换热器型式代号

换热器型式代号
换热器型式代号

前端管箱型式代号根据前端管箱的类型主要分为以下几种类型:

" O3 Z7 j7 }0 Y% f' J; q4 |(1) A型:

平盖管箱,管箱端部为平盖与管箱法兰通过螺栓、垫片来连接;(2)B型:

封头管箱,管箱端部为椭圆封头;(3)N型:

与管板制成一体的固定管板管箱,管箱端部为平盖,与A型管箱类似;

2.1.2壳体型式代号(1)E型:

单程壳体,详见GB151-1999表7;(2)I型:

U形管式换热器壳体,详见GB151-1999表7中I型;(3)K型:

釜式重沸器壳体,主要用于带蒸发空间的换热器;(4)O型:

带外导流筒的换热器壳体,主要用于浮头式换热器;

2.1.3后端结构型式代号(1)L型:

与A相似的固定管板结构;(2)M型:

与B相似的固定管板结构;(3)N型:

与N相似的固定管板结构1 c, z. O! T5 Z6 G! H以上分类详见GB151-1999中图1-7主要部件分类及代号,以上前端、壳体、后端任意组合,构成不同形式的管壳式换热器,本软件根据石油化工(尤其是烯烃、炼油等)工艺过程中常用的类型组合出总计16种换热器;详见

2.2节。

/ t7 r4 A) y5 D2 m# N" ]

2.2换热器型式代号1 S0 z3 H7 C" g:

S; M根据换热器

2.1节中所列出的前管箱、壳体、后端管箱类型,本软件对其进行了组合,提供了组合后各类型换热器的“数据模板”,供用户在输入数据时,可直接选择相应的换热器类型数据模板,以节省数据输入的时间。

根据组合,软件主要提供了下几类换热器的模板数据,供用户根据工艺条件所定的换热器类型进行选择,见下表:

, V U# c1 Z/ N8 L代号简图描述

1.AEM前端管箱为A型平盖管箱,后端管箱为带标准椭圆封头的M型管箱,管板延长部分兼作法兰的固定管板换热器,支座为鞍式或耳式;1 \, N1 X3 i& ^:

j7 u4 ]1 |$ _

2.AEM(CONE)前端管箱为A型平盖管箱,后端管箱为带锥形封头的M型管箱,管板延长部分兼作法兰的固定管板换热器,支座为耳式支座;主要用于塔器的再沸器;- z5 r7 P, h) V$ I. {2 L7 V

3.AKL前端管箱及后端管箱均为A型平盖管箱,管板延长部分兼作法兰的固定管板换热器,支座为鞍式支座;" R5 |/ v# _:

o( ] A$ \1 N. Z& B0 ~- I' ` e0 L" [ d4 F2 N

4.AES前端管箱为A型平盖管箱,后端为S型,浮头式换热器,支座为鞍式支座;

5.AKU前端管箱为A型平盖管箱,壳程为U形管式釜式重沸器,支座为鞍式支座;. l2

E. w6 {" r/ l& h; F1 o n' u! X:

U" f

6.AIU前端管箱为A型平盖管箱,壳程为I形,U形管换热器,支座为鞍式支座;9 P6 B5 ^" o) I* Y" w0 ]) @:

l3 B

7.BEM前端管箱为B型标准椭圆封头管箱,后端为M型标准椭圆封头管箱,管板延长部分兼作法兰的固定管板换热器,支座为鞍式支座;% v3

E. z- S3 L% n

8.BEM(CONE)前端管箱为B型标准椭圆封头管箱,后端为带锥形封头的M型管箱,管板延长部分兼作法兰的固定管板换热器,支座为耳式支座,主要用于塔器的再沸器;

9.BES, r1 P% g+ e) P$ w前端管箱为B型标准椭圆封头管箱,后端为S型的浮头式换热器,支座为鞍式支座;8 X* R+ K; W/ Z2 }0 ]' d/ L" d' C `8 u" k) U1 z N

10.BKU前端管箱为B型标准椭圆封头管箱,壳程为U形管式釜式重沸器,支座为鞍式支座;+ Q4 H1 H3 h- C2 A9 I

11.BIU前端管箱为B型标准椭圆封头管箱,壳程为I型,U形管换热器,支座为鞍式支座;

12.BKM前端管箱为B型标准椭圆封头管箱,后端管箱为M型标准椭圆封头管箱,管板延长部分兼作法兰的固定管板式釜式重沸器,支座为鞍式支座;$ k& C, X1 v+ x/ s! J:

P' [+ y

13.NEN前、后端管箱为N型平盖管箱,管板不兼作法兰、管箱筒体与管板联为一体的固定管板换热器;支座为鞍式支座;6 Z3 |* S6 c5 h' b/ X9 |+ a

14.NKN前、后端管箱均为N型平盖管箱,管板不兼作法兰、管箱筒体与管板联为一体的釜式重沸器,支座为鞍式支座;; p:

Q1 |9 k* T7 d$ L) l& o) U! V/ U+ H) j! {$ {; ~% t5 ?$ j' S* S9 Y& W% s

15.AOS与AES浮头式换热器类似,所不同的是,在壳程的进出口处设置有外导流筒,可使进出口处液体分布更为均匀;/ _:

M9 Z/ B8 k0 [3 n! D' M. u

16. BOS与BES浮头式换热器类似,在壳程的进出口处设置有外导流筒,可使进口处流体分布更为均匀;

换热器分类

换热器分类 换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能用量十分大的领域,随着节能技术的飞速发展,换热器种类开发越来越多。适用于不同介质,不同工况,不同温度,不同压力的换热器,结构和形式亦不同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。 (一)按传热原理分类 1.直接接触式换热器这类换热器主要工作原理是两种介质经接触面而相互传递热量,实现传热,接触面积直接影响到传热量。这类换热器的介质通常是一种气体,另一种为液体,主要以塔设备为主体的传热设备,但通常又涉及传质。故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2.蓄能式换热器(简称蓄能器)这类换热器用量极少,原理是通过一种固体物质,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到传递热量的目的。 3.板,管式换热器这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质的传热设备,这类换热器是我们通常称为管壳式,板式,板翘式,板壳式换热器。(二)按传热种类分类 1.无相变传热一般分为加热器和冷却器。 2.有相变传热一般分为冷凝器和重沸器。重沸器又分为釜式重沸器,虹吸式重沸器,再沸器,蒸发器,蒸汽发生器,废热锅炉。

(三)按结构分类 分为釜式换热器,固定管板式换热器,填料函式换热器,u形管式换热器,蛇管式换热器,双壳程换热器,单套管换热器,多套管换热器,外导流筒换热器,折流杆式换热器热管式换热器,插管式换热器,滑动管板式换热器。 (四)按折流板分类 分为单弓形换热器,双弓形换热器,三弓形换热器,螺旋弓形换热器。(五)按板状分类 分为螺旋板式换热器,板式换热器,板翘式换热器,板壳式换热器,板式蒸发器,板式冷凝器,印刷电路板换热器,穿孔板换热器。(六) 按密封形式分类 此类换热器多用于高温,高压装置中,具体分为:螺旋锁紧环换热器,薄膜密封换热器,钢垫圈换热器,密封盖板式换热器。 (七)非金属材料换热器分类 分为石墨换热器,氟塑料换热器,陶瓷纤维复合材料换热器,玻璃钢换热器。 (八)按材料分类 主要为金属和非金属两大类,金属又可分为低合金钢,高合金钢,低温钢,稀有金属等。 换热器种类繁多,还有按管箱分类等,各种换热器各自适用于某一种工况,为此,应根据介质,温度,压力的不同选择不同种类的换热器,扬长避短,使之带来更大的经济效益。

换热器分类有哪些

换热器分类有哪些 换热器能够充分利用工业的二次能源,并且能够实现余热回收以达到的节能。因为现在人们追求换热器重量轻、占地面积少、使用经济性高,所以换热器的类型也在不断增加,越来越多的换热器开始进入人们的生活,换热器分类有哪些?本文小编将根据不同的分类形式为用户详细解答。 换热器的定义:换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。换热器作为传热设备被广泛用于锅炉暖通领域,随着节能技术的飞速发展,换热器的种类越来越多。 换热器按传热原理分类 1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面的对流,在两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体再传递给低温流体,热介质先通过加热固体物质达到一定的温度后,冷介质再通过固体物质然后被加热,达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体换热器之间循环,在高温流体换热器接受热量,在低温流体换热器把热量再释放给低温流体换热器。 4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 换热器按用途分类 1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相应的变化。

2、预热器预热器预先加热流体,为工序的操作提供标准的工艺参数。 3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。 4、蒸发器蒸发器用于加热流体,达到沸点以上的温度,使其流体蒸发,一般有相应的变化。 按换热器的结构分类 可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。 按冷、热流体热量交换的原理和方式分类 基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 结语 换热器在在石油、暖通、轻工、制药、能源等工业生产中使用广泛,尤其是在暖通行业,人们常把换热器用于家庭采暖系统,如今在多年的发展中,仅在集中供暖行业换热器市场规模就已超过30亿元,未来发展前景一篇大好。

热管换热器的结构形式

热管换热器的结构形式 (三)热管换热器的结构形式以热管为传热单元的热管换热器是一种新型高效换热器,其结构如图片4- 50、图片4-51所示,它是由壳体、热管和隔板组成的。热管作为主要的传热元件,是一种具有高导热性能的传热装置。它是一种真空容器,其基本组成部件为壳体、吸液芯和工作液。将壳体抽真空后充入适量的工作液,密闭壳体便构成一只热管。当热源对其一端供热时,工作液自热源吸收热量而蒸发汽化,携带潜热的蒸汽在压差作用下,高速传输至壳体的另一端,向冷源放出潜热而凝结,冷凝液回至热端,再次沸腾汽化。如此反复循环,热量乃不断从热端传至冷端。 【图片4-50】 热管换热器。 【图片4-51】 热管示意图。热管按冷凝液循环方式分为吸液芯热管、重力热管和离心热管三种。吸液芯热管的冷凝液依靠毛细管的作用回到热端,这种热管可以在失重情况下工作;重力热管的冷凝液是依靠重力流回热端,它的传热具有单向性,一般为垂直放置离心热管是靠离心力使冷凝液回到热端,通常用于旋转部件的冷却。热管按工作液的工作温度分为深冷热管、低温热管、中温热管和高温热管四种。深冷热管在200K以下工作,工作液有氮、氢、

氖、氧、甲烷、乙烷等;低温热管在200~550K 范围内工作,工作液有氟里昂、氨、丙酮、乙醇、水等;中温热管在550~750K范围内工作,工作液有导热姆 A、水银、铯、水及钾─钠混合液等;高温热管在750K 以上工作,工作液有液态金属钾、钠、锂、银等。热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行,由于沸腾和冷凝的对流传热强度都很大,而蒸汽流动阻力损失又较小,因此热管两端温度差可以很小,即能在很小的温差下传递很大的热流量。因此,它特别适用于低温差传热及某些等温性要求较高的场合。热管换热器具有结构简单、使用寿命长、工作可靠、应用范围广等优点,可用于气─气、气─液和液─液之间的换热过程。

换热器介绍

换热器 一,定义: 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。 二,换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: (一)_换热器按传热原理分类 1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 (二)换热器按用途分类 1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。 4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。 (三)按换热器的结构分类 可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。

三,换热器类型 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 1 .间壁式换热器的类型 (1)夹套式换热器这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管. 夹套式换热器广泛用于反应过程的加热和冷却。 (2)沉浸式蛇管换热器这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。 (3)喷淋式换热器这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。 (4)套管式换热器套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目). 特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。 (5)板式换热器:最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。主体结构由换热板片以及板间的胶条组成。长期在市场占据主导地位,但是其体积大,换热效率低,更换胶条价格昂贵(胶条的更换费用大约占整个过程的1/3-1/2).主要应用于液体-液体之间的换热,行业内常称为水水换热,其换热效率在5000w/m2.K。为提高管外流体

目前市场上主要换热器形式

目前市场上流行的换热器主要形式有以下几种: 1全焊式板式换热器:全焊接板式换热器没有垫片,所有的板片都是用氩弧焊接而成。主要使用的工况条件为高温高压,胶垫不能适应的工况。缺点是不能拆开清洗,无法维修。 2钎焊式板式换热器:钎焊式板式换热器也没有垫片,所有的板片是用铜箔高温融化焊接。用途和缺点与全焊接板式换热器相似。其体积通常都会比较小。 3管壳式换热器:最传统的换热器。由壳体和内部多根金属管组成。优点:耐温高,承压高。缺点是清洗麻烦、体积庞大、成本很高。 4螺旋板式换热器。 5翅翼式换热器:主要使用的工况为空气与气体或液体的换热。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修 及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

换热器的结构和分类

换热器的结构和分类 换热器的分类 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。 缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。 二、沉浸式蛇管换热器 结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 优点:结构简单,便于防腐,能承受高压。 缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好 缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 四、套管式换热器

结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。 结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。 (1)固定管板式 1—列管2—膨胀节 壳体与传热管壁温度之差大于 蚀的介质。

【免费下载】中国投入产出表部门分类及代码

中国2007年投入产出表部门分类及代码 I 级分类II 级分类代码部门名称代码部门名称01001农业02002林业03003畜牧业04004渔业 01农林牧渔业05005农、林、牧、渔服务业 02煤炭开采和洗选业06006煤炭开采和洗选业 03石油和天然气开采业07007石油和天然气开采业08008黑色金属矿采选业 04金属矿采选业09009有色金属矿采选业 05非金属矿及其他矿采选业10010非金属矿及其他矿采选业13011谷物磨制业13012饲料加工业13013植物油加工业13014制糖业13015屠宰及肉类加工业13016水产品加工业13017其他食品加工业14018方便食品制造业14019液体乳及乳制品制造业14020调味品、发酵制品制造业14021其他食品制造业15022酒精及酒的制造业15023软饮料及精制茶加工业06 食品制造及烟草加工业16024烟草制品业17025棉、化纤纺织及印染精加工业17026毛纺织和染整精加工业17027麻纺织、丝绢纺织及精加工业17028纺织制成品制造业 07纺织业17029针织品、编织品及其制品制造业18030纺织服装、鞋、帽制造业 08纺织服装鞋帽皮革羽绒及其制品业19031皮革、毛皮、羽毛(绒)及其制品业20032木材加工及木、竹、藤、棕、草制品业  09木材加工及家具制造业21033家具制造业22034造纸及纸制品业 10造纸印刷及文教体育用品制造业23035印刷业和记录媒介的复制业、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

换热器形式

换热器形式 这个可以在GB151中找到。 前端管箱型式代号 根据前端管箱的类型主要分为以下几种类型: (1) A型:平盖管箱,管箱端部为平盖与管箱法兰通过螺栓、垫片来连接; (2) B型:封头管箱,管箱端部为椭圆封头; (3) N型:与管板制成一体的固定管板管箱,管箱端部为平盖,与A型管箱类似; 2.1.2 壳体型式代号 (1) E型:单程壳体,详见GB151-1999表7; (2) I型:U形管式换热器壳体,详见GB151-1999表7中I型; (3) K型:釜式重沸器壳体,主要用于带蒸发空间的换热器; (4) O型:带外导流筒的换热器壳体,主要用于浮头式换热器; 2.1.3 后端结构型式代号 (1) L型:与A相似的固定管板结构; (2) M型:与B相似的固定管板结构; (3) N型:与N相似的固定管板结构 以上分类详见GB151-1999中图1-7主要部件分类及代号,以上前端、壳体、后端任意组合,构成不同形式的管壳式换热器,本软件根据石油化工(尤其是烯烃、炼油等)工艺过程中常用的类型组合出总计16种换热器;详见2.2节。 2.2 换热器型式代号 根据换热器2.1节中所列出的前管箱、壳体、后端管箱类型,本软件对其进行了组合,提供了组合后各类型换热器的“数据模板”,供用户在输入数据时,可直接选择相应的换热器类型数据模板,以节省数据输入的时间。 根据组合,软件主要提供了下几类换热器的模板数据,供用户根据工艺条件所定的换热器类型进行选择,见下表: 代号简图描述 1.AEM 前端管箱为A型平盖管箱,后端管箱为带标准椭圆封头的M型管箱,管板延长部分兼作法兰的固定管板换热器,支座为鞍式或耳式; 2.AEM(CONE)前端管箱为A型平盖管箱,后端管箱为带锥形封头的M型管箱,管板延长部分兼作法兰的固定管板换热器,支座为耳式支座;主要用于塔器的再沸器; 3.AKL 前端管箱及后端管箱均为A型平盖管箱,管板延长部分兼作法兰的固定管板换热器,支座为鞍式支座; 4.AES 前端管箱为A型平盖管箱,后端为S型,浮头式换热器,支座为鞍式支座; 5.AKU 前端管箱为A型平盖管箱,壳程为U形管式釜式重沸器,支座为鞍式支座;

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

换热器的种类

换热器的种类 一.换热器的概念 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热设备因其用途不同,类型繁多,性能不一,但均可归结为管壳式结构和板式结构两大类。 二.换热器的工作原理 换热器是将热流体的部分热量传递给冷流体的设备,即在一个大的密闭容器内装上水或其他介质,而在容器内有管道穿过。让热水从管道内流过。由于管道内热水和容器内冷热水的温度差,会形成热交换,也就是初中物理的热平衡,高温物体的热量总是向低温物体传递,这样就把管道里水的热量交换给了容器内的冷水,换热器又称热交换器。 三.机械结构形式 换热器的分类良多,可以按传热原理、结构和用途等进行分类,按其结构分类主要有管壳式和板式两种。 根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 1、间壁式换热器的类型 a.夹套式换热器 这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或

其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管.夹套式换热器广泛用于反应过程的加热和冷却。 b.沉浸式蛇管换热器 这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。 c.喷淋式换热器 这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。 d.套管式换热器 套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目).特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。 e.管壳式换热器 管壳式(又称列管式)换热器是最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提

换热器折流板各型式讨论

换热器折流板各型式讨论

————————————————————————————————作者:————————————————————————————————日期:

换热器折流板各种型式的讨论 兰州四方容器设备有限责任公司李建仓 摘要:本文介绍了换热器所用折流板的几种型式,对其结构及工作形式作了阐述,并将其优点及缺点进行了说明和总结,从而为折流板换热器的设计选型及制造提供了依据和指导。 折流板顾名思义是用来改变流体流向的板,常用于管壳式换热器设计壳程介质流道,根据介质性质和流量以及换热器大小确定折流板的多少。折流板是列管式换热器中的一个零件可用以起到提高传热系数和支承管束的作用;但由于它结构简单所以往往被设计者所忽视。现实的情况可以证实到目前为止无论是我国自行设计还是国外引进的设备折流板的结构常是五花八门,其中有些结构既制造复杂又不利于提高传热系数。其原因在于设计者没有根据具体的传热性质来认真地对它进行分析后再确定具体的结构和尺寸。本文拟对各种型式折流板的优缺点一一列出并进行对比,提出换热器在什么情况下所适用哪种折流板的一些个人意见和有关同志进行商榷。 折流板有常用折流板和异形折流板之分。常用折流板主要有弓形和圆盘-圆环折流板,其中弓形又分为单弓形、双弓形和三弓形,如图一: 图一 异形折流板有:矩形折流板、折流杆型折流板和格栅折流板等,如图二~四:

矩形折流板(图二) 折流杆换热器示意图(图三) 格栅折流板(图四) 这些折流板都有各自的优缺点,逐一说明如下; 一、弓形折流板。大部分换热器都采用弓形折流板。弓形折流板在壳程内的 放置形式上下方向排列的形式,用以造成液体剧烈扰动以增大传热系数;左

热网换热器型式的选择

热网换热器型式的选择 文章介绍了火力发电厂热网换热器型式(管式换热器和板式换热器)的选择,分析了管式换热器和板式换热器的构造、材质及特点等,并提出一些建议,以降低企业生产成本,增加企业利润的目的。 标签:热网;换热器;型式 引言 热网换热器型式一般为管式换热器和板式换热器,由于管壳式换热器结构简单,加工制造相对容易,热网换热器常规采用管壳式换热器。而板式换热器具有体积小,散热少,传热端差小等特点,在效率方面比管式换热器有一定的优势。欧美国家自从1982年以来已经广泛使用全焊板式加热器在电厂做热网换热器,运行近30年基本是免维护,产品的可靠性得到了运行验证。国内近几年逐渐开始有了板式热网换热器投运的业绩。目前,已投运的全焊接板式热网换热器均为进口产品。 文章对管壳式热网换热器和全焊接板式热网换热器的性能、造价等进行分析、比较。 1 管壳式热网换热器 管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。对换热器热力性能有较大影响的另一基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。管壳式换热器的换热管内外表面均呈螺旋状,管程流体在管内呈三维螺旋运动状态向前流动,使换热管层流层厚度减薄,流速很低时就可达到充分湍流,有利于热交换,提高传热效率从而克服了管壳式换热器管程流体界膜传热系数较低的缺点,显著提高换热器的总传热系数,流体阻力损失较小。 总的来说,管壳式换热器有以下特点: (1)耐高温高压,坚固可靠耐用。 (2)设计、制造应用历史悠久,制造工艺及操作维检技术成熟。 (3)适用范围大,特别是在高温高压和大型换热器中的应用占据绝对优势。 最大设计压力:小于100Mpa 最高设计温度:650℃

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

换热器的安装形式

选型要求:1、换热器位置场地要求;2、液料的自动流动要求;3、气体(汽体)的流动性要求。 选列管式换热器,立式或卧式根据工艺要求来。如果靠自流到塔就应该选立式。若有回流罐就选卧式。 在换热器设计时,对于类别的选择是很重要的。类别选择要考虑的因素很多,一般应从换热器的工艺设计条件(压力、温度、许可压力降)、物料特性(传热性能、污垢系数、腐蚀性能)、可操作性(可操作空间)及经济性等因素综合考虑。在温度和压力都不高、物料干净但有腐蚀性、或者物料不能受铁离子污染而选用耐腐蚀高合金钢或有色金属制作的板式换热器较合理。在温度很低的深冷工况下,若物料很干净,选用板翅式换热器及可以充分利用其结构紧凑、传热效率高的特点,采用多流道物料进行热交换从而达到解决设备体积小、冷量小的特殊矛盾。尽管板翅式换热器有许多优点,然而,在大型化工及石油化工装置中,管壳式换热器以其适应性强、制造简单、易于维修及生产成本低等特点,仍然占据绝对优势。 管壳式换热器中固顶管板式换热器用的最多。浮头式换热器采用浮头结构,管程和壳程均可以抽出清洗,管束和壳体可以自由热膨胀。但其换热管利用率低,结构复杂,设备投资高,仅在换热管的管壁温度与壳体的壁温差大、管程和壳程物料均易结构、需要经常清洗的场合选用。U型管式换热器仅有一块管板,管束可以自由热膨胀,但其换热管利用率低。常在管程物料干净、壳程物料易结构。或者,换热管的管壁温度与壳体的壁温差大而壳程设计压力又比较高的场合选用。

换热器选型时,需要考虑的因素较多,如材料,温度,温度差,压力,压力降,结垢的情况,流体的状态,应用方式,检修和清理等。有些结构形式,在某种情况下使用是好的,但是在另外的情况下,却不能令人满意或根本用不了。因此,在选型时应仔细分析所有的要求和条件,在许多相互制约的因素中应全面考虑,找出其中的主要矛盾,给予妥善解决。 一般立式再沸器用在加热量比较小的场合,结构上采用管板式的多。卧式再沸器用在加热量比较大的场合,结构上采用浮头式的多。 卧式再沸器一般为浮头式再沸器,卧式再沸器的安装高度较低。一般热负荷较小式选用立式再沸器,热负荷大时选择卧式再沸器或罐式再沸器。而立式再沸器通常为固定管板式换热器,成本较低,但是立式再沸器的安装高度高。 立式多用于气相冷凝,卧室用于加热。 再沸器可以分成(1)内置式、(2)釜式、(3)卧式热虹吸式、(4)立式热虹吸式、(5)强制循环式。 卧式热虹吸式: (壳侧沸腾)为获得好的流体分布,通常使用多个接管,这样造成了管线系统的复杂,提高了设备价。有较高的换热率,容易维修和清洗,可控制性好,不易结垢。 立式热虹吸式: (管侧沸腾)设备被直接安装在塔旁由于管线系统简单,故设备造价低。换热率很大,不易结垢,占地面积小,可用于真空和低压系统。为获得好的循环,可能需要比较高的塔裙高度。管长通常受塔裙高度、传热面积的限制。维修和清洗困难,不能用于有过流量和突然脉动可能的系统,当沸点有较高的提升时会使蒸汽的

换热器分类

换热器分类 夹套式换热器 结构如图所示。夹套空间是加热介质和 冷却介质的通路。这种换热器主要用于 反应过程的加热或冷却。当用蒸汽进行 加热时,蒸汽上部接管进入夹套,冷 凝水由下部接管流出作为冷却器时,冷 却介质(如冷却水)由夹套下部接管进 入,由上部接管流出。 夹套式换热器结构简单,但由于其加热 面受容器壁面限制,传热面较小,且传 热系数不高。 二.喷淋式换热器喷淋式换热器的结构 与操作如下图所示。这种换热器多用作 冷却器。热流体在管内自下而上流动, 冷水由最上面的淋水管流 出,均匀地分布在蛇管 上,并沿其表面呈膜状自 上而下流下,最后流入水 槽排出。喷淋式换热器常 置于室外空气流通处。冷 却水在空气中汽化亦可带 走部分热量,增强冷却效 果。其优点是便于检修, 传热

效果较好。缺点是喷淋不 易均 .套管式换热 器

套管式换热器的基本部件由 直径不同的直管按同轴线相 套组合而成。内管用180 暗 幕 * Сざ任?~ 6m。若管子太长,管中间会 向下弯曲,使环隙中的流体分布不均匀 套管换热器的优点是构造简单,内管能耐高压,传热面积可根据需要增减,适当选择两管的管径,两流体皆可获得适宜的流速,且两流体可作严格逆流。其缺点是管间接头较多,接头处易泄漏,单位换热器体积具有的传热面积较小。故适用于流量不大、传热面积要求不大但压强要求较高的场合。 四.管壳式换热器 1.固定管板式结构如图所示。管子两端与管板的连接方式可用焊接法或胀接法固定。壳体则同管板焊接。从而管束、管板与壳体成为一个不可拆的整体。这就是固定 管板式名称的由来

折流板主要是圆缺形与盘环形两 种,其结构如图所示。 操作时,管壁温度是由管程与壳程 流体共同控制的,而壳壁温度只与 壳程流体有关,与管程流体无关。 管壁与壳壁温度不同,二者线膨胀 不同,又因整体是固定结构,必产 生热应力。热应力大时可能使管子 压弯或把管子从管板处拉脱。所 以当热、冷流体间温差超过50℃时应有减小热应力的措施,称“热补偿”。 固定管板式列管换热 器常用“膨胀节” 结构进行热补偿。图 所示的为具有膨胀 节的固定管板式换 热器,即在壳体上焊 接一个横断面带圆弧 型的钢环。该膨胀节 在受到换热器轴向 体伸缩,从而减小热应力。但这种补偿方式仍不适用于热、冷流体 温差较大 大于70℃)的场合,且因膨胀节是承压薄弱处,壳程流体压强不宜超过6at 。 管式列管换热 器

行业分类国标代码

行业分类国标代码 Document number:BGCG-0857-BTDO-0089-2022

行业国标代码: A:农、林、牧、渔业, A01:农业, A02:林业, A03:畜牧业, A04:渔业, A05:农、林、牧、渔服务业, B:采矿业, B06:煤炭开采和洗选业, B07:石油和天然气开采业, B08:黑色金属矿采选业, B09:有色金属矿采选业, B10:非金属矿采选业, B11:开采辅助活动, B12:其他采矿业, C:制造业, C13:农副食品加工业, C14:食品制造业, C15:酒、饮料和精制茶制造业, C16:烟草制品业, C17:纺织业, C18:纺织服装、服饰业,

C19:皮革、毛皮、羽毛及其制品和制鞋业, C20:木材加工和木、竹、藤、棕、草制品业, C21:家具制造业, C22:造纸和纸制品业, C23:印刷和记录媒介复制业, C24:文教、工美、体育和娱乐用品制造业, C25:石油加工、炼焦和核燃料加工业, C26:化学原料和化学制品制造业, C27:医药制造业, C28:化学纤维制造业, C29:橡胶和塑料制品业, C30:非金属矿物制品业, C31:黑色金属冶炼和压延加工业, C32:有色金属冶炼和压延加工业, C33:金属制品业, C34:通用设备制造业, C35:专用设备制造业, C36:汽车制造业, C37:铁路、船舶、航空航天和其他运输设备制造业, C38:电气机械和器材制造业, C39:计算机、通信和其他电子设备制造业, C40:仪器仪表制造业,

C41:其他制造业, C42:废弃资源综合利用业, C43:金属制品、机械和设备修理业, D:电力、热力、燃气及水生产和供应业, D44:电力、热力生产和供应业, D45:燃气生产和供应业, D46:水的生产和供应业, E:建筑业, E47:房屋建筑业, E48:土木工程建筑业, E49:建筑安装业, E50:建筑装饰和其他建筑业, F:批发和零售业, F51:批发业, F52:零售业, G:交通运输、仓储和邮政业, G53:铁路运输业, G54:道路运输业, G55:水上运输业, G56:航空运输业, G57:管道运输业, G58:装卸搬运和运输代理业,

换热器形式的选择

3.1 换热器形式的选择 随着科技的发展和生产的需要,传统的管壳式换热器已经达不到要求,这种换热器不仅仅传热能力不足,而且体积较大,运输和维修都比较费力,所以说此次研究中选择的是可拆式换热器。在换热器的发展史上,最典型的就是板式换热器,这种换热器最早出现在20世纪早期,通常都是由金属薄片压缩构成的,后来渐渐的被大家所认可,它最大的特点就是体积小性能高。对于板式换热器来讲,通常我们都会将其划分为焊接式与可拆式两大类,其中钎焊式板式和激光全焊式构成了焊接式,这样的换热器造价比较昂贵,并且没有拆检的功能。随社技术的发展,研制成功了可拆的换热器,该换热器没有了前者的缺陷,往往都是由薄的金属片构成的,存在着大量的小孔,方便了设备的散热,提高了使用的寿命。构成的金属板往往都组装在一个框架内部,用螺丝将它们固定。连接在一起的板片完全对称分布,构成了介质流通的通道。并且其上存在密封良好的垫片,将流体通道堵塞,保证不同的介质处于不同的通道之内,避免出现混流的现象。通常情况下为了保证拥有良好的传热性能,不同的温度的介质往往是逆向流动。按照工艺的要求,流体通道可以设计为单个也可以设定为多个。一般的换热器中,介质接口往往位于固定的板侧,如果是比较特殊的多通,也可以位于压力板一侧。图13是可拆式换热器的结构示意图: 图13 对比落后的管壳式换热器,其拥有以下几个优势之处: (1)传热性能良好,体积较小。对于板式换热器而言,它的板片往往不规则形的,液体在其内部流动时形成的是特殊结构的三维流动,不管是流动的方向还是速度,都不是稳定不变的,所以就会出现较大的流动,从而形成湍流。介质的流动性强时,避免出现由于杂质存在而导致的沉淀,有效的降低了污垢热阻,另外制造时采用的板片厚度较小,热阻几乎可以忽略不计。除此之外,所有的流通都是按照设定好的通道在流动,不会出现其他情况,所以说总的传热性能良好,在相同的条件下,两者之间的差值达到了3-5倍之多,可是其占地面积仅仅是管壳式的三成左右。 (2)传热效率非常高。对于板式换热器来讲,目前已经出现了高标准的换热器,其传热效率比较高,国外一些先进的公司已经将换热器的平均温差控制在m T =1℃范围内。但是温度过低时,换热器的面积又会变大,所以必须找到一个平衡点,满足工程的需要。

换热器的种类

管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A 流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~ 280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。 特点管壳式换热器是换热器的基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于制造,生产成本较低,清洗较方便,在高温高压下也能适用。但在传热效能、紧凑性和金属消耗量方面不及板式换热器、板翅式换热器和板壳式换热器等高效能换热器先进。

相关文档
最新文档