运放组成电压跟随器_要注意的问题

运放组成电压跟随器_要注意的问题
运放组成电压跟随器_要注意的问题

用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。

(电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。

电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。

在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。

电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。)

图一

Q.用电压跟随器使运算放大器保持稳定,须注意哪些问题?

A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。

运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出

端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。

2.输入输出端出现相位差的主要原因

其原因大致可分为两种:

1,由于运算放大器固有的特性

2,由于运算放大器以外的反馈环路的特性

2.1.运算放大器的特性

Fig2a及Fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。数据手册中也有这两张曲线图。

如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0dB),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。

反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。

为此,当环路增益为0dB时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。

如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。

注:数据手册注明「建议使用6dB以上的增益」的放大器,不可用作电压跟随器。

2.2.运算放大器周边电路对反馈环路的影响

在实际应用中,构成电压跟随器并非象Fig1.那样简单地将输入端和输出端直接连接在一起。至少输出端是与某个负载连接在一起的。因此,必须考虑到该负载对放大器的影响。

例如,如Fig3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。

(Fig2b.所示之状态可能变化为Fig2c所示之状态)这时,环路增益在输出电阻和C的作用下降低。同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。单纯地在输出端和接地之间连接电容,构成电压跟随器时,每种运算放大器之间的稳定性存在差异。Fig4.为输入端需要保护电阻的运算放大器可能发生的问题。

为解决Fig3.出现的问题,可采用Fig5.(a)、(b)所示之方法。(a)图中插入R,消除因CL而产生的反馈环路相位滞后。(在高频区,R作为运算放大器的负荷取代了CL而显现出来。)(b)则用C1来消除CL 造成的相位滞后。

为解决Fig4.的问题,则可在输入保护电阻上并联一个尺寸适当的电容。一般被叫做“输入电容取消值”的近似值约为10pF~100pF。

电压跟随器的作用

电压跟随器的作用 电压跟随器是用一个三极管构成的共集电路,它的电压增益是一,所以叫做电压跟随器。那么电压跟随有什么作用呢?共集电路是输入高阻抗,输出低阻抗,这就使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。你可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路,当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。所以,电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时也称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点,在电路中起阻抗匹配的作用。举一个应用的例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压跟随器 电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,

一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在HI-FI-(高保真),电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。 在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,

电压跟随器全解

电压跟随器全解 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

电压跟随器(共集电极电路)电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。 那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗匹配,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。 电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点。 电压跟随器的输入阻抗高、输出阻抗低特点,可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路;当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。

一.LED点阵书写显示屏 光笔电路主要就是一个门限可调的比较器[5],具体电路图如图6所示。 在图6的光笔电路图中,运放AR4组成一同向放大电器,将采集的电压放大2倍,之所以要将信号放大2倍,主要是在设计光敏二极管探头时,已经在探头上套了一层黑色的橡胶管,放大倍数和探头陷入橡胶管的深度有关,在测试中发现放大2倍时效果是最好的。运放AR2组成的电路就是一个比较器,而且这个比较器的门限电压可以通过调节R5改变,以适应环境光线的改变。在放大器和比较器的输出端都设计了一个跟随器,进一步减小下级电路对前级电路的影响。 图15作品展示图 二.红外车辆检测电路 红外车辆检测电路原理已经在前面做了详细的叙述,电路如图3-2所示: 图3-2红外车辆检测电路 三.音频功率放大器 人耳朵听觉的范围是2HZ~20KHZ,称之为可听声,单只喇叭要覆盖这么宽的频带范围,并且要很好的兼顾高低频两端的延伸、达到低失真、高瞬态、大功率承载能力的话是不可能的,所以就需要分频了,一般低音在300HZ以下,中音在300HZ~3KHZ,高音在3KHZ以上,本作品就是按照2HZ~300HZ,300HZ~3KHZ,大于3KHZ三个频率段来做的。分频电路主要是由RC滤波器和比例放大器组成。工作过程如下:音源器材输入的较微弱信号经过比例放大器后,放大到一定的程度(此放大是对整个信号进行放大),再进行分频。因为信号是由高、中、低频混在一起的,为了达到把原音还原出来的效果,就必须把三个频率段分离出来。分频以后还有一个信号放大电路,作用是将分频后的信号进行放大。这样就可以对高、中、低音进行分别放大,以求达到不同的听觉效果。原理图如下:

三运放组成的仪表放大器电路分析

三运放组成的仪表放大器电路分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 ?。其输入偏置电流也应很低,典型值为 1 nA至 50 nA。与运算放大器一样,其输出阻抗很低, 在低频段通常仅有几毫欧(m?)。运算放大器的闭环增益是由其反向输入端和输 出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施 加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。 使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 = R3,R2 = R4,则VOUT = (VIN2—VIN1)(R2/R1) 这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于 100 k?,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 k?。因此,当电压施加到一个输入端而另一端接

地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于 1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有 0.1% 失配,其CMR便下降到 66 dB(2000:1)。同样,如果源阻抗有 100 ?的不平衡将使CMR下降 6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和 A2)时, 它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

电源反馈端加电压跟随器的作用

电源反馈端加电压跟随器的作用 电压跟随器输入阻抗很大,输出阻抗很小,这样可以把采样电阻从反馈环路参数中分离出去. < Q3>今天听同学的答辩,发现自己最基本的跟随器、同相放大、反向放大都要分不清了,总结一下。 一、反相比例运算电路 反相比例运算电路如图所示。输入电压通 过电阻R作用于集成运放的反相输入端,故输 出电压与反相;电阻跨接在集成运 放的输出端和反相输入端,引入了电压并联负 反馈;同相输入端通过电阻接地,为补 偿电阻,以保证集成运放输入级差分放大电路 的对称性,其值为=0时反相输入端总等效 。 电阻,即=R//R f 根据理想运放在线性区“虚短路”和“虚断路” 的特点有: =0(p、n电压虚短) ip=in=0 (p、n电流虚短) 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称之为“虚地”。节点N的电流方程为 由于N点虚地(=0),整理得出 与成比例关系,比例系数为,负号表示与反相。 该电路的闭环电路放大倍数为:/= 若,则1,即,这时电路为倒相器。 二、同相比例运算电路 将反相比例运算电路中的输入端和接地端互 换,就得到同相比例运算电路,如图所示。电 路引入电压串联负反馈,故运放工作在线性区。 根据“虚短”和“虚断”的概念,集成运 放的净输入电压为零。即 说明集成运放有共模输入电压。净输入电流为 零(即),因而,即 表明与同相且大于。 同相比例运算电路具有高输入电阻、低输出电阻的优点,但有共模输入,所以为了提高运算精度,应当选用高共模抑制比的集成运放。 三、电压跟随器 如图所示,若将输出电压的全部反馈到反相输入端,就构成电压跟随器。电路引入了电压串联负反馈,其反馈系数为1。由于,故输出电压与输入电压的关系为Uo=Ui 理想运放的开环差模增益为无穷大,因而电压跟随器具有比射极输出器(共

电压跟随器全解完整版

电压跟随器全解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电压跟随器(共集电极电路) 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。 那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗匹配,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。 电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点。 电压跟随器的输入阻抗高、输出阻抗低特点,可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路;当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。 一.LED点阵书写显示屏 光笔电路主要就是一个门限可调的比较器[5],具体电路图如图6所示。

在图6的光笔电路图中,运放AR4组成一同向放大电器,将采集的电压放大2倍,之所以要将信号放大2倍,主要是在设计光敏二极管探头时,已经在探头上套了一层黑色的橡胶管,放大倍数和探头陷入橡胶管的深度有关,在测试中发现放大2倍时效果是最好的。运放AR2组成的电路就是一个比较器,而且这个比较器的门限电压可以通过调节R5改变,以适应环境光线的改变。在放大器和比较器的输出端都设计了一个跟随器,进一步减小下级电路对前级电路的影响。 图15 作品展示图 二.红外车辆检测电路 红外车辆检测电路原理已经在前面做了详细的叙述,电路如图3-2所示: 图3-2 红外车辆检测电路 三.音频功率放大器 人耳朵听觉的范围是2HZ~20KHZ,称之为可听声,单只喇叭要覆盖这么宽的频带范围,并且要很好的兼顾高低频两端的延伸、达到低失真、高瞬态、大功率承载能力的话是不可能的,所以就需要分频了,一般低音在300HZ以下,中音在300HZ~3KHZ,高音在 3KHZ以上,本作品就是按照2HZ~300HZ,300HZ~3KHZ,大于3KHZ三个频率段来做的。分频电路主要是由RC滤波器和比例放大器组成。工作过程如下:音源器材输入的较微弱信号经过比例放大器后,放大到一定的程度(此放大是对整个信号进行放大),再进行分频。因为信号是由高、中、低频混在一起的,为了达到把原音还原出来的效果,就必须把三个频率段分离出来。分频以后还有一个信号放大电路,作用是将分频后的信号进行放大。这样就可以对高、中、低音进行分别放大,以求达到不同的听觉效果。原理图如下:

运放作为跟随器时负反馈上加电阻会起什么作用

运放作为跟随器时,负反馈上加电阻会起什么作用 作者:飞行的UPS 经验分享:信号源内阻较大时,添加阻值与信号源内阻相同的反馈电阻,可以减少输出失调电压,提高精度。 请问何种信号源或者输出是什么状况下跟随器需要使用电阻呢?使用多大阻值? 答:信号源内阻较大时,添加阻值与信号源内阻相同的反馈电阻,可以减少输出失调电压,提高精度。

R2的作用是为了防止输出意外接地,导致OP损坏,R3起限流作用,再加上嵌位二极管效果更好。 两种电压跟随器的理想闭环增益都等于一。 在电压跟随器中,共模抑制比的影响将加强。此外,同相端到信号源之间不接电阻对减小定态误差是有利的。 但是,当这个匹配电阻取零,则要求反馈电阻为零,在发生堵塞现象时,反馈回路中电流较大,不利于输入级的保护。所以,在使用中应注意。 加有反馈电阻的跟随器,在电路发生“堵塞”时,对电路有一定的限流保护作用,这是它的优点。但定态误差增大了些。 【注】何为“堵塞”? 电压跟随器本来就是同相运算放大器,同相运算放大器的共同特点之一是同相端和反相端加有共模电压。 一旦这个共模电压超过所允许的共模输入电压范围,假如,反相端信号过大,则会导致输入级晶体管饱和,反相端信号直接加到运放的第二级,使得该反相端的输入性质发生改变,成为同相输入,即负反馈变成了正反馈,输出信号通过反馈回路导致输入级晶体管进一步饱和。这样的结果,放大器当然不在正常工作状态了。既使撤销输入信号,也不会立即恢复到正常状态。这种现象,称作堵塞。 当发生堵塞现象时,若反馈回路电阻又不够大,反馈回路的电流有可能烧毁输入级的晶体管,甚至危害第二级。 为了避免发生堵塞现象,除了选用共模输入电压范围大的运放以外,常常在放大器的输入端加箝位电路,用以保证输入端共模电压不超出运放允许的范围。 当然,堵塞并不是同相运算放大器的专利。在小信号的反相运算放大器中,特别在积分运放之类具有电容元件的电路中,也有可能发生堵塞现象。处理方法与同相放大器类同。

模电复习题

第一章 1、下面那个不是本征半导体的性质________。 A、光敏性 B、单向导电性 C、热敏性 D、掺杂性 2、在半导体中掺入三价元素后得半导体为() A、本征半导体 B、P型半导体 C、 N型半导体 D、半导体 3、在P型半导体中,多数载流子为________,N型半导体的多数载流子为________。 A、空穴空穴 B、自由电子自由电子 C、空穴自由电子 D、自由电子空穴 4、平衡PN结(未加外部电压时)的扩散电流________漂移电流。 A、大于 B、等于 C、小于 5、在本征半导体中,自由电子浓度________空穴浓度。 A、大于 B、小于 C、等于 D、不等于 6、二极管的反向最高工作电压为100V,它的击穿电压是________。 A、50V B、100V C、200V 7、半导体二极管的最主要特性是________。 A、单向导电性 B、温度特性 C、击穿特性 D、导通后管压降不变特性 8、两个稳压值不同的稳压二极管采用不同的方式串联使用,可以组成的稳压值有________。 A、两种 B、三种 C、四种 D、五种 9、温度升高时,下面关于三极管的参数变化描述错误的是________。 A、β增大 B、I CBO增大 C、UBE增大 D、I C增大 10、稳压二极管稳压时,其工作在________。 A、反向击穿区 B、正向导通区 C、反向截止区 D、正向截止区 11、由理想二级管组成的电路如图所示,其A、B两端的电压为_______。 A.-12V B.+6V C.-6V D.+12V 12、当温度升高时,二极管的反向饱和电流将________。 A、减小 B、增大 C、不变 D、不能确定 13、杂质半导体中,少子的浓度取决于________。 A、温度 B、掺杂工艺 C、杂质浓度 D、晶体缺陷 14、PN结加正向电压时,空间电荷区将________。 A、变窄 B、变宽 C、基本不变 15、图示电路中,D 为理想二极管,则 A、B 两端电压U AB为_________ A. -12V B. -6V C. 12V D.6V

由运放组成的VI IV变换电路

由运放组成的V/I、I/V变换电路 1、0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi 与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I 转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以 V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf =Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实

《电工电子技术基础》试习题库

《电工电子技术》课程复习资料 一、填空题: 1.正弦交流电的相量表示具体有有效值相量和最大值相量两种形式。 2.一阶电路暂态过程三要素法的表达式。 3.变压器有三大作用,分别是变压_、_变流_和_变换阻抗_。 结具有单向导电性,可描述为正偏导通、反偏截止。 5.以比较的风格分类,电压比较器有单限比较、滞回比较和窗口比较。 6.基本的逻辑关系是逻辑与、逻辑或和逻辑非。 7.“触发”是指给触发器或时序逻辑电路施加时钟(脉冲)信号。 8.电路的主要作用是传输、分配和控制电能和传送、处理电信号。 9.负载功率因数过低的后果是增大输电线路损耗和使供电设备不被充分利用。 10.三相同步发电机的基本构成是定子和转子。 11.电容和电感储能的数学表达式是和。 12.低压供电系统的接线方式主要有树干式和放射式。 13.实际变压器存在两种损耗,分别是铜耗和铁耗。

14.已知三相异步电动机的工频为50HZ,五对磁极,则同步转速为600r/min。 15.变压器的主要构成部件是绕组和铁芯。 16.已知三相异步电动机的工频为50HZ,四对磁极,则同步转速为750r/min。 17.晶体三极管的两个PN结分别是发射结和集电结。 18.要使晶体三极管处于截止状态,其偏置方法是使发射结反偏集电结反偏。 19.反相比例运算关系是.,同相比例运算关系是。 20.多发射极管的作用是实现与运算、提高(逻辑)转换速度。 21.翻转是指触发器在时钟脉冲到达后形成与初态相反的次态。 22.我国规定的电力网特高压额定值有330kV、500kV和1000kV。 23.理想变压器的变压公式是。 24.已知三相异步电动机的工频为50HZ,三对磁极,则同步转速为1000r/min。 25.晶体三极管有三种工作状态,分别为放大、截止和饱和。 26.放大电路的耦合方式有阻容耦合、变压器耦合和直接耦合。 27.负反馈对放大电路性能的影响有稳定电压放大倍数、拓展频宽、改善非线性失真和改变输入输出阻抗。

电压跟随器

电压跟随器实验测试 1. 原理及作用:电压跟随器具有很高的输入阻抗和很低的输出阻抗,是最常用的阻抗变换和匹配电路。电压跟随器常用作电路的输入缓冲级和输出缓冲级,如图所示。作为整个电路的高阻抗输入级,可以减轻对信号源的影响。作为整个电路的低阻抗输出级,可以提高带负载的能力。 由于集成运放具有极高的开环增益,所以集成运放电压跟随器的性能非常接近理想状态,并且无外围元件,无须调整,这是晶体管电压跟随器(射级跟随器)所无法比拟的。集成运放电压跟随器得到了越来越广泛的应用。 集成运放电压跟随器电路如图所示。它实际上就是Rf=0,R1=∞,反馈系数F=l时的同相输入放大器。由于集成运放本身的高增益特性,用集成运放构成的电压跟随器具有极高的输入阻抗,几乎不从信号源汲取电流,同时具有极低的输出阻抗,向负裁输出电流时几乎不在内部引起电压降,可视为电压源。

电压跟随器的等效电路: 若在同相放大器中的置R1=∞和R2=0,就是成为单位增益放大器,或电压跟随器如图1.8(a)所示。值得注意的是,这个电路有运算放大器和将输出完全反馈到输入的一根导线所组成。这种闭环参数是: 等效电路如图(b)所示,作为一个电压放大器,这个跟随器并没有尽职,因为它的增益仅仅为1。然而,它的特长是起到一个阻抗变换的作用。因为从它的输入看进去,它是一个开路;而从它的输出端看进去是短路,源值为V0=Vi。 为了领会这个特点,现在考虑一个源,其电压为Vs,要将其跨接在某一个负载

RL上。如果这个源始理想的,那么要做的就是用一根导线将两者连接起来。然而,就是这个源有非零输出电阻Rs,如下图(a)所示,那么Rs和RL将构成电压分压器,VL的幅度一定会小于Vs的幅度,这是由于在Rs上的压降关系。现在用一个电压跟随器来替换这跟导线如图(b)所示,因为这个跟随器有Ri=∞,在输入端部存在加载,所以VI=VS。再者,因为跟随器有Ro=0,从输出端口也不存在加载,所以VL=VI=VS,这表明现在RL接受了全部原电源电压而且无任何损失。因此,这个电压跟随器的作用就是在源和负载之间起到一个缓冲作用。 还能观察到,现在源没有输送出任何电流,所以也不存在功率损耗,而在上图(a)电路中却存在。由RL所吸收的电流和功率现在是由运算放大器提供的,而则个还是从运算放大器的电源取得的,不过在图中并没有明确表示出来。因此,除了将UL完全恢复到VS值之外,跟随器还免除了Vs提供任何功率。 2.实验器材: (1):函数信号发生器(2):双踪示波器 (3):UA741 (4):直流稳压电源(+12V,-12V)(5):导线若干 3.性能测试: (1)测量电压放大倍数Au 在IN+端接入不同正弦信号,调输入信号幅度,用示波器测量输出端的信号频率及幅度,在不失真情况下,通过公式Au=Vo/Vi计算增益。测量数据计入下表。 (2)根据以上结果,分析设计跟随器的跟随特性。

第5章 放大电路-题库

第5章放大电路—题库 5.1 共发射级放大电路 选择题: 1.如图,若将R B减小,则集电极电流I C (B) A. 减小 B.增大 C.不变 正确答案是B,本题涉及的知识点是:放大电路的静态分析。 2.如图,若将R B减小,则集电极电位V C (A) A. 减小 B.增大 C.不变 正确答案是A,本题涉及的知识点是:放大电路的静态分析。 3.如图,晶体管原处于放大状态,若将R B调到零,则晶体管(C) A. 处于饱和状态 B. 仍处于放大状态 C.被烧毁 正确答案是C,本题涉及的知识点是:放大电路静态工作点的移动。 4.共射放大电路中,u o与u i、u o与i c、i b与i c的相位关系是:(B) A. 同相;反相;相位任意 B. 反相;反相;同相

C. 反相;反相;反相 正确答案是B,本题涉及的知识点是:放大电路中的各个交流分量的相位关系。 5.共发射级放大电路中,正确的是( B ) A. 有电流放大作用,没有电压放大作用 B. 有电流放大作用,也有电压放大作用 C. 没有电流放大作用,也没有电压放大作用 正确答案是B,本题涉及的知识点是:放大电路的放大作用。 6.放大电路的输入电阻是(A) A.越大越好 B.越小越好 C.大小没多大关系 正确答案是A ,本题涉及的知识点是:对放大电路的输入电阻的理解。 7.放大电路的输出电阻是(B) A.越大越好 B.越小越好 C.大小没多大关系 正确答案是B,本题涉及的知识点是:对放大电路的输出电阻的理解。 8.饱和失真表现为输出信号的(B) A.正半周被削 B. 负半周被削 C. 正负半周均被削 正确答案是B,本题涉及的知识点是:饱和失真。 9.截至失真表现为输出信号的(A) A.正半周被削 B. 负半周被削 C. 正负半周均被削 正确答案是A,本题涉及的知识点是:截至失真。 10.当共射放大电路出现了饱和失真时,可采用下述方法避免(A) A.增大R B B. 减小R B C. 增大R C D. 减小R C 正确答案是A ,本题涉及的知识点是:饱和失真。 11.画放大电路的直流通路时,电路中的电容应(A) A. 断开 B. 视为短路 正确答案是A,本题涉及的知识点是:直流通路画法。 12.画放大电路的交流通路时,电路中的电容应(B) A. 断开 B. 视为短路 正确答案是B,本题涉及的知识点是:交流通路画法。 13.若放大电路的静态工作点选得过高,容易产生何种失真。(A) A. 饱和失真 B. 截止失真 C.双向失真 正确答案是A,本题涉及的知识点是:饱和失真知识。 14.若放大电路的静态工作点选得过低,容易产生何种失真。(B) A. 饱和失真 B. 截止失真 C.双向失真 正确答案是B,本题涉及的知识点是:截至失真知识。

【精品】模拟电子技术基础学习指导与习题解答谢红主编第六章思考题与习题解答

第六章思考题与习题解答 6—1要满足下列要求,应引入何种反馈? (1)稳定静态工作点; (2)稳定输出电压; (3)稳定输出电流; (4)提高输入电阻; (5)降低输入电阻; (6)降低输出电阻、减小放大电路对信号源的影响; (7)提高输出电阻、提高输入电阻。 目的复习引入反馈的原则。 解(1)欲稳定静态工作点应引入直流负反馈,因为静态工作点是个直流问题。 (2)稳定输出电压应引入电压负反馈。输出电压是交流参量,电压负反馈属于交流反馈组态。在四种交流负反馈组态中,电压串联负反馈和电压并联负反馈

均能达到稳定输出电压的目的。 (3)稳定输出电流应引入电流负反馈。输出电流也是交流参量,在四种组态中,引电流串联负反馈或电流并联负反馈均可. (4)提高输入电阻应引入串联负反馈,如电压串联负反馈或者电流串联负反馈。 (5)降低输入电阻应引入并联负反馈,如电压并联负反馈或者电流并联负反馈。 (6)降低输出电阻、减小放大电路对信号源的影响是一个减小输出电阻并提高输入电阻的问题,应引入电压串联负反馈。 (7)输入、输出电阻均提高应引入电流串联负反馈。 6—2负反馈放大电路为什么会产生自激振荡?产生自激振荡的条件是什么? 解在负反馈放大电路中,如果把负反馈引的过深会将负反馈变成正反馈,于是自激振荡就产生了.产生自激振荡的条件是 1 AF=-幅度条件 AF=相位条件arg AF=±(2n+1)π,n为整数 1

或者附加相移φ ?=±180° 6—3判断下列说法是否正确,用√或×号表示在括号内。 (1)一个放大电路只要接成负反馈,就一定能改善性能。() (2)接入反馈后与未接反馈时相比,净输入量减小的为负反馈.() (3)直流负反馈是指只在放大直流信号时才有的反馈;() 交流负反馈是指交流通路中存在的负反馈.(). (4)既然深度负反馈能稳定放大倍数,那么电路所用各个元件都不必选用性能稳定的。() (5)反馈量越大,则表示反馈越强。() (6)因为放大倍数A越大,引入负反馈后反馈越强,所以反馈通路跨过的级数越多越好。() (7)负反馈放大电路只要在某一频率变成正反馈,就一定会产生自激振荡.() (8)对于一个负反馈放大电路,反馈系数F越大,越容易产生自激振荡。(

运放组成的VIIV变换电路

由运放组成的V/I、I/V变换电路(☆☆☆) 2011/06/07 18:41 来自:电子开发网 1、 0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi 与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA 的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、 0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL= Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi 满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、 1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】

反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。

运放组成电压跟随器-要注意的问题

用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 (电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多

数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。) 图一 Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原

用运放构成电压跟随器应注意的几个问题

题外话:用运放构成电压跟随器的电路,传统教科书仅就是简单的把输出与反相输入端连接起来 完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文就是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 ( 电压跟随器,顾名思义,就就是输出电压与输入电压就是相同的,就就是说,电压跟随器的电压放大 倍数恒小于且接近1。 电压跟随器的显著特点就就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆就 是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电 阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器 的另外一个好处就就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的 电容提供了前提保证。 电压跟随器的另外一个作用就就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路就是不能很好的工作的。但就是由于引入了 大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除 大环路负反馈的带来的弊端。但就是,由于放大器的末级的工作电流变化很大,其失真度很难保证。 ) 图一 Q、用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(Fig1、) 运算放大器理想的运行状态就是输出电压与输入电压为同相,即,当负输入端的

电压跟随器电路

电压跟随器电路: 电路特点:输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小. 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。 那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 共集电极放大电路: 共集电极放大电路,输入信号是由三极管的基极与发射极两端输入的(在原图里看),再在交流通路里看,输出信号由三极管的发射极两端获得。因为对交流信号而言,(即交流通路里)集电极是共同端,所以称为共集电极放大电路。 共集电极放大电路具有以下特性: 1、输入信号与输出信号同相; 2、无电压放大作用,电压增益小于1且接近于1,因此共集电极电路又有“电压 跟随器”之称; 3、电流增益高,输入回路中的电流iB<<输出回路中的电流iE和iC; 4、有功率放大作用; 5、适用于作功率放大和阻抗匹配电路。 6、在多级放大器中常被用作缓冲级和输出级。

为什么说这个是“共集电极放大电路”?集电极不是在上面吗?哪里共了?“输入电压从基极对地(集电极)之间输入,输出电压从发射极对地(集电极)之间取出”集电极怎么就变成地了? 一说“共”指的就是对于交流信号而言的。你把第一个图的交流等效电路画出来就明白了,共集电极电路的定义就是,在交流等效电路里,集电极作为输入输出的公共端,也就是地。集电极在上面,接的是个直流电压Vcc,它在交流等效电路里面,电压不起作用,而输出端是从发射极输出(uo取自发射极),所以集电极对于信号的输出不会有影响,跟地的效果是一样的,相当于一个强制接地,所以是从基极输入,从发射极取出信号,以集电极为公共。

使用运放构成电压跟随器的稳定性问题

[转载]使用运放构成电压跟随器的稳定性问题[转载]使用运放构成电压跟随器的稳定性问题题外话: a: 对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(fig 1.) 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。 fig 1.电压跟随器和反馈环路 2.输入输出端出现相位差的主要原因 其原因大致可分为两种: 1,由于运算放大器固有的特性 2,由于运算放大器以外的反馈环路的特性 2.1.运算放大器的特性 fig2a及fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。 数据手册中也有这两张曲线图。

如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0db)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0db),那么,即使相位变化 180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。 反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。 为此,当环路增益为0db时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。(fig2b.) 如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。注: 数据手册注明「建议使用6db以上的增益」的放大器,不可用作电压跟随器。 2.2.运算放大器周边电路对反馈环路的影响 在实际应用中,构成电压跟随器并非象fig 1.那样简单地将输入端和输出端直接连接在一起。 至少输出端是与某个负载连接在一起的。因此,必须考虑到该负载对放大器的影响。 例如,如fig 3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。 (fig2b.所示之状态可能变化为fig2c所示之状态)这时,环路增益在输出电阻和c的作用下降低。同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。单纯地在输出端

相关文档
最新文档