光伏发电的基本知识

光伏发电的基本知识
光伏发电的基本知识

光伏发电基本知识

太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称光电”光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装

应用范围

理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多

晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。目前多晶硅电池效率在16至17%左右,单晶硅电池的效率约18至20%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。光伏发电产品主要用于三大方面:一是为无电场合提供电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草地各种灯具等;三是并网发电,这在发达国家已经大面积推广实施。到2009年,中国并网发电还未开始全面推广,不过,2008年北京奥运会部分用电是由太阳能发电和风力发电提供的。

发展前景

据预测,太阳能光伏发电在21世纪会占据世界能源消费的重要席位,

不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年, 可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业_ 的发展前景及其在能源领域重要的战略地位。[2]在当今油、碳

等能源短缺的现状下,各国都加紧了发展光伏的步伐。美国提出太阳能先导计划”意在降低太阳能光伏发电的成本,使其2015年达到商

业化竞争的水平;日本也提出了在2020年达到28GW的光伏发电总量;欧洲光伏协会提出了“setfor2020规划,规划在2020年让光伏发电做到商业化竞争。在发展低碳经济的大背景下,各国政府对光伏发电的认可度逐渐提高。

光伏发电系统

系统分类

光伏发电系统分为独立光伏系统和并网光伏系统。1、独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。

2、并网光伏发电就是太阳能组件产生的直流电经

过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共

电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。

并网光伏发电有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,目前还没有太大发展。

而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资

小、建设快、占地面积小、政策支持力度大等优点,是目前并网光伏发

电的主流。

系统设备

光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆

变器,交流配电柜,太阳跟踪控制系统等设备组成。其部分设备的作用

是:

太阳能电池方阵

在有光照(无论是太阳光,还是其它发光体产生的光照)情况

下,电池吸收光能,电池两端出现异号电荷的积累,即产生光生电

压”,这就是光生伏特效应”。在光生伏特效应的作用下,太阳能电池

的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电

池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池

和非晶硅太阳能电池二种蓄电池组

其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载

供电。太阳能电池发电对所用蓄电池组的基本要求是: a.自放电

率低;b.使用寿命长;c深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。

充放电控制器

是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。

逆变器

是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成

本高,但可以适用于各种负载。

太阳跟踪控制系统

由于相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,如果太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。目前世界上通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的

每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,也就是靠计算太阳位置以实现跟踪。采用的是电脑数据理论,需要地球经纬度地区的的数据和设定,一旦安装,就不便移动或装拆,每次移动完就必须重新设定数据和调整各个参数;原理、电路、技术、设备复杂,非专业人士不能够随便操作。把加装了智能太阳跟踪仪的太阳能发电系统_____________________________ 安装在高速行驶的汽车、火车,以及通讯应急车、特种军用汽车、军舰或轮船上,不论系统向何方行驶、如何调头、拐弯,智能太阳跟踪仪都能保证设备的要求跟踪部位正对太阳!

光伏发电的工作原理

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设周期短的优点。

光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要

电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。目前,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。

优缺点

与常用的火力发电系统相比,光伏发电的优点主要体现在:

①无枯竭危险;

②安全可靠,无噪声,无污染排放外,绝对干净(无公害);

③不受资源分布地域的限制,可利用建筑屋面的优势:例如,无电地区,以及地形复杂地区;

④无需消耗燃料和架设输电线路即可就地发电供电;

⑤能源质量高;

⑥使用者从感情上容易接受;

⑦建设周期短,获取能源花费的时间短。

缺点:

①照射的能量分布密度小,即要占用巨大面积;

②获得的能源同四季、昼夜及阴晴等气象条件有关。

③[3]发电成本高

起源及发展

早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为光生伏特效应”简称光伏效应” 1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。20世纪70年代后,随

着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展,这之中太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达80万千瓦时,假如把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6 X012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。

20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。美国是最早制定光伏发电的发展规划的国家。一1997年又提出百万屋顶” 计划。日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。而德国新可再生能源法规

定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。世界光伏组件在1990年――2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。商品化电池效率从10%?13%提高到13%?15%,生产规模从1?5兆瓦/年发展到5?25兆瓦/ 年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。2006年的光伏行业调查表明,到2010年,光

伏产业的年发展速度将保持在30%以上。年销售额将从2004年的70 亿美金增加到2010年的300亿美金。许多老牌的光伏制造公司也从原来的亏本转为盈利。⑷ 中国光伏发电的发展

发展优势

中国太阳能资源非常丰富,理论储量达每年17000亿吨标准煤,

太阳能资源开发利用的潜力非常广阔。中国地处北半球,南北距离和东西距离都在5000公里以上。在中国广阔的土地上,有着丰富的太阳能资源。大多数地区年平均日辐射量在每平方米4千瓦时以上,西藏日辐射量最高达每平米7千瓦时。年日照时数大于2000小时。与同

纬度的其他国家相比,与美国相近,比欧洲、日本优越得多,因而有巨大的开发潜能。

发展历程

中国太阳电池的研究始于1958年,1959年研制成功第1个有实用价值的太阳电池。中国光伏发电产业于20世纪70年代起步,1971 年3月首次成功地应用于我国第2颗卫星上,1973年太阳电池开始在地面应用,1979年开始生产单晶硅太阳电池。20世纪90年代中期后光伏发电进入稳步发展时期,太阳电池及组件产量逐年稳步增加。

经过30多年的努力,21世纪初迎来了快速发展的新阶段。中国的光伏产业的发展有2次跳跃,第一次是在20世纪80年代末,中国的改革开放正处于蓬勃发展时期,国内先后引进了多条太阳电池生产线,使中国的太阳电池生产能力由原来的3个小厂的几百千瓦一下子上升到6个厂的4.5兆瓦,弓I进的太阳电池生产设备和生产线的投资主要来自中央政府、地方政府、国家工业部委和国家大型企业。第二次光伏产业的大发展在2000年以后,主要是受到国际大环境的影

响、国际项目/政府项目的启动和市场的拉动。2002年由国家法改委负责实施的光明工程”先导项目和送电到乡”工程以及2006年实施的送电到村工程均采用了宇翔太阳能光伏发电技术。在这些措施的有

力拉动下,中国光伏发电产业迅猛发展的势头日渐明朗。到2007年年底,中国光伏系统的累计装机容量达到10万千瓦(100MW),从事太阳能电池生产的企业达到50余家,太阳能电池生产能力达到290万千瓦(2900MW),太阳能电池年产量达到1188MW,超过日本和欧洲,并已初步建立起从原材料生产到光伏系统建设等多个环节组成的完

整产业链,特别是多晶硅材料生产取得了重大进展,突破了年产千吨大关,冲破了太阳能电池原材料生产的瓶颈制约,为中国光伏发电的规模化发展奠定了基础。2007年是中国太阳能光伏产业快速发展的一年。受益于太阳能产业的长期利好,整个光伏产业出现了前所未有的投资热潮,但也存在诸如投资盲目、恶性竞争、创新不足等问题[5]。

2009年6月,由中广核能源开发有限责任公司、江苏

百世德太阳能高科技有限公司和比利时Enfinity公司组建的联合体以

1.0928元/度的价格,竞标成功我国首个光伏发电示范项目------- 甘肃敦煌10兆瓦并网光伏发电场项目,1.09元/千瓦时电价的落定,标志着该上网电价不仅将成为国内后续并网光伏电站的重要基准参考价,同时亦是国内光伏发电补贴政策出台、国家大规模推广并网光伏发电的重要依据。

前景规划

根据《可再生能源中长期发展规划》,到2020年,中国力争使太阳能发电装机容量达到1.8GW(百万千瓦),到2050年将达到600GW (百万千瓦)。预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。预计2030年之前,中国太阳能装机容量的复合增长率将高达25%以上。[6]

中国光伏发电面临的问题

有关专家指出,虽然中国光伏之路前景广阔,但在现实中还存在很多问题,中国的光伏发展荆棘满路,如果在光伏发展之中我们注意不到

光伏发电的基本知识

光伏发电基本知识 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指 置。 应用范围 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。目前多晶硅电池效率在16至17%左右,单晶硅电池的效率约18至20%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。光伏发电产品主要用于三大方面:一是为无电场合提供电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草地各种灯具等;三是并网发电,这在发达国家已经大面积推广实施。到2009年,中国并网发电还未开始全面推广,不过,2008年北京奥运会部分用电是由太阳能发电和风力发电提供的。 发展前景 据预测,太阳能光伏发电在21

到203030%以上,而太阳能 10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上, 太阳能发电将占到60% [2]在当今油、碳等能源短缺的现状下,各国都加紧了发展光伏的步伐。美国提出“太阳能先导计划”意在降低太阳能光伏发电的成本,使其2015年达到商业化竞争的水平;日本也提出了在2020年达到28GW的光伏发电总量;欧洲光伏协会提出了“setfor2020”规划,规划在2020年让光伏发电做到商业化竞争。在发展低碳经济的大背景下,各国政府对光伏发电的认可度逐渐提高。 光伏发电系统 系统分类 1、独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。独立光伏电站 伏发电系统。2、并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共

光伏发电学习知识普及其篇

光伏发电基础知识 一、光伏发电的概念 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 二、光伏发电的原理 光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,空穴由P极区往N极区移动,电子由N极区向P极区移动,形成电流。 光电效应就是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。 多晶硅经过铸锭、破锭、切片等程序后,制作成待加工的硅片。在硅片上掺杂和扩散微量的硼、磷等,就形成P-N结。然后采用丝

网印刷,将精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂一层防反射涂层,电池片就至此制成。电池片排列组合成电池组件,就组成了大的电路板。一般在组件四周包铝框,正面覆盖玻璃,反面安装电极。有了电池组件和其他辅助设备,就可以组成发电系统。为了将直流电转化交流电,需要安装电流转换器。发电后可用蓄电池存储,也可输入公共电网。发电系统成本中,电池组件约占50%,电流转换器、安装费、其他辅助部件以及其他费用占另外 50%。 光伏发电原理图

风力发电机的基础知识

风力发电机的基础知识 一、风的认知 从某一个角度讲,风是太阳能的一种表现形式。 1.风的成因: ①地球的自转 ②温差: 地球表面的不同状态对太阳的吸热系数以及放热系数不同从而造成空气之间温度的差异,而导致风的形成。(如水面比地面的吸热慢,放热也慢)。 2.风的运动轨迹 风在遇到障碍物后,都会形成湍流。 二、风力发电机 风力发电机是一种将风能转换为电能的一种发电装置,实现风能转换成机械能,再由发电机把机械能转换成电能的过程。 1.风力发电机的技术原理 三相三相不控桥整流蓄电池 (1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。 (2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V之间。用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。10.2V切入逆变器。 发电机频率的监控,控制器增加监控点,电压信号选择保护。 2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。 (1)最理想的叶片 叶片扫风面积越大,接受风能则越大。叶片侧面叶型的不同设计,可提高转速,减小阻力。 叶片理论极限值CP(max)=0.593 P∝SρO3 *cp (目前,大风机叶片实际做出来最理想的CP值为0.48,小风机为0.48~0.36,而HY系列的叶片CP值可做到0.42。) (2)高效能的发电机 发电机效率: 大型发电机0.95 小型发电机0.6~0.5 整机转化效率:整机转化效率= 气动效率(CP值) * 发电机效率 三、风力发电机的特点 风是一种随机能源,我们要利用风能发电,便要捕捉风能。而风能可以无限大,在这种特性下,如果不作限速,即使再优良的风机也会被损 坏。现在风机一般利用于发电的,都是在3M/S~60M/S输出空间。 一般采用以下几种限速装置: (1)变浆距(离心变浆距) 这是目前较先进的叶片控制方式,当大风来时,调型叶片,形成阻力,使风能大部分消耗在叶尖,限制能量输出。 (2)折尾 (3)机头上昂(或上侧昂):风大时向上推动,避让风。 以上三种叶片控制方式均有可靠性较差、较容易磨损风机相关部件的缺点。

光伏电站基础选型比较

光伏支架的基础选型 一. 钢筋混凝土独立基础: 1.定义: 在光伏支架的前后立柱下面分别设置钢筋混凝土独立基础,由基础底板(垫层)与底板上面的基础短柱组成。短柱顶部设置预埋件(钢板或地脚螺栓)与上部的光伏支架相连,需要一定的埋深和一定的基础底面积;基础地板上覆土,用基础自重和基础覆土重力共同抵抗环境荷载导致的上拔力,用较大的基础底面积来分散光伏支架向下的垂直荷载,用基础底面和土壤之间的摩擦力以及基础侧面与土壤的阻力来抵挡水平荷载。 2.优点: 传力途径明确,受力可靠,适用范围广,施工无需专门的施工机械,抗水平荷载的能力最强,抗洪抗风。 3. 缺点: 所需的钢筋混凝土工程量大,人工多,土方开挖及回填量大,施工周期长,对环境的破坏力大。这种基础的局限性太大,在当今的光伏发电站已经很少使用。 4. 备注图片:

二. 钢筋混凝土条形基础: 1. 定义 通过在光伏支架前后立柱之间设置基础梁,从而将基础重心移至前后立柱之间,增大了基础的抗倾覆力臂,可以仅通过自重抵抗风载荷造成的光伏支架倾覆力矩;条形基础与地基土的接触面积较大,适用于场地较为平坦、地下水位较低的地区。因为基础的表面积相对较大,所以一般埋深在200至300mm之间。 2. 优点: 土方开挖量小,不需要专门的施工工具,施工工艺简单。 3. 缺点: 需要大面积的场平,对环境影响较大,混凝土需求量大,且养护周期长,所需人工多。基础埋深不够抗洪水能力差。 4. 备注图片:

三.螺旋钢桩基础: 1. 定义: 在光伏支架的前后立柱下面采用带螺旋叶片的热镀锌钢管桩,旋转叶片可大可小、可连续可间断,旋转叶片与钢管之间采用连续焊接。施工过程中采用专业机械将其旋入土体中。螺旋桩基础上部露出地面,与上部支架之间采用螺杆连接。通过钢管桩桩侧与土壤之间的侧摩阻力,尤其是旋转叶片与土体之间的咬合力抵挡上拔力及承受垂直载荷,利用桩体、螺旋叶片与土体之间桩土相互作用抵抗水平荷载。 2. 优点: 施工速度快,无需场地整平,无土方开挖量,最大限度的保护场区植被,且场地易恢复原貌,方便调节上部支架,可随地势调节支架高度。对环境的影响小,所需人工少,螺旋桩可以进行二次利用。 3. 缺点: 造价相对较高,且需要专门的施工机械,最重要的是基础水平承载能力与土层的密实度密切相关,螺旋桩基础要求土层具有一定的密实性,特别是接近地面的浅土层不能够太松散;螺旋桩基础的耐腐蚀性较差,尽管可以采用加厚热镀锌,但难适应较强的腐蚀性环境。 4. 备注照片:

光伏电站培训光伏电站的培训方案计划

篇一:光伏电站培训光伏电站的培训计划 一、光伏电站培训计划 1、应知部分 (1)了解光伏电站的选址及工程慨况。 (2)理解光伏直流发电系统铭牌参数意义。 (3)理解太阳辐射、方位角。 (4)理解太阳能资源统计计算,主要考虑可利用小时。 (5)理解“同步”,“异步”的含义。 (6)理解太阳能电池板工作原理。 (7)理解汇流箱工作原理。 (8)理解逆变器工作原理。 (9)理解一套光伏发电直流单元系统原理。 (10)理解逆变器的启动控制模式,在哪些情况下应实现停机或紧急停机,理解停机控制流程的优先步骤。 (11)理解逆变器的操作模式、运行维护注意事项。 (12)理解逆变器主控柜的结构组成及各元件功能作用。 (13)理解光伏发电直流单元监控系统的工作原理及主要功用。 (14)理解无功调节装置工作原理、技术参数及控制方式。

(15)理解箱变各部件组成及运行原理。 (16)理解电站交直流系统的构成。 (17)理解电站远程控制系统的组成、功用。 (18)了解电站远程监控中心的信息输出、查询、浏览内容。 2、应会部分: (1)熟悉掌握方阵、一次集电线路及输配电系统的组成,工作原理和运行维护内容,异常、故障及事故判断和处理方法。 (2)熟悉掌握直流系统,10kv集电系统,箱变、主变压器保护配置和110 kv线路保护装置的配置,运行维护内容、异常、故障及事故判断和处理方法。 (3)熟悉掌握光伏电站无功补偿装置设备工作原理,投切操作、运行维护、、异常故障判断和事故处理方法。 (4)熟悉撑握光伏电站太阳能池板的工作原理、额定工作参数及各种运行工况。 (5)熟悉掌握光伏电站逆变器是如何实现自动启动,并网,如何实现并网前的调节,并网后的有、无功调节和控制。 (6)掌握逆变器及其控制保护系统的组成、功能作用及运行维护注意事项。 (10)掌握齿轮箱功能作用、正常工作条件、变速原理及冷却原理,运行维护注意事项。

风力发电基础知识汇总

风力发电 把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电的原理, 利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同) 由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。 发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 一般说来,三级风就有利用的价值。但从经济合理的角度出发,风速大于每秒4米才适宜于发电。据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。可见风力愈大,经济效益也愈大。 在我国,现在已有不少成功的中、小型风力发电装置在运转。 我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。中国风能储量很大、分布面广,仅陆地上的风能储量就有约 2.53亿千瓦。2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。风电的优势在于:能力每增加一倍,成本就下降15% 风力发电的输出

风电基础知识考试题(卷1)

国电电力宁波穿山风电场 风电基础知识考试题(卷1) 一、填空题(每题1分共10分) 1、风力发电机开始发电时,轮毂高度处的最低风速叫。 2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。 3、凡采用保护接零的供电系统,其中性点接地电阻不得超过。 4、在风力发电机电源线上,并联电容器的目的是为了。 5、风轮的叶尖速比是风轮的和设计风速之比。 6、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。 7、风电场生产必须坚持的原则。 8、是风电场选址必须考虑的重要因素之一。 9、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。 10、滚动轴承如果油脂过满,会。 二、判断题(每题1分共20分) 1、风的功率是一段时间内测的能量。() 2、风能的功率与空气密度成正比。() 3、风力发电机的接地电阻应每年测试一次。() 4、风力发电机产生的功率是随时间变化的。() 5、风力发电机叶轮在切入风速前开始旋转。() 6、大力发展风力发电机有助于减轻温室效应。() 7、风力发电机的功率曲线是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。() 8、风能利用系数是衡量一台风力发电机从风中吸收能量的百分率。() 9、风轮确定后它所吸收能量它所吸收能量的多少主要取决于空气速度的变化情况。() 10、风力发电机组的平均功率和额定功率一样。() 11、叶轮应始终在下风向。() 12、平均风速就是给定时间内瞬时风速的平均值。() 13、平均风速是正对特别时期给出的。() 14、风力发电机会对无线电和电视接收产生一定的干扰。() 15、风电场投资成本随发电量而变化。() 16、风力发电机将影响配电电网的电压。() 17、拆卸风力发电机组制动装置前应先切断液压、机械与电气的连接。() 18、沿叶片径向的攻角变化与叶轮角速度无关。() 19、变桨距叶轮叶片的设计目标主要是为防止气流分离。() 20、拆卸风力发电机制动装置前应先切断液压、机械与电气的连接。() 三、选择题(每题1分共15分) 1、风能的大小与风速的成正比。 A、平方; B、立方; C、四次方; D、五次方。 2、风能是属于的转化形式。 A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 3、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。 A、平均功率; B、最大功率; C、最小功率; D、额定功率。 4、风力发电机开始发电时,轮毂高度处的最低风速叫。

光伏电站基础知识总结

一、什么是光伏发电系统? 光伏发电系统是利用太阳能组件和配套电气设备将太阳能转换成所需要电能的发电系统。 当光线照射到太阳能电池表面时,一部分光子被硅材料吸收,使电子发生了跃迁,成为自由电子,该自由电子在PN结两侧聚集形成电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的功率输出。该过程的实质是光子能量转换成电能的过程。 二、光伏发电系统的分类 分布式光伏发电系统主要分为并网光伏发电系统和离网光伏发电系统。并网发电系统又分为集中式光伏发电系统和分布式光伏发电系统。 三、集中式光伏电站系统介绍 集中式光伏发电系统规模较大,安装集中,整体升压输送到电网。建设地点主要是荒山荒坡、滩涂、戈壁、鱼塘等地。

集中式光伏发电系统主要由光伏组件、直流汇流箱、并网逆变器、交流配电柜、光伏支架、监控系统、电缆等部分组成。

系统主要组成部件:光伏组件 太阳电池组件—实用型功率系统的基本单元,是光伏系统的主要组成部分。 为使太阳电池在工程中应用,对硅电池片进行电气连接及结构集成和封装成“太阳电池组件”(简称“组件”)。 主要分为:单晶组件、多晶组件、薄膜组件。 系统主要部件:光伏逆变器 将直流电转换成交流电,是光伏系统的最主要电气设备。 主要分为并网逆变器、离网逆变器、组合型逆变器。并网逆变器又包括:微型逆变器、组串型逆变器、集中型逆变器。

系统主要部件:配电设备 直流设备:主要用于对光伏组件串直流电缆进行汇流,再与并网逆变器或直流配电柜连接。 交流设备:将若干个光伏逆变器并联接入交流配电柜,在交流配电柜内汇流后输出。 功能:主要保护光伏系统运行安全以及将线缆整合,避免线路交叉。 系统主要部件:支架系统

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识 1、太阳能光伏系统的组成和原理 太阳能光伏系统由以下三部分组成: 太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 太阳能光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -xx简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上;根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类: 独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站,如3.75kWp家用型屋顶发电设备、敦煌10MW项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结

构和工作原理基本相同。图4-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: 光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对

光伏电站基础知识总结

光伏电站基础知识总结——光伏发电单元与升压变的连接 日期:2014-12-01 [复制链接] 责任编辑:apple 打印收藏评论(3)[订阅到邮箱] 阳光工匠光伏网讯:光伏电站电气系统主要包括光伏组件、汇流箱、逆变器、升压变、集电线路、低压配电装置、主变压器、高压配电装置、无功补偿、站用电系统、通信、继电保护及监控等部分,光伏电站在进行电气设计时,主要考虑四个方面:光伏发电单元与升压变的连接、光伏电站集电线路接线方式、升压站的电气主接线方式、站用电接线设计。 一、发电单元与升压变接线方式 发电单元与升压变的接线,主要指的是逆变器与变压器的接线,是光伏电站与电网衔接的第一步,也是最关键的一环。目前,光伏逆变技术已臻成熟,市场上大型逆变器单机最常用机型为500KW型,由此而知,大型光伏电站中500KW为最小发电单元,其与升压变的连接方式有如下三种形式: 1.500KW发电单元与1台500KVA双绕组升压变组成发电机-双绕组变压器单元接线; 2.两个500KW发电单元与一台1000KVA双绕组升压变组成发电机-双绕组变压器扩大单元接线。 3. 两个500KW发电单元与一台1000KVA双分裂三绕组升压变组成发电机-双分裂变压器扩大单元接线

序号逆变器数低压配 电装置变压器高压配 电装置 配电房附件 方案12台500KW 2套2台500KVA 2套2套逆变器房 2套变压器房 方案22台500KW 2套1台1000KVA 1套1套逆变器房 1套变压器房 方案32台500KW 2套1台1000KVA 1套1套逆变器房 1套变压器房 方案1接线简单、结构清晰、可靠性高,每台升压变故障仅影响与其相连的500KW光伏组件的出力,但这种接线方式资源浪费比较大,每台逆变器需要单独配套一套升压、配电单元,成本较高,适用于场地较分散,光伏组件分片布置,多点并网的情况,采用小单元就地升压的方式,减小线路损耗,不适合大型集中式光伏系统。 方案2与方案3,都比较适合大型集中式光伏电站,每兆瓦在电缆及附件、开关柜、设备安装等方面投资成本基本一致,相同容量的双分裂变压器比双绕组变压器的价格稍高,但是双分裂变压器实现了两台逆变器之间的电气隔离,不但减小了相互之间的电磁干扰及环流影响,而且两台逆变器的交流输出分别经变压器滤波,输出电流谐波小,提高了输出的电能质量。 综上所述,方案1适合场地分散,多点并网的方式,方案3的经济性和电气安全性,比方案2更适合大型集中式应用案例。

光伏电站培训光伏电站的培训计划

一、光伏电站培训计划 1、应知部份 (1)了解光伏电站的选址及工程慨况。 (2)理解光伏直流发电系统铭牌参数意义。 (3)理解太阳辐射、方位角。 (4)理解太阳能资源统计计算,主要考虑可利用小时。 (5)理解“同步”,“异步”的含义。 (6)理解太阳能电池板工作原理。 (7)理解汇流箱工作原理。 (8)理解逆变器工作原理。 (9)理解一套光伏发电直流单元系统原理。 (10)理解逆变器的启动控制模式,在哪些情况下应实现停机或紧急停机,理解停机控制流程的优先步骤。 (11)理解逆变器的操作模式、运行维护注意事项。 (12)理解逆变器主控柜的结构组成及各元件功能作用。 (13)理解光伏发电直流单元监控系统的工作原理及主要功用。 (14)理解无功调节装置工作原理、技术参数及控制方式。 (15)理解箱变各部件组成及运行原理。 (16)理解电站交直流系统的构成。

(17)理解电站远程控制系统的组成、功用。 (18)了解电站远程监控中心的信息输出、查询、浏览内容。 2、应会部分: (1)熟悉掌握方阵、一次集电线路及输配电系统的组成,工作原理和运行维护内容,异常、故障及事故判断和处理方法。 (2)熟悉掌握直流系统,10kV集电系统,箱变、主变压器保护配置和110 kV线路保护装置的配置,运行维护内容、异常、故障及事故判断和处理方法。 (3)熟悉掌握光伏电站无功补偿装置设备工作原理,投切操作、运行维护、、异常故障判断和事故处理方法。 (4)熟悉撑握光伏电站太阳能池板的工作原理、额定工作参数及各种运行工况。 (5)熟悉掌握光伏电站逆变器是如何实现自动启动,并网,如何实现并网前的调节,并网后的有、无功调节和控制。 (6)掌握逆变器及其控制保护系统的组成、功能作用及运行维护注意事项。 (7)掌握汇流箱、逆变器、箱变系统技术参数、功能作用及运行维护注意事项。 (8)

电力基础知识题库

电力基础知识题库 Prepared on 22 November 2020

电力基础知识题库 一、填空题 1、变电站和不同电压等级输电线路通称为电力网。 2、通常把直接生产和分配电能的设备称为一次设备(包括发电机、变压器、断路器、隔离开关、输电线、电动机、电灯等等)。 3、变电站中还有一些辅助设备,它们的任务是对一次设备进行测量、控制、监视和保护等,这些设备称为二次设备。 4、评价电能质量的指标:电压、频率和波形。 5、发电厂作用是将其他形式的能量(化学能、动能、核能等)转化为电能。 6、重金属元素如铀、钚等的原子核发生裂变放出巨大能量,称为裂变反应。 7、轻元素原子核聚合成较重的原子核(如氢聚变成氦)时放出巨大的能量,称为聚变反应。 8、变电站按电压升降可分为:升压变电站和降压变电站。 9、变压器在电力系统中的主要作用是变换电压,以利于电能的传输和使用。 10、互感器按测量对象可分为:电压互感器和电流互感器。 11、熔断器的作用是保护电路中的电气设备,使其在短路或过负荷时免受损坏。 12、变电站的主要防雷设施有避雷针、避雷器和接地装置。 13、电力线路按作用,可分为输电线路和配电线路。

14、接地装置是由埋入土中的金属接地体(角钢、扁钢、钢管等)和连接用的接地线构成。 15、常用用电设备有动力型、电热型和电光型。 16、继电保护装置是指安装在被保护元件上,反应被保护元件故障或不正常状态并作用于断路器跳闸或发出信号的一种自动装置。 17、继电保护的要求:快速性、选择性、可靠性和灵敏性。 18、变压器的瓦斯保护是反映变压器油箱内部故障最有效的一种主保护。 19、电力调度自动化系统中的“四遥”是指遥测、遥信、遥控和遥调。 二、简答题 1、什么是电力系统 答:由各发电厂中的发电机、各种变电站、输电线路和电力用户组成的整体,称为电力系统。 2、按一次能源的不同,发电厂可分为哪几种类型 答:(1)火力发电厂(以煤、石油和天然气为燃料);(2)水力发电厂(以水的位能作动力);(3)原子(核)能发电厂;(4)风力发电厂、地热发电厂、太阳能发电厂、潮汐发电厂等。 3、火力发电厂有哪些优缺点 答:优点:(1)布局灵活;(2)建造工期短,一次性建造投资少;(3)生产成本比水力发电要高。

风力发电基础

风机发电机基础 Fundamentals of wind turbines Fundamentals of wind turbines 风机设计基础 (Basics of Wind Turbine Design) ?风机技术规范(Wind Turbine Specification) ?功率等级(Rating) ?叶片数目和风轮优化(Blade Number & Rotor Optimisation) ?气动调节(Aerodynamic Regulation) ?安全系统–风轮刹车(Safety System –Rotor Brake)?转动模式(Speed Mode)

Fundamentals of wind turbines 风机技术规范(Wind Turbine Specification) ?目标市场(Target market ) 以便在开发进入产品设计时样机的确定和定义影响设计的关键市场约束(噪音,视觉,噪音,视觉,电磁干扰,电网,运输限制等等电磁干扰,电网,运输限制等等)(for the prototype after development into a production design and definition of key market constraints that will affect the design (acoustic, visual, EMI, grid, transportation limits, other)) ?确定环境条件(Definition of the environmental conditions )以便为风机设计选择设计标准和风场等级及以便为风机设计选择设计标准和风场等级及其他其他其他选择选择(for the design via selection of a design standard and site class or otherwise) Fundamentals of wind turbines 风力发电机将风的动能转化成 电能(A wind turbine converts the kinetic energy of the wind into electrical energy 要求(Requirements:) ?廉价的电(low cost electricity)? 能生存(survival!) ?对环境影响最小(minimum environmental impact) WINDTEC 1.5MW Functional Specification

光伏发电基础知识汇总

光伏发电基础知识 1、太阳电池的基本特性 太阳电池的输出受日照强度、电池结温等因素的影响,当结温增加时,太阳电池的开路电压下降,短路电流稍有增加,最大输出功率减小,当日照强度增加时,太阳电池的开路电压变化不大,短路电流增加,最大输出功率增加,在一定的温度和日照强度下,太阳电池具有唯一的最大功率点,电池工作在该点时,能输出当前温度和日照条件下的最大功率。 2、单晶硅电池 单晶硅是用高纯度的多晶硅在单晶炉里拉制而成。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅,单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅,硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟,在电池制作中,一般都采用表面结构化,发射区钝化,分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池,提高转化效率主要是单晶硅表面微结构处理和分区掺杂工艺,目前转换效率达到18%-20%,最高达24%。在大规模应用和工业生产中仍占据主导地位。 3、多晶硅电池 多晶硅是单质硅的一种形态,熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同,则这些晶粒结合起来,就结成多晶硅,多晶硅可做拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面,多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳电池的光电效率则要比单晶硅低,其光电转换效率为12%-15%之间,最高已达18%,但相对单晶硅光电池具有生产成本低,同时多晶硅光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上掀起的前沿性研究热点。 4、非晶硅电池 非晶硅是一种直接能带半导体,它的结构内部有许多所谓的“悬键”。也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流,非

风力发电基本知识

风力发电基础知识 风力发电是把风的动能转为电能。风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为 2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 中文名 风力发电 外文名 wind power generation 使用介质 自然风力 资源 约10亿kW 资源 我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。而2003年底全国电力装机约5.67亿kW。 风是没有公害的能源之一。而且它取之不尽,用之不竭。对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。我国海上风能资源丰富,加快海上风电项目建设,对于促进沿海地区治理大气雾霾、调整能源结构和转变经济发展方式具有重要意义。 国家能源局2015年9月21日发布数据显示,到2015年7月底,纳入海上风电开发建设方案的项目已建成投产2个、装机容量6.1万千瓦,核准在建9个、装机容量170.2万千瓦,核准待建6个,装机容量154万千瓦。这与2014年末国

家能源局《全国海上风电开发建设方案(2014-2016)》规划的总装机容量1053万千瓦的44个项目相距甚远。为此,国家能源局要求,进一步做好海上风电开发建设工作,加快推动海上风电发展。 利用 风是一种潜力很大的新能源,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年所提供能量的三分之一。因此,国外都很重视利用风力来发电,开发新能源。 利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。 1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。 历史

光伏发电基础知识培训1

光伏发电基础知识培训 太阳能光伏电源系统应用技术培训教材 前言 1我国研制太阳能电池始于一九五八年,中国的光伏技术经过四十年的努力,已具有一定的水平和基础。过去我国边远地区的光伏发电市场主要由国家投资项目和多边援助项目支撑。 2.90年代以来,随着边远地区经济发展和农牧民收入水平的提高,边远地区的光伏发电市场也开始向商业化发展。根据世界银行/全球环境基金可再生能源商业化项目准备研究过程中的资料显示, 3我国西部地区经营太阳能光伏发电系统的各类公司和团体由80年代的不足10家,发展到1997年底的50多家,其中大多数公司以商业化赢利为目的。这从侧面表明,我国的光伏发电技术已经具有了一定的市场潜力和市场吸引力。 4光伏电池发电有离网(独立电站)和并网(市电并网电站)两种工作方式。过去,由于太阳电池的生产成本居高不下,所以光伏电池多用于工业部门(邮电、电力、石油、铁路等)和偏远无电地区的中小功率离网用户。 5随着光伏产品成本的降低和农牧民收入水平的提高,太阳能光伏市场近年来发生了很大变化,开始向较大功率的交流系统和村庄供电系统发展;并且逐步向并网发电以及和建筑相结合(屋顶

发电系统)的常规发电方向发展,开始由补充能源向替代能源过渡。 6太阳能光伏电源的应用领域十分广阔,从数十瓦的户用照明系统到电信、电力、铁路、石油、部队等部门通讯设备数千瓦的备用电源系统,甚至在西藏阿里、安多等地区还建成几个数十千瓦的集中型太阳能光伏电站。 7随着我国光伏事业的高速发展和应用领域的拓宽,从事太阳能光伏电源系统集成设计和安装的技术人员不断增加。 8由于太阳能光伏电源技术属于跨多学科的新兴学科,它涉及到气象、光学、半导体、电力、电子、计算机和机械等多种学科技术,要求从业的技术人员应掌握广泛而深入的技术知识,才能合理设计使用和充分发挥价格较昂贵的光伏系统设备的作用。 9但是,目前国内有关光伏技术的书籍和资料大多是介绍太阳电池、蓄电池等器件原理和应用方面的基本知识,而系统阐述太阳能光伏电源系统集成设计和配套电子设备(光伏电源控制器、方波或正弦波逆变器及系统检测仪器等)应用的专业资料却很少。10因此,北京市计科能源新技术开发公司根据多年来从事光伏电源系统集成设计、工程安装和配套电子设备生产的经验,组织编写了这本培训教材,试图帮助广大从事太阳能光伏行业的技术人员系统学习掌握光伏系统集成设计和配套电子设备的应用,更好地发展我国的光伏事业。

风能基础选择题解析

风能基础 1以下选项中不是风形成的必要元素是(D) A、太阳光照射 B、海洋陆地温差 C、地球自转 D、地球公转 2、测量风速时最简易、耗电量最低、受地区条件限制最小的测风装置是( A ) A、机械风速仪 B、超声波风速仪 C、激光测风仪 D、利用超级电脑计算 3、下列描述中,形容风机工作时能量转换正确的是( A ) A、风能-动能-机械能-电能 B、风能-机械能-动能-电能 C、风能-电能-光能-机械能 D、风能-光能-机械能-电能 4、下面不属于桨叶功率控制的是( D ) A、最佳速度系统 B、变桨距风机 C、主动失速风机 D、被动失速风机 5、风能的大小与风速的成正比。(B) A、平方; B、立方; C、四次方; D、五次方。 6、风能是属于的转化形式。(A) A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 7、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。(D) A、平均功率; B、最大功率; C、最小功率; D、额定功率。 8、风力发电机开始发电时,轮毂高度处的最低风速叫。(D) A、额定风速; B、平均风速; C、切出风速; D、切入风速。 9、风能的大小与空气密度。(A) A、成正比; B、成反比; C、平方成正比; D、立方成正比。 10、按照年平均定义确定的平均风速叫。(C) A、平均风速; B、瞬时风速; C、年平均风速; D、月平均风速。 11、风力发电机达到额定功率输出时规定的风速叫。(B) A、平均风速; B、额定风速; C、最大风速; D、启动风速。 12、风力发电机组开始发电时,轮毂高度处的最低风速叫。(B) A、启动风速; B、切入风速; C、切出风速; D、额定风速。 13、给定时间内瞬时风速的平均值叫做该时间段内的。(C) A、瞬时风速; B、月平均风速; C、平均风速; D、切出风速。 14、风力发电机组规定的工作风速范围一般是。 (C) A、0~18m/s; B、0~25m/s; C、3~25m/s; D、6~30m/s。 15、风力发电机电源线上,并联电容器组的目的是。(C) A、减少无功功率; B、减少有功功率; C、提高功率因数; D、减少由有功功率。 16、年有效风功率密度大于200W/m2,3~20m/s风速的年累计小时数大于5000h、年平均风速大于6m/s的地区是。(A) A、风能资源丰富区; B、风能资源次丰富区; C、风能资源可利用区; D、风能资源贫乏区。 17、风力发电机组最重要的参数是和额定功率。(B) A、风轮转速; B、风轮直径; C、额定风速; D、高度。 18、风力发电机工作过程中,能量的转化顺序是。(A) A、风能—动能—机械能—电能; B、动能—风能—机械能—电能; C、动能—机械能—电能—风能; D、机械能—风能—动能—电能。 19、如下图,为某风场一天的风玫瑰图,则该天的主导风向为。(A)

光伏发电知识普及篇

光伏发电基础知识一、光伏发电的概念 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变 为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 二、光伏发电的原理 光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,空穴由P极区往N极区移动,电子由N极区向P极区移动,形成电流。 光电效应就是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。 多晶硅经过铸锭、破锭、切片等程序后,制作成待加工的硅片。在硅片上掺杂和扩散微量的硼、磷等,就形成P-N结。然后采用丝

网印刷,将精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂一层防反射涂层,电池片就至此制成。电池片排列组合成电池组件,就组成了大的电路板。一般在组件四周包铝框,正面覆盖玻璃,反面安装电极。有了电池组件和其他辅助设备,就可以组成发电系统。为了将直流电转化交流电,需要安装电流转换器。发电后可用蓄电池存储,也可输入公共电网。发电系统成本中,电池组件约占50%,电流转换器、安装费、其他辅助部件以及其他费用占另外50%。 光伏发电原理图 三、光伏发电系统分类 (一)独立光伏发电 独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。 (二)并网光伏发电 并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转 换成符合市电电网要求的交流电之后直接接入公共电网。 可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并

相关文档
最新文档