基本不等式专题练习(含参考答案)

基本不等式专题练习(含参考答案)
基本不等式专题练习(含参考答案)

数学 基本不等式

[基础题组练]

1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab

D.b a +a b ≥2

2.若正实数x ,y 满足x +y =2,且1

xy ≥M 恒成立,则M 的最大值为( )

A .1

B .2

C .3

D .4

3.设x >0,则函数y =x +22x +1-3

2的最小值为( )

A .0 B.12 C .1

D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12

D .16

5.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.

7.函数y =x 2x +1(x >-1)的最小值为________.

8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.

[综合题组练]

1.若a >0,b >0,a +b =1a +1

b ,则3a +81b 的最小值为( ) A .6 B .9 C .18

D .24

2.不等式x 2

+x

a 对任意a ,

b ∈(0,+∞)恒成立,则实数x 的取值范围是( )

A .(-2,0)

B .(-∞,-2)∪(1,+∞)

C .(-2,1)

D .(-∞,-4)∪(2,+∞)

3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1

b +3的最小值为

________.

【参考答案】

[基础题组练]

1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab

D.b a +a b

≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.

对于D ,因为ab >0, 所以b a +a b

≥2

b a ·a

b

=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1

xy ≥M 恒成立,则M 的最大

值为( )

A .1

B .2

C .3

D .4

解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=22

4

=1,

所以1

xy ≥1;

又1

xy

≥M 恒成立, 所以M ≤1,即M 的最大值为1.

3.设x >0,则函数y =x +22x +1-3

2的最小值为( )

A .0 B.12 C .1

D.32

解析:选A.y =x +

22x +1-32=????x +12+1x +1

2

-2≥2

????x +12·1x +

1

2

-2=0,当且仅当x +12=1x +12

,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12

D .16

解析:选B.由4x +y =xy 得4y +1

x =1,则x +y =(x +y )????4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =y

x

,即x =3,y =6时取“=”,故选B.

5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.

解析:xy =2xy 2=12×2xy ≤12×? ????2x +y 22=98,当且仅当2x =y =3

2时取等号. 答案:98

6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.

解析:一年购买600x 次,则总运费与总存储费用之和为600

x ×6+4x =4????900x +x ≥8900

x

·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.

答案:30

7.函数y =x 2x +1

(x >-1)的最小值为________.

解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1

x +1-2,x >-1,

所以y ≥21-2=0,

当且仅当x =0时,等号成立. 答案:0

8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2

y =1, 又x >0,y >0, 则1=8x +2y ≥2

8x ·2y =8xy

. 得xy ≥64,

当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.

(2)由2x +8y -xy =0,得8x +2

y =1,

则x +y =????

8x +2y ·(x +y ) =10+2x y +8y

x

≥10+2

2x y ·8y

x

=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.

[综合题组练]

1.若a >0,b >0,a +b =1a +1

b ,则3a +81b 的最小值为( )

A .6

B .9

C .18

D .24

解析:选C.因为a >0,b >0,a +b =1a +1

b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +

81b ≥2

3a ·34b =2

3a +4b ≥2

32

a ·4b

=18,当且仅当a =4b =2时取等号.所以3a +81b 的

最小值为18.故选C.

2.不等式x 2+x

a 对任意a ,

b ∈(0,+∞)恒成立,则实数x 的取值范围是( )

A .(-2,0)

B .(-∞,-2)∪(1,+∞)

C .(-2,1)

D .(-∞,-4)∪(2,+∞)

解析:选C.根据题意,由于不等式x 2+x

a

对任意a ,b ∈(0,+∞)恒成立,则x 2+

x

a

=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2

3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.

解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12? ????x +2y 22

=2t

+t 2

8.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.

答案:62-8

4.已知正实数a ,b 满足a +b =4,则

1a +1+1b +3

的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以

1a +1+1b +3=18

[(a +1)+(b +3)]? ????1a +1+1b +3=18? ????2+b +3a +1+a +1b +3≥18

(2+2)=1

2,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3

的最小值为1

2.

答案:1

2

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

不等式与不等式组专题复习

不等式与不等式组专题复习 (一)不等式 考点1:不等式的定义 知识点: 1.不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 (像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。) 2.常见不等式的基本语言有: ①x 是正数,则x >0; ②x 是负数,则x <0; ③x 是非负数,则x≥0; ④x 是非正数,则x≤0; ⑤x 大于y ,则x -y >0; ⑥x 小于y ,则x -y <0; ⑦x 不小于y ,则x ≥ y ; ⑧x 不大于y ,则x ≤ y 。 例1.下列式子哪些是不等式?哪些不是不等式?为什么? -2<5 x+3>6 4x-2y ≤0 a-2b a+b ≠c 5m+3=8 8+4<7 考点2:不等式的解集 知识点: 1.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 2.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 例1.判断下列数中哪些是不等式 的解: 76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60 —————————————————————————————————— 变式练习: 1.下列说法正确的是( ) A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集 2.在下列表示的不等式的解集中,不包括-5的是 ( ) A.x ≤ 4 B.x ≥ -5 C.x ≤ -6 D.x ≥ -7 考点3:不等式解集在数轴上的表示方法 知识点: 1.用数轴表示不等式的解集的步骤: ①画数轴; ②定边界点; ③定方向. 2.用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画;有等号(≥ ,≤)画实心点, 无等号(>,<)画空心圆. 例1.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥- 2 B 、x <1 C 、x ≠、x <0 变式练习: 1.不等式2≤x 在数轴上表示正确的是( ) 5032 >x 0-1-2

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

高二数学不等式练习题及答案

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

不等式与不等式组专题复习

不等式与不等式组专题复习 (一)不等式 考点1:不等式的定义 知识点: 1. 不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 (像2≠2 这样用“ ≠”号表示不等关系的式子也是不等式。) 2. 常见不等式的基本语言有: ①x是正数,则x>0;②x是负数,则x<0;③x是非负数,则x≥ 0; ④x是非正数,则x≤0;⑤x大于y ,则x-y> 0; ⑥x小于y,则x-y < 0; ⑦x不小于y,则x ≥ y ;⑧x不大于y,则x ≤ y 。 例1. 下列式子哪些是不等式?哪些不是不等式?为什么? -2 <5 3>6 42y ≤0 2b ≠c 53=8 8+4<7

考点2:不等式的解集

1. 不等式的解:使不等式成立的未知数的值,叫做不等式的解。 2. 不等式的解集: 一个含有未知数的不等式的所有解, 组成这个 不等式的解集。 例 1. 判断下列数中哪些是不等式 的解 : 76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60 23x 50 变式练习: 1. 下列说法正确的是 ( ) A. 3 是 21>5的解 B. 3 C. 3 不是 21>5的解 D. 3 2. 在下列 表示的不等式的解集中,不包括 -5 的是 ( ≤ 4 ≥ -5 ≤ -6 ≥ -7 考点 3:不等式解集在数轴上的表示方法 是 21>5 的唯一 解

1.用数轴表示不等式的解集的步骤: ①画数轴; ②定边界点; ③ 定方向. 2.用数轴表示不等式的解集, 应记住下面的规律 大于向右画,小于向左画;有等号(≥ , ≤)画实心点, 无等号(>,<) 画空心圆. 例1. 图中表示的是不等式的解集,其中错误的是( ) A、x≥-* 2- 2 - 1 0 B C、x ≠0 D 变式练习: 1. 不等式x 2在数轴上表示正确的 是( ) A. C.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

不等式练习题(带答案)

不等式基本性质练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)( (b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+ b a B .111≥+b a C . 211<+ b a D . 211≥+b a 4.已知a 、b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37- ,26- = c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

不等式与不等式组专项训练(含答案详解)

《不等式与不等式组专项训练》一、选择: 1.下列不等式一定成立的是() A.a≥﹣a B.3a>a C.a D.a+1>a 2.若a>b,则下列不等式仍能成立的是() A.b﹣a<0B.ac<bc C.D.﹣b<﹣a 3.解不等式中,出现错误的一步是() A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D. 4.不等式的正整数解有() A.2个B.3个C.4个D.5个 5.在下列不等式组中,解集为﹣1≤x<4的是() A.B.C.D. 6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0 二、填空: 7.用不等式表示“6与x的3倍的和大于15”. 8.不等式的最大正整数解是,最小正整数解是.9.一次不等式组的解集是. 10.若y=2x+1,当x时,y<x. 11.关于x的不等式ax+b<0(a<0)的解集为. 12.若方程mx+13=4x+11的解为负数,则m的取值范围是. 13.若a>b,则的解集为.

14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道. 三、解不等式或不等式组: 15.解不等式或不等式组: (1)3(x﹣2)﹣4(1﹣x)<1 (2)1﹣≥x+2 (3) (4). 四、解答下列各题: 16.x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数. 17.k取什么值时,解方程组得到的x,y的值都大于1. 18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数. 19.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

人教版七年级数学下册不等式与不等式组专项练习

不等式与不等式组专项练习(能力提高) 1.已知方程组3133x y k x y +=+?? +=?的解x 、y,且2-4)5(的解集. 7.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小. 8.(类型相同)当k 取何值时,方程组? ??-=+=-52,53y x k y x 的解x ,y 都是负数. 9(类型相同)已知???+=+=+1 22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 10.已知a 是自然数,关于x 的不等式组? ??>-≥-02,43x a x 的解集是x >2,求a 的值. 11.关于x 的不等式组???->-≥-1 23,0x a x 的整数解共有5个,求a 的取值范围. 12.(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10? 13.(类型相同)已知关于x ,y 的方程组? ??-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围. 14.若关于x 的不等式组???????+<+->+a x x x x 3 22,3215只有4个整数解,求a 的取值范围. 五、解答题 1. 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s, 引爆员点着 导火索后,至少以每秒多少米的速度才能跑到600m 或600m 以外的安全区域?

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

一元一次不等式精选拔高专题及答案

不等式与不等式组专题 一、选择题 1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2. a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( D ). (A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 6. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人 分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种 出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( B ). (A)11 (B)8 (C)7 (D)5 8. 若不等式组? ??>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 10. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34 11<

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关文档
最新文档