换绝缘子作业指导卡 (105) 110KV电杆组立作业指导卡 (110) 110KV铁塔组立作业指导卡 (115) 110KV线路检修作业指导卡 (121) 110KV线路避雷器安装作业指导卡 (128) 110KV 输电线路砍伐树木作业指导卡 (133) 110KV 输电线路交叉跨越测量作业指导卡 (137) 110KV输电线路杆塔接地电阻测试作业指导卡 (141) 110KV电力电缆敷设(更换)作业指导卡 (145)

110KV电力电缆试验、核相作业指导卡 (151) 110KV线路清扫作业指导卡 (156) 35KV变电站作业类: 35kv变电站日常巡视作业指导卡 (164) 35kv变电站特殊巡视作业指导卡 (174) 35kv主变高压试验作业指导卡 (185) 35kv开关大修作业指导卡 (191) 35kv开关安装作业指导卡 (198) 35kv主变大修作业指导卡 (205) 35kv电流互感器安装作业指导卡 (212) 35kv站用变压器的安装作业指导卡 (218) 35kv变电站接地电阻试验作业指导卡 (224) 35kv变电站主变保护校验作业指导卡(微机) (228) 35kv变电站主变保护校验作业指导卡(继电器) (235) 35kv变电站站用交直流电源检修作业指导卡 (241) 35kv变电站站用蓄电池充放电作业指导卡 (245) 35kv变电站清扫作业指导卡 (249) 35KV输电线路作业类: 35KV线路日常巡视作业指导卡 (258) 35KV线路特殊巡视作业指导卡 (265) 35kv停电更换绝缘子作业指导卡 (270) 35kv电杆组立作业指导卡 (275) 35kv铁塔组立作业指导卡 (280) 35kv线路检修作业指导卡 (286) 35kv线路避雷器安装作业指导卡 (293) 35kv 输电线路砍伐树木作业指导卡 (298) 35kv 输电线路交叉跨越测量作业指导卡 (302) 35kv输电线路杆塔接地电阻测试作业指导卡 (306)

智能变电站智能终端标准化作业指导书.

智能变电站 智能终端调试作业指导书 批准: 审核: 编写: 作业负责人:

目次 1.应用范围 (1) 2.引用文件 (1) 3.调试流程 (1) 4.调试前准备 (3) 4.1 准备工作安排 (3) 4.2 作业人员要求 (3) 4.3 试验仪器及材料 (4) 4.4 危险点分析与预防控制措施 (4) 5.单体调试 (5) 5.1 电源和外观检查 (5) 5.2 绝缘检查 (6) 5.3 配置文件检查 (7) 5.4 光纤链路检查 (7) 5.5 GOOSE开入/开出检查 (8) 5.6 动作时间测试 (8) 5.7 SOE精度测试 (9) 5.8 检修压板闭锁功能检查 (9) 5.9 异常告警功能检查 (9) 5.10 变压器/电抗器非电量保护检验 (10) 5.11 断路器本体功能检验 (10) 6.联调试验 (11) 6.1 与保护装置的联调试验 (11) 6.2 与测控及监控后台的联调试验 (11) 7.送电试验 (11) 8.竣工 (12) 附录:调试报告 (13)

1.应用范围 本指导书适用于智能变电站智能终端的现场调试工作,规定了现场调试的准备、调试流程、调试方法和标准及调试报告等要求。 2.引用文件 下列标准及技术资料所包含的条文,通过在本作业指导书中的引用,而构成为本作业指导书的条文。本作业指导书出版时,所有版本均为有效。所有标准及技术资料都会被修订,使用作业指导书的各方应探讨使用下列标准及技术资料最新版本的可能性。 GB 14285 继电保护和安全自动装置技术规程 GB/T 15147 电力系统安全自动装置设计技术规定 DL/T 478 继电保护和安全自动装置通用技术条件 DL/T 587 微机继电保护装置运行管理规程 DL/T 769 电力系统微机继电保护技术导则 DL/T 782 110kV及以上送变电工程启动及竣工验收规程 DL/T 860 变电站通信网络和系统 DL/T 995 继电保护及电网安全自动装置检验规程 Q/GDW 161 线路保护及辅助装置标准化设计规范 Q/GDW 175 变压器、高压并联电抗器和母线保护及辅助装置标准化设计规范 Q/GDW 267 继电保护和电网安全自动装置现场工作保安规定 Q/GDW 396 IEC 61850工程继电保护应用模型 Q/GDW 414 变电站智能化改造技术规范 Q/GDW 428 智能变电站智能终端技术规范 Q/GDW 431 智能变电站自动化系统现场调试导则 Q/GDW 441 智能变电站继电保护技术规范 Q/GDW 689 智能变电站调试规范 Q/GDW XXX 智能变电站标准化现场调试规范 国家电网安监〔2009〕664号国家电网公司电力安全工作规程(变电部分) 3.调试流程 根据调试设备的结构、校验工艺及作业环境,将调试作业的全过程划分为以下校验步骤顺序,见图1:

智能变电站基础知识题库

智能变电站基础知识 一、单项选择题 1. 合并单元是()的关键设备。 (A)站控层;(B)网络层;(C)间隔层;(D)过程层 答案:D 2. 智能终端是()的关键设备。 (A)站控层;(B)网络层;(C)间隔层;(D)过程层 答案:D 3. 从结构上讲,智能变电站可分为站控层设备、间隔层设备、过程层设备、站控层网络和过程层网络,即“三层两网”。()跨两个网络。 (A)站控层设备;(B)间隔层设备;(C)过程层设备;(D)过程层交换机 答案:B 4. 智能变电站中交流电流、交流电压数字量经过()传送至保护和测控装置。 (A)合并单元;(B)智能终端;(C)故障录波装置;(D)电能量采集装置 答案:A 5. 避雷器在线监测内容包括()。 (A)避雷器残压;(B)泄漏电流;(C)动作电流;(D)动作电压 答案:B 6. 智能变电站中()及以上电压等级继电保护系统应遵循双重化配置原则,每套保护系统装置功能独立完备、安全可靠。 (A)35 kV;(B)110kV;(C)220kV;(D)500 kV 答案:C 7. 继电保护设备与本间隔智能终端之间通信应采用()通信方式。 (A)SV点对点;(B)GOOSE点对点;(C)SV网络;(D)GOOSE网络 答案:B 8. 继电保护之间的联闭锁信息、失灵启动等信息宜采用()传输方式。 (A)SV点对点;(B)GOOSE点对点;(C)SV网络;(D)GOOSE网络 答案:D 9. 智能变电站中双重化配置的两套保护的跳闸回路应与两个()分别一一对应。(A)合并单元;(B)智能终端;(C)电子式互感器;(D)过程层交换机 答案:B

10. 智能终端放置在()中。 (A)断路器本体;(B)保护屏;(C)端子箱;(D)智能控制柜 答案:D 二、多项选择题 1. 智能开关的在线监测类型有:() (A)局部放电在线监测;(B)绕组测温在线监测;(C)六氟化硫微水密度在线监测;(D)断路器机械特性在线监测 答案:(A、C、D) 2. 下列哪些设备不属于智能变电站过程层设备?() (A)合并单元;(B)智能终端;(C)线路保护;(D)操作箱 答案:(C、D) 3. 下列哪些设备不属于智能变电站微机保护装置?() (A)交流输入组件;(B)A/D 转换组件;(C)保护逻辑(CPU);(D)人机对话模件 答案:(A、B) 4. 下列哪些不属于智能变电站继电保护装置的硬压板?() (A)“投检修状态”压板;(B)“保护出口跳闸”压板;(C)“投主保护”压板;(D)“启动失灵保护”压板 答案:(B、C、D) 5. 智能变电站的高级应用有:() (A)智能告警及分析决策;(B)顺序控制操作;(C)设备状态可视化;(D)源端维护 答案:(A、B、C、D) 三、填空题 1. 智能变电站定义:采用先进、可靠、集成、低碳、环保的智能设备,以______________、_____________、____________为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。 答案:全站信息数字化、通信平台网络化、信息共享标准化 2. 智能变电站中过程层面向__________,站控层面向运行和继保人员。 答案:一次设备

智能变电站合并单元现状及发展方向探讨 陈乐

智能变电站合并单元现状及发展方向探讨陈乐 发表时间:2017-12-28T21:30:34.337Z 来源:《基层建设》2017年第28期作者:陈乐[导读] 摘要:在我国电力能源领域不断发展的过程中,智能变电站也得到了越来越广泛的应用,本文对合并单元的相关标准进行了详细的介绍,从切换与并且功能、点对点采样模式、时钟同步、独立式合并单元等角度对智能变电站中合并单元的应用技术进行了分析,并阐述了合并单元未来的发展前景。 四川电力送变电建设公司 610000 摘要:在我国电力能源领域不断发展的过程中,智能变电站也得到了越来越广泛的应用,本文对合并单元的相关标准进行了详细的介绍,从切换与并且功能、点对点采样模式、时钟同步、独立式合并单元等角度对智能变电站中合并单元的应用技术进行了分析,并阐述了合并单元未来的发展前景。 关键词:合并单元;智能变电站;发展趋势 自动化变电站系统在世界范围内已经有二十多年的发展历史,随着智能变电站中IEC 61850的普及,分层分布式设计思路与无缝通信设计思想已经占据主流地位,经过数字化改造的过程层信息共享模式在应用方面的技术也越来越成熟。 电子式互感器是智能变电站中十分重要的技术装备,该元件的发展十分迅速,比如在技术上比较成熟的电流互感器,由于该元件以Rogowski空心线圈为基础,原理简单,工程实用化水平高。电子式互感器对于数字化信号有着比较强的兼容性,能够以光纤为媒介,将采样信息输出外界其他设备,电子式互感器的输出接口则需要由面向间隔的电子设备提供,比如合并单元产品。 一、合并单元的标准发展 (一)IEC 60044-8标准 合并单元概念最早出现在电子式电流互感器中,在该标准体系的描述下,合并单元指的是电子互感器二次转换下的电压数据与电流数据进行时间相关组合而形成的物理单元,同时对应用规范层、链路层与物理层进行了详细的规定。铜线与光纤是输出接口的主要介质。传输速率为2.5Mbit/s,采用曼彻斯物编码方式,FT3帧格式传输,通过帧信息可以判断出采集值是否有效并且分析出电压电流采样信息,同时也能够获取设备运行状态信息以及同步数据信息。 另外,电流互感器标准首次提出了秒脉冲同步与插值法两种同步方法,这两种方法也是实现智能变电站应用的基本方法,该方法也也得到了比较广泛的应用与实践。 (二)IEC 61850-9标准 IEC 61850在变电站间隔层与站控层的基础上还定义的过程层概念,过程层指的是一次设备的数字接口。IEC 61850-9同时也对采样信息的通信服务与数字接口进行了详细的规范。其中IEC 60044-8与IEC 61850-9-1之间是向下兼容的关系,在制定标准的过程中,也融入了IEC 60044-8标准下的合并单元概念。在报文格式、同步方式以及精度定义等方面,均与IEC 60044-8相互兼容。 (三)IEC 61869-9标准 IEC 61869-9是IEC60044的替代标准,是针对于仪用互感器而提出的全新标准。相比于传统的IEC60044标准来说,该标准能够对独立式合并单元进行专门的规范,其通信方式不再为FT3,编码方式也不再是曼彻斯特编码,而是对IEC61850-9-2的通信服务方式与信息建模进行了水平引用,并以此为基础,详细规范了测试方法、对外接口、合并单元同步方式等方面的要求。 2.技术应用现状 2.1独立工合并单元 合并单元能将多路数字采集量“合并”在一起,以电子式到感器为载体投入应用。在智能变电站不断发展的过程中,部分旧型呈的变电站需要进行智能化改造,在电子式互感器投入使用的初级阶段,对于常规互感器数字采集功能所提出的要求比较高,进而形成了模拟量采样式的合并单元,能够直接接模拟量信号。常规互感器与模拟量采样式合并单元在形式上完全独立,为了进一步规范合并单元的具体应用技术,需要各行各业均发生了对于模拟量采样式合并单元的有关的标准。

钢筋制作标准化作业指导书

钢筋制作标准化作业指导书 1.作业条件 1.1天窗点外作业,涉及作业位置影响行车安全时,根据施工方案确定作业条件。 1.2作业时间:根据工作量确定。 2.人员要求 作业负责人由工班长或指派胜任的桥路工担任,作业人员为培训合格的职工、劳务工。焊接人员必须持有焊工证,经考核合格后持证上岗,并定期对焊工进行培训。 3.作业机具 钢筋切割机、钢筋弯曲机、扳手、钳子、钢筋钳、扎丝、钢筋扳手、钢筋钩、手锤、尺子、小撬棍、钢丝刷、划笔、砂纸、信号旗(灯)、作业标、通讯设备(对讲机)。 4.配合要求 根据现场影响设备情况确定配合单位及相关要求。 5.安全风险构成 5.1违章施工作业风险 5.1.1无计划或超范围作业,造成行车事故。 5.1.2机具、料具侵入限界,造成行车事故。

5.1.3高处作业时向下抛掷料具,造成行车事故。 5.1.4边坡防坠落设施设置不到位,致使活石、杂物坠落至线路,造成行车事故。 5.2从业人员伤害风险 5.2.1需上道或穿越线路时,未按规定设置防护,致使作业人员下道不及时,造成机车车辆伤害;违章坐卧钢轨、枕木头、道床,违章钻车、爬车,造成人身伤害。 5.2.2横越线路未执行“一站、二看、三通过”的规定,上道前未严格执行“手比、眼看、口呼”制度,造成机车车辆伤害。 5.2.3电器设备、线路状态不良,使用未装触电保护器的各种手持式电动工具和移动式设备,维修电器设备未执行持证操作、未按规定穿戴好防护用品,造成人员触电伤害。 5.2.4在离地面2m以上的高空及陡坡作业,未拴安全绳,戴安全帽,穿带钉或易溜滑的鞋,安排患有禁忌症人员进行高空作业,造成人身伤害。 5.2.5脚手架未按规定搭设,搭设不牢固,未安排专人负责经常检查整修脚手架,作业时未确认机具、设施和用品完好,造成人身伤害。 5.2.6搬运重、大、长物时未指定专人指挥,造成人身伤害风险。 5.2.7各种机具使用未制定切合实际的安全操作规程,机

现场标准化作业指导书编制规范

作业指导文件 现场标准化作业指导书编制规范文件版本号: A修订号:0页码: 1共4页 现场标准化作业指导书编制规范 编制: 审核: 批准: 生效日期:2016-5-1 受控标识处: 分发号:

现场标准化作业指导书编制规范页码: 2共4页 1.0目的及范围 本规范规定了生产现场作业指导书的编制原则、依据、结构内容、格式、文本要求及应用管理的基 本内容。 本规范适用于本公司标准作业指导书的编制。 2.0术语和定义 下列术语和定义适用于本规范。 2.1现场标准化作业 以企业现场安全生产、技术活动的全过程及其要素为主要内容,按照企业安全生产和技术、质量活动的客观规律与要求,制定作业程序标准和贯彻标准的一种有组织活动。 2.2作业指导书 是指为保证过程的质量而制订的程序文件。——过程:将输入转 化为输出的相互关联或相互作用的一组活动——对象是具体的作 业活动的文件。 2.2.1操作性作业指导书, 就是对某一活动,或工序,或工种来制定怎样操作、实施的专业指导书。 2.2.2检验性作业指导书, 就是对某一活动,或工序,或工种来制定检验方法、措施、标准的专业指导 书。 2.2.3综合类作业指导书, 就是针对某一活动,某一工序,或某一工种制定的即有怎样操作实施的技术 方法,又有怎样检验控制的措施和标准的技术性指导书。 2.3现场作业指导书 对每一项作业按照全过程控制的要求,对作业作业的各个环节,明确具体操作的方法、步骤、措施、标准和人员责任,依据工作流程组合成的可执行稳定的生产性技术文件。 3.0作业指导书的重要性和作用 3.1作业指导书的重要性 ——使各项工作或活动有章可循,使过程控制规范化,处于受控状态。 ——确保实现产品/工作/活动质量特征的实现。 ——保证过程的质量。 ——对内、对外提供文件化的证据。 ——持续改进质量的基础和依据。 ——避免因没有作业指导书,而使工作或活动的质量无法得到保证的情况发生。 3.2 作业指导书的作用 ——是指导保证过程质量的最基础的文件(员工操作的标准文本,规范作业过程); ——是质量管理体系程序文件的支持性文件; ——是培训新员工的教材 ——是管理需要(管理人员检查员工作业情况时的的依据性文件); 4.0识别编制时机

新一代智能变电站的新技术新设备应用研究

新一代智能变电站的新技术新设备应用研究 发表时间:2016-04-14T16:08:04.963Z 来源:《电力设备》2016年1期供稿作者:金一平 [导读] 济南和兴电力工程设计有限公司山东济南 250010)随着近几年的大规模建设,我国电网已初步形成西电东送、南北互供、全国联网的格局,电网发展滞后的矛盾得到较大缓解。 金一平 (济南和兴电力工程设计有限公司山东济南 250010) 摘要: 为了贯彻执行国家电网公司提出的推动设计理念创新,引领智能变电站工程技术进步的目标,本文研究探讨了新一代智能变电站的一些新技术和新设备的应用,形成了“安全可靠、节约环保、功能集成、配置优化”的智能变电站设计方案理念。 关键词: 智能变电站;3D智能化设计;智能设备;三维设计; 1 引言 随着近几年的大规模建设,我国电网已初步形成西电东送、南北互供、全国联网的格局,电网发展滞后的矛盾得到较大缓解。但与世界先进水平相比,在电网规模、网络结构、环境保护、应用新技术方面存在较大差距,造成电网输送能力较低、运行经济性较差。为适应我国电网未来的快速发展,新技术的应用已非常必要。 根据国家电网公司提出的建设“一强三优”现代公司的发展目标,未来几年电网规模和建设规模进一步扩大,如果不采用新技术,将会造成巨大的资源浪费和投资浪费。在大规模的电网建设中,采用新技术、新设备等措施后,电网输送能力将大大提高。同时,可以进一步改善和提高电网运行的可靠性,确保电网的安全稳定运行。 2 新一代智能变电站的新技术和新设备应用 2.1 全站3D智能化设计 应用国际领先的三维电气设计软件Bentley进行全站3D设计,实现了变电站设计智能化、电气距离校验数字化。该软件具有强大的功能: (1)可以快速完成二维原理的设计,智能进行3D设备布置,模拟3D导线,进行导线受力分析,生成导线施工报表等设计工作。还可以完成防雷,接地,照明,电缆敷设等辅助系统设计,帮助设计人员高质高效的完成变电设计的电气部分。 (2)在三维模型中,可以精确地计算带电体之间的空间距离,有效地避免因带电距离不满足要求而造成的设计失误。 (3)从三维模型中可以快速生成二维的平断面图纸,快速完成相关设计。 (4)各专业软件都基于统一的图形平台Microstation和数据平台ProjectWise ,专业间的设计数据可以充分的共享,真正的进行协同设计,提高整体的设计效率。 图1 Bentley软件制图界面 2.2 采用智能化一次设备 (1)智能主变压器 智能变压器是未来的发展方向,其定义应为:在变压器本体设计中采用传感、通讯、计算机、人工智能等技术,对变压器的运行状况进行监测和诊断,使设备具备自身状态在线监测、自动控制和诊断评估的功能。并具备智能化的通信接口,即时传递所有监测信息。智能变压器包括变压器本体、传感器和智能组件,变压器本体内部嵌入各类传感器和执行器。智能组件包括智能终端、状态监测单

刍议智能变电站中合并单元问题及处理

刍议智能变电站中合并单元问题及处理 发表时间:2016-07-05T08:52:58.770Z 来源:《电力设备》2016年第9期作者:王建锋[导读] 借此来降低异常现象的发生几率,这对于智能变电站的安全、稳定、可靠、经济运行具有非常重要的现实意义。王建锋(国网江苏省电力公司检修分公司)摘要:智能电网建设规模的扩大,使得智能变电站不断增多,合并单元作为智能变电站的关键设备之一,其运行安全、稳定、可靠与否关系重大。然而,由于各种因素的影响,合并单元在实际运行中经常会出现一些异常情况,这对变电站的正常运行构成了威胁。因此,必须对合并单元的异常情况进行分析,并采取有效的方法加以处理,同时还要加强运行维护工作,降低异常问题的发生几率。基于此点,本文首先简要阐述 了智能变电站合并单元的重要作用,随后对智能变电站合并单元的异常情况及运行维护进行论述。关键词:智能变电站;合并单元;问题;处理一、智能变电站中合并单元的重要作用近年来,在我国电力体制改革进程不断加快的推动下,使得智能电网的建设规模进一步扩大,智能变电站作为智能电网的重要组成部分之一,其有着无可替代的地位和作用。电子式互感器随着智能变电站的发展获得了广泛应用,然而,电子式互感器的远端单元输出并没有的统一的规定,由此使得各个厂家生产出来的产品在输出信号上均不相同,它们的互操作性较差,可扩展性不高。在这一背景下,合并单元(MU)的概念被提出,它是一种用于采集电子式互感器不同的信号,经过处理之后,将各种信号转换为统一标准规范的数据格式,然后输出给过程层总线。MU是智能变电站中的关键设备,它能够对多个任务进行同时处理,不仅可靠性高、实时性强,而且还具有较快的通信速度。在智能变电站中,MU的作用主要体现在如下几个方面:1.1可实现与电子式互感器的接口功能合并单元借助转换器数据通道能够实现对采集数据的转换,常规的合并单元带有12个转换器数据通道,每个通道可以与1组数据流相连接。以110kV智能变电站中合并单元为例,它不仅能够合并发送1条线路间隔单元的三相电流及电压,而且还能扩展给其它保护及测控装置。 1.2可实现与测控保护装置的接口功能以太网是智能变电站中保护装置传输相关数据信息的主要通道,当合并单元经主时钟时间同步并对电子式互感器的相关信息进行采集时,其能够将采集到的数据信息与目的地地址及源地址打包后,组成SV报文上传给该报文的测控保护装置,当装置接收到报文之后,会对其进行内部逻辑分析判断,如果判断结果满足条件,则会发触发保护动作,并发出GOOSE跳闸报文,订阅该报文的智能开关收到指令后,将动作于一次开关的跳闸出口。 1.3可实现模拟量采样同步功能对于整个电力系统而言,高精度的数据采集同步能够实现三相平衡。不仅如此,统一间隔内的各个模拟量之间也需要同步,这样便于功率及阻抗的计算。差动保护的实现则要求不同间隔内的电流也应当同步。合并单元的运用使采样同步功能的实现变为可能,这对于智能变电站的安全、稳定、可靠运行具有重要意义。 二、智能变电站合并单元的问题分析及处理 2.1合并单元的异常及处理方法2.1.1异常现象分析。某智能变电站的接线方式为单母线分段式接线,两条回路进线,配置1台主变压器,该变电站暂无10kV出线。站内使用的是GIS组合电器,在GIS柜内装有合并单元及智能终端。一次启动过程中,在对刀闸开关进行操作时,监控系统发出线路保护闭锁信号,随后合并单元自行重启,同时,合并单元出现丢点现象。下面针对合并单元此次异常现象的处理过程进行论述。 2.1.2合并单元异常重启的处理。该异常现象的处理共分为以下几个步骤:①当异常现象发生后,初步判定可能是因为合并单元自身的电路板损坏,随后更换电路板并对程序进行升级,送电后异常现象仍未消除,由此排除了电路板损坏引起异常现象的可能性。②由于本次异常为重启,在排除电路板故障后,对合并单元的直流电源模块进行了检测,结果发现,合上进线刀闸开关后,合并单元的工作电压从220V短暂跌落至110V左右,据此判断可能是因为外部直流电源故障引起的异常。随后对直流系统进行故障排查,结果发现直流系统正常,并没有交流混入,装置的接地安全、可靠。由此排除了直流系统故障。③排除上述原因后,判断可能是电磁干扰引起的异常,开始对干扰源进行排查,先将PT空开断开,异常未消除,然后拔出交流采样头,异常仍然存在,将电源板上的所有接线全部拔掉,以独立直流电源进行供电,此时合并单元对外的电气回路完全隔断,在该状态下进行进行了多次刀闸开关分合测试,结果均未出现异常情况。由此判断,合并单元重启是由于电磁干扰信号侵入所致。④确定异常原因后,开始查找干扰源,通过观察发现,接入合并单元的CT二次线与电源直流二次线绑扎在一起,由此导致杂散电容耦合至直流二次线当中,从而造成合并单元异常重启。将接线恢复正常后,并将交直流电缆隔离开,经过多次操作,异常未再出现。 2.1.3合并单元丢点问题的处理。虽然切断电磁干扰源后,合并单元的重启问题得到了解决,但丢点现象却没有消除。因此决定采用电快速瞬变干扰和浪涌实验的方法对合并单元进行电磁兼容实验。实验过程以常规和非常规两种方式进行,结果显示,合并单元运行正常,未出现丢点现象。据此提出如下处理措施:①该合并单元在设计时,MU功能是以DSP双插件来实现的,两个DSP插件通过背板进行通信,为了进一步增强合并单元的抗干扰能力,对原设计进行了改进,将双DSP模块集成于一块插件上,取消了背板通信。②对合并单元的机箱进行了改进,采用全导电的加工方式,提高了装置整体的抗电磁干扰性能。改进后,进行了相关试验,结果并未出现丢点问题。 2.2合并单元运行维护要点在智能变电站中,影响合并单元稳定运行的因素较多,为了确保合并单元的运行安全、可靠,并进一步减少异常现象的发生几率,应当加强对合并单元的运行维护工作,在实际运维过程中,应当对以下事项加以注意:①当合并单元处于正常运行时,装置上的运行指示灯应当为常亮状态,同时,告警灯应当处于熄灭状态。②如果合并单元上的同步指示灯、GOOSE通信指示灯闪烁,则应对相关的通信信号进行检查,看是否存在异常。③当合并单元的刀闸开关进行切换时,若发生PT切换异常,则应当立即停止操作,并对切换状态进行检查,借此来防止失电,如有必要应当采取有效的措施加以处理。④需要特别注意的是,合并单元不得采用自动并列的方式,采取手动并列前,应当对并列条件进行确定,看是否符合并列要求,若是出现PT并列异常,必须立即停止操作,然后对并列状态进行检查,借此来防止失电。 ⑤当合并单元的告警信号灯亮起后,要及时对告警信息进行查看,并在事件状态及日志记录中,对告警原因进行查看,根据具体原因采取相应的措施进行解决处理。结语

相关文档
最新文档