乘用车离合器设计

乘用车离合器设计
乘用车离合器设计

1

辽宁工程技术大学

课程设计

题目:乘用车离合器设计

班级:机械12-5

姓名:汪涛

指导教师:曹艳丽

完成日期:2016/1/21

设计任务书

一、设计内容

已知乘用车总质量 1.4T,其动力系统采用的发动机最大功率输出P e max为76kW/6000r,最大输出转矩T e m a x为131Nm/4200r/min。试对该乘用车的离合器进行设计。

二、上交材料

(1) 设计图纸

(2) 设计说明书(5000字左右,无图纸不少于8000字)

三、进度安排(参考)

(1) 熟悉设计任务,收集相关资料

(2) 拟定设计方案

(3) 绘制图纸

(4) 编写说明书

(5) 整理及答辩

四、指导教师评语

成绩:

指导教师

日期

摘要

对于内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连接的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构和操作机构等四部分。

通过课程设计,对轿车离合器的结构、从动盘总成、压盘和离合器盖总成及膜片弹簧的设计有比较深入的熟悉并掌握。通过查阅文献、上网查阅资料,了解汽车离合器的基本工作原理,结构组成及功能;通过对车型分析,路况分析和型式分析,制定出总体设计方案。

目录

1离合器方案的确定 (1)

1.1从动盘数的选择:单片离合器 (1)

1.2压紧弹簧和布置形式的选择:拉式膜片弹簧离合器 (1)

1.3膜片弹簧的支撑形式选择:双支承环形式 (2)

1.4扭转减振器 (2)

1.5膜片弹簧离合器的工作原理 (2)

2离合器基本参数的确定 (3)

2.1后备系数β (4)

2.2单位压力P0 (4)

2.3摩擦片外径D、内径d和厚度b (5)

2.4摩擦因数f、摩擦面数Z和离合器间隙△t (7)

2.5离合器摩擦力据Tc和单位压力po的计算 (7)

3离合器零件的结构选型及设计 (8)

3.1从动盘总成设计 (8)

3.1.1从动盘总成的结构型式的选择 (8)

3.1.2从动片结构型式的选择 (9)

3.1.3从动盘毂的设计 (9)

3.2离合器盖总成设计 (11)

3.2.1离合器盖设计 (11)

3.2.2压盘设计 (12)

3.3离合器分离装置设计 (12)

3.3.1分离轴承和分离套筒 (12)

3.4膜片弹簧的设计 (13)

3.4.1膜片弹簧基本参数的选择 (13)

3.4.2膜片弹簧基本参数约束条件的检验 (15)

3.4.3膜片弹簧材料及制造工艺 (16)

3.5扭转减振器 (16)

3.5.1扭转减振器的功用 (16)

3.5.2减振器的结构设计 (17)

4离合器输出轴的设计 (19)

1离合器方案的确定

1.1从动盘数的选择

选择单片离合器。单片离合器只设有一个从动盘,结构简单,轴向尺寸紧凑。这种离合器散热性能好,维修调整方便,并且从动部分转动惯量小,在使用时能够保证分离彻底,当采用轴向有弹性的从动盘时可以保证接合平顺。各种乘用车的发动机的最大转矩一般都不大,不超过1000N*m,因而在布置条件容许的条件下,大多采用单片离合器。

1.2压紧弹簧和布置形式的选择

选用拉式膜片弹簧离合器。

(1)膜片弹簧离合器与其他形式的离合器相比,有如下优点:

●膜片弹簧具有较理想的非线性弹性特性,弹簧压力在摩擦

片的允许磨损范围内基本保持不变,因而离合器工作中能保持传递的转矩大致不变;相对圆柱螺旋弹簧,其压力大大下降,离合器分离时,弹簧压力有所下降,从而降低了踏板力。对于圆柱螺旋弹簧,其压力则大大增加。

●膜片弹簧兼起压紧弹簧和分离杠杆的作用,结构简单、紧

凑,轴向尺寸小,零件数目少,质量小。

●高速旋转时,弹簧压紧力降低少,性能较稳定;而圆柱螺

栓弹簧压紧力则明显下降。

●膜片弹簧以整个圆周与压盘接触,使压力分布均匀,摩擦

片接触良好,磨损均匀。

●易于实现良好的通风散热,使用寿命长。

●膜片弹簧中心与离合器中心线重合,平衡性好。

(2)拉式膜片弹簧离合器是目前汽车离合器中比较流行的新结构.尽管它有结构复杂和拆装较困难的缺点,但因其优越的综合性能,目

前在各种汽车中的应用日益广泛。

1.3膜片弹簧的支撑形式

拉式膜片弹簧的支承结构形式主要有单支承环形式和无支承环形式。

本次设计采用的是单支承环形式,将膜片弹簧大端支承在离合器盖中的支承环上。膜片弹簧离合总成由膜片弹簧、离合器盖、压盘、传动片和分离轴承总成等部分组成。

1.4扭转减振器

它能降低发动机曲轴与传动系接合部分的扭转刚度,调谐传动系扭振固有频率,增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的瞬态扭振,控制动力传动系总成怠速时离合器与变速器的扭振与噪声,缓和非稳定工况下传动系的扭转冲击载荷和改善离合器的接合平顺性。故要有扭转减振器。

1.5膜片弹簧离合器的工作原理

由下图可知,离合器盖与发动机飞轮用螺栓紧固在一起,当膜片弹簧被预加压紧,离合器处于接合位置时,由于膜片弹簧大端对压盘的压紧力,使得压盘与从动摩擦片之间产生摩擦力。当离合器盖总成随飞轮转动时(构成离合器主动部分),就通过摩擦片上的摩擦转矩带动从动盘总成和变速器一起转动以传递发动机动力。

要分离离合器时,将离合器踏板踏下,通过操纵机构,使分离轴承总成前移推动膜片弹簧分离,使膜片弹簧呈反锥形变形,压盘在传动片的弹力作用下离开摩擦片,切断了发动机动力的传递。

2离合器基本参数的确定

摩擦离合器是靠存在于主、从动部分摩擦表面间的摩擦力矩来传递发动机转矩的。离合器的静摩擦力矩为:

c fFZR T =c (2-1)

式中,f 为摩擦面间的静摩擦因数,计算式一般取0.25-0.30;F 为压盘施加在摩擦面上的工作压力;为摩擦片的平均摩擦半径;Z 为摩擦面数,单片离合器的Z=2,双片离合器的Z=4。

为了保证离合器在任何工况下都能可靠地传递发动机的最大转矩,设计时应大于发动机最大转矩,即

emax T T C β= (2-2)

式中,为发动机最大转矩;β为离合器的后备系数,定义为离合器所能传递的最大静摩擦力矩与发动机最大转矩之比,β必须大于1

2.1 后备系数β

后备系数β是离合器设计中的一个重要参数,它反映了离合器传递发动机最大转矩的可靠程度。在选择β时,考虑到摩擦片在使用中磨损后仍能可靠地传递发动机最大转矩、防止离合器滑磨时间过长、防止传动系统过载以及操纵轻便等因素。因此,在选择β时应考虑以下几点:

● 为可靠传递发动机最大转矩,β不宜选取太小;

● 为减少传动系过载,保证操纵轻便,β又不宜选取太大; ● 当发动机后备功率较大、使用条件较好时,β可选取小些; ● 当使用条件恶劣,为提高起步能力、减少离合器滑磨,β应选取大些;

● 汽车总质量越大,β也应选得越大;

● 柴油机工作比较粗暴,转矩较不平稳,选取的β值应比汽油机大些;

● 发动机缸数越多,转矩波动越小,β可选取小些;

●膜片弹簧离合器选取的β值可比螺旋弹簧离合器小些;

●双片离合器的β值应大于单片离合器。

各类汽车离合器β的取值范围见表2-1。

表2-1 离合器后备系数β的取值范围

车型后备系数β

乘用车及最大质量小于6t的商用

1.20-1.75

最大总质量为6-14t的商用车 1.50-2.25

挂车 1.80-4.00 本次课程设计的对象为乘用车,故本次课程设计的后备系数β范围为1.20-1.75,

初取β=1.5

2.2 单位压力P0

单位压力P

决定了摩擦表面的耐磨性,对离合器工作性能和使用寿命有很大影响,选取时应考虑离合器的工作条件、发动机后备功率的大小、摩擦片尺寸、材料及其质量和后备系数等因素。

离合器使用频繁,发动机后备系数较小时,P

应取小些;当摩

擦片外径较大时,为了降低摩擦片外缘处的热负荷,P

应取小些;

后备系数较大时,可适当增大P

当摩擦片采用不用的材料时,P0取值范围见表2-2。

表2-2 摩擦片单位压力P0的取值范围

摩擦片材料单位压力P

/MPa 石棉基材料模压0.15-0.25

编织0.25-0.35 粉末冶金材料铜基

0.35-0.50

铁基

金属陶瓷材料0.70-1.50

本次设计摩擦片为石棉基材料,P

0选择:0.15≤P

≤0.35MPa

2.3 摩擦片外径D 、内径d 和厚度b

摩擦片外径是离合器的重要参数,它对离合器的轮廓尺寸、质量和使用寿命有决定性的影响。

当离合器结构形式及摩擦片材料已选定,发动机最大转矩已知,适当选取后备系数β和单位压力P 0,可估算出摩擦片的外径,即:

3

3

0emax c -1f 12)

(ZP T D πβ=(2-3)

摩擦片外径D (mm )也可根据发动机最大转矩(N ﹒m )按如下经验公式选用:

emax T K D D =(2-4)

式中,为直径系数,取值范围见表3-3。

表2-3 直径系数的取值范围

车型 直径系数KD

乘用车

14.6

最大总质量为1.8-14.0t 的

商用车

16.0-18.5(单片离合器) 13.5-15.0(双片离合器)

最大总质量大于14.0t 的商

用车

22.5-24.0

本次设计的对象是乘用车,故KD=14.6,

该车型的发动机的最大扭矩:131Nm/4200rpm 。故根据公式(2-4)可算出摩擦片外径D

mm 1.1671316.14emax =?==T K D D (2-5)

按初选D 以后,还需尽量注意摩擦片尺寸的系列化和标准化,应

符合尺寸系列标准/57641998G B T -《

汽车用离合器面片》表2-4为我国摩擦片尺寸的标准。

表2-4 离合器摩擦片尺寸系列和参数

参数 数值

外径 D/mm 180 200 225 250 280 300 325 350

内径

/d mm

125 140 150 155 165 175 190 195

厚度

/b mm 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4

/c d D

=

0.694 0.700 0.667 0.620 0.589 0.583 0.585 0.557

31c -

0.667 0.657 0.703 0.762 0.796 0.802 0.800 0.827

单位面积

2/cm

132 160 221 302 402 466 546 678

故,选取摩擦片的尺寸为

D=200mm ,d=140mm,厚度b=3.5mm,c=0.7,单位面积=160。 摩擦片尺寸应符合尺寸系列标准GB5764--86《汽车用离合器面盖片》,所选的D 应使摩擦片最大圆周速度不超过65~70m /s ,以免摩擦片发生飞离。

max 60

D e V n D π

=

??

=π*6000*200*/60=62.83m/s<70m/s 满足要求。

为了保证扭转减振器的安装,摩擦片内径d 必须大于减振器弹簧位置直径约50mm.

摩擦片的内、外径比c 应在0.53-0.70范围内, 即:0.53≤0.70≤0.70 由此可见,满足要求。

(2-6)

2.4 摩擦因数f 、摩擦面数Z 和离合器间隙△t

摩擦片的摩擦因数f 取决于摩擦片所用的材料及其工作温度、单位压力和滑磨速度等因素。各种摩擦材料的摩擦因数f 的取值范围见表2-5

表2-5 摩擦材料的摩擦因数f 的取值范围

摩擦材料

摩擦因数f 石棉基材料

模压 0.20-0.25 编织

0.25-0.35 粉末冶金材料

铜基 0.25-0.35 铁基

0.35-0.50

金属陶瓷材料

0.4

取f=0.25。

在前面的设计分析中已经陈述了本次设计选用的是单片拉式膜片弹簧离合器,故Z=2。

离合器间隙△t 是指离合器处于正常接合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合器仍能完成接合,在分离轴承和分离杠杆内端之间留有的间隙。取△t=3mm 。

2.5离合器摩擦力据Tc 和单位压力P 0的计算

因此,静摩擦力矩T c :

m 5.1961315.1emax N T T C =?==β (2-7)

摩擦片的平均摩擦半径:

mm 86701003701002r 3r 2c 2

2332233=-?-?=--=)()()()(R R R (2-8)

施加在摩擦面上的工作压力为

N

ZR T F c 4570086.0225.05

.196f /c =??=

= (2-9)

单位压力P 0的计算:

(102 a 285.0)

140200(4

4570)(422220-=-?=-==

MP d D F A F P ππ 满足0.15≤P 0≤0.35MPa

3离合器零件的结构选型及设计

3.1 从动盘总成设计

3.1.1 从动盘总成的结构型式的选择

从动盘总成主要由摩擦片、从动片、减振器和从动盘毂等组成。从动盘对离合器工作性能影响很大,应满足如下设计要求:

●转动惯量应尽量小,以减小变速器换挡时轮齿间的冲击。

●应具有轴向弹性,使离合器接合平顺,便于起步,而且使摩擦面压力均匀,减小磨损。

●应装扭转减振器,以避免传动系共振,并缓和冲击。摩擦面片采用有机材料。

选用带扭转减振器的从动盘,从动片通常用1.3~2.0mm厚的钢板冲压而成。将其外缘的盘形部分磨薄至0.65~1.0mm,以减小其转动惯量。整体式弹性从动片一般用高碳钢(如50)或65Mn钢板,热处理硬度38~48HRC。

3.1.2 从动片结构型式的选择

从动片设计时,要尽量减轻其重量,并应使其质量的分布尽可能地靠近旋转中心,以获得最小的转动惯量。为了使离合器结合平顺,保证汽车平稳起步,单片离合器的从动片一般都做成具有轴向结构,这样的从动片有3种结构型式:1、整体式弹性从动片;2、分开式弹性从动片;3、组合式弹性从动片。

选择整体式弹性从动片,它能满足达到轴向弹性的要求,生产率高。

3.1.3 从动盘毂的设计

从动盘毂是离合器中承受载荷最大的零件,它装在变速器输入轴前端的花键上,一般采用齿侧定心的矩形花键,花键轴与孔采用动配合。

从动盘毂轴向长度不宜过小,以免在花键轴上滑动时产生偏斜而使分离不彻底,一般取 1.0~1.4倍的花键轴直径。本设计取 1.4倍

的花键轴直径。从动盘毂一般采用锻钢(如45,40Cr等),表面和心部硬度一般在26~32HRC。为提高花键内孔表面硬度和耐磨性,可采用镀铬工艺,对减振弹簧窗口及与从动片配合处应进行高频处理。

减振弹簧常采用60Si2MnA、50CrVA、65Mn等弹簧钢丝。

花键的结构尺寸可根据从动盘外径和发动机转矩按国标GB1144—1974表3-1选取。

表3-1 花键轴规格表

从动盘外径D(mm) 发动机最

大扭(NM)

花键

齿数

n

花键

外径

(mm)

花键

内径

(mm)

齿厚

(mm)

有效齿长

(mm)

225 150 10 32 26 4 30 250 200 10 35 28 4 35 280 280 10 35 28 4 40 300 310 10 40 32 5 50 325 380 10 40 32 5 50 350 480 10 40 32 5 55 380 600 10 40 32 5 60 410 720 10 45 36 5 65 430 800 10 45 36 5 65 根据发动机最大转矩为Temax=131Nm,选取结果见表3-2:

表3-2 所选从动盘毂花键参数

从动盘外径D/mm 花键齿

数n

花键外

径D′

/mm

花键内

径d′

/mm

齿厚

b/mm

有效齿

长l/mm

挤压应

/

c a

Mp

225 10 32 26 4 30

11. 3

花键尺寸选定后应进行强度校核。由于花键损坏的主要形式是由于表面受挤压过大而破坏,所以花键要进行挤压应力计算。

挤压应力计算公式:

nhl

P

=

挤压σ(3-1) 式中,'d ,'D —花键的内外径()m ; Z —从动盘毂的数目,Z=1;

max e T —发动机最大转矩()N m ?;

n —花键齿数;

h —花键齿工作高度()

m 1

()2h D d ''=

- (3-2) ;

l —花键有效长度()m 。

式中,P 为花键的齿侧面压力(N ),由下式确定:

(3-3)

花键的齿侧面压力P :

N Z D T P 6.22581)026.0032.0(131/d emax =?+='+'=)((3-4)

故根据式(3-1)挤压应力:

[]a

a 11.35.230

.00226.00-32.00106.2258nhl MP MP P =≤=??==

挤压挤压σσ(3-5)

满足要求。

3.2 离合器盖总成设计

3.2.1 离合器盖设计

为了减轻重量和增加刚度,轿车的离合器盖常用厚度约为3~5mm 的低碳钢板(如08钢板)冲压成比较复杂的形状。在设计中要特别注意的是刚度、对中、通风散热等问题。离合器盖的刚度不够,会产生较大变形,这不仅会影响操纵系统的传动效率,还可能导致分离不彻底、引起摩擦片早期磨损,甚至使变速器换挡困难。离合器盖内装有压盘、分离杠杆、压紧弹簧等,因此,应与飞轮保持良好的对中,

Z D T P /d em ax

)('+'=

挤压σ

以免影响总成的平衡和正常的工作。

对中方式采用定位销或定位螺栓,也可采用止口对中。离合器盖的膜片弹簧支承处应具有高的尺寸精度。为了加强离合器的通风散热和清除摩擦片的磨损粉末,防止摩擦表面温度过高,在保证刚度的前提下,可在离合器盖上设置循环气流的入口和出口,甚至可将盖设计成带有鼓风叶片的结构。

本次设计离合器盖要求离合器盖内径大于离合器摩擦片外径,能将其他离合器上的部件包括在其中即可。

3.2.2 压盘设计 对压盘设计的要求:

压盘应具有较大的质量,以增大热容量,减小温升,防止其产生裂纹和破碎,有时可设置各种形状的散热筋或鼓风筋,以帮助散热通风。中间压盘可铸出通风槽,也可采用传热系数较大的铝合金压盘。

压盘应具有较大的刚度,使压紧力在摩擦面上的压力分布均匀并减小受热后的翘曲变形,以免影响摩擦片的均匀压紧及离合器的彻底分离,厚度约为15~25mm 。

与飞轮应保持良好的对中,并要进行静平衡,压盘单件的平衡精度应不低于15~20g.cm 。

压盘高度(从承压点到摩擦面的距离)公差要小。

初步确定压盘厚度为15mm ,外径225mm ,内径120mm 。材料为灰

铸铁HT20铸成,密度为3

7.2/g cm 。C=481.4J/(kg.℃)

压盘的厚度初步确定后,应根据下式来校核离合器一次接合的温升

cm

L

γτ=

(3-6) 式中,—压盘温升(℃),不超过8~10℃;

c —压盘的比热容,铸铁的比热容为kg J /(4.481℃); —传到压盘的热量所占的比例,对单片离合器,γ=0.5; L —消磨功,对单片离合器一般为8000J

τ

可算得压盘质量m=3.816kg 。

根据(3-6)得温升:

C cm L

o 177.2816

.34.4818000

5.0=??=

=

γτ (3-7)

满足要求。

3.3离合器分离装置设计

3.3.1 分离轴承和分离套筒

分离轴承在工作中主要承受轴向分离力,同时还承受在告诉旋转时离心力作用下的径向力。以前主要采用推力球轴承或向心球轴承,但其润滑条件差,磨损严重、噪声大、可靠性差、使用寿命低。目前国外已采用角接触推力球轴承,采用全密封结构和高温锂基润滑脂,其端部形状与分离指舌尖部形状相配合,舌尖部为平时采用球形端面,舌尖部为弧形面时采用平端面或凹弧形端面。

本设计采用角接触推力球轴承。

本设计使用的是适合拉式离合器的自动调心式分离轴承装置。轴承外圈与分离套筒外凸缘和外罩之间以及内圈与分离套筒内凸缘之间都留有径向间隙,这些间隙保证了分离轴承相对于分离套筒可径向移动1mm 左右。在外圈轴承不工作时不会发生晃动。当膜片弹簧旋转轴线与轴承不同心时,分离轴承便会自动径向浮动到与其同心的位置,以保证分离轴承能均匀压紧各分离指舌尖部。这样可以减小振动和噪声,减小分离指与分离轴承断面的磨损,是轴承不会出现过热而造成润滑脂流失分解。延长轴承寿命。另外,分离轴承由传统的外圈转动改为内圈转动、外圈固定不转,由内圈来推动分离指的结构,适当地增大了膜片弹簧的杠杆比,且由于内圈转动,在离心力作用下,润滑脂在内、外圈间的循环得到改善,提高了轴承使用寿命。这种拉式分离轴承室将膜片弹簧分离指舌尖直接压紧在碟形弹簧与档环之间,再用弹性锁环卡紧,结构较简单。

τ

3.4 膜片弹簧的设计

3.4.1 膜片弹簧基本参数的选择

(1)比值H/h和h的选择

比值H/h对膜片弹簧的弹性特性影响极大。当H/hN时,有一极大值和一极小值;当H/h=2 时,的极小值落在横坐标上。为保证离合器压紧力变化不打和操纵轻便,汽车离合器用膜片弹簧的H/h 一般为1.5~2.0,板厚h为2~4mm。

初取h=3mm, H/h =1.5,H=4.5m

(2)R/r比值和R、r的选择

研究表明,R/r越大,弹簧材料利用率越低,弹簧越硬,弹性特性曲线受直径误差的影响越大,且应力越高。根据结构布置和压紧力的要求,R/r一般为1.20~1.35。为使摩擦片上的压力分布较均匀,推式膜片弹簧的R值宜取为大于或等于摩擦片的平均半径=85mm.

则可初取r=87.5mm,R=105mm。

(3)α的选择

膜片弹簧自由状态下圆锥底角α与内截高度H关系密切,一般在9°~15°范围内。

可算得α=14.42°满足要求。

(4)膜片弹簧工作点位置的选择

膜片弹簧工作点位置如图5-1所示,该曲线的拐点H对应着膜片弹簧的压平位置,而且。新离合器在接合状态时,膜片弹簧工作点B 一般取在凸点M和拐点H之间,且靠近或在H点处,一般,以保证摩擦片在最大磨损限度范围内的压紧力从到变化不打。当分离时,膜片弹簧工作点从B变到C。为最大限度的减小踏板力,C点应尽量靠近N 点。

图3-1 膜片弹簧工作点位置

(5)分离指数目n 的选择

分离指数目n 常取为18,大尺寸膜片弹簧可取24,小膜片弹簧可取12。本次设计取n=16。

(6)膜片弹簧小端内径及分离轴承作用半径的确定

由离合器的结构决定,其最小值应大于变速器第一轴花键的外径,应大于。

取R

=28mm ,R

=32mm

(7)切槽宽度B 、及半径r `的确定

切槽宽度范围3.2~3.5mm ,半径范围9~10mm,取值应满足r-。 本次设计取切槽B=3.4mm,r `=9mm ,满足r-。 (8)压盘加载点半径R 1和支承环加载点半径R 2的确定

两者的取值将影响膜片弹簧的刚度。应略大于r 且尽量接近r ,应略小于R 且尽量接近R 。

本次设计,取R 1=87.5mm ,R 2=100mm 。 3.4.2膜片弹簧基本参数约束条件的检验 (1)弹簧各部分有关尺寸的比值应符合一定的范围:

.5/5.3100/27035

.1/20.10≤≤≤≤≤≤r R h R r R (3-8) R/r=1.2;2R/h=70;R/ro=3.75 满足条件。

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

离合器课程设计说明书

沈阳工学院 课程设计 9离合器设计 魏明厚 专业名称:车辆工程 课程名称:汽车设计 指导教师:孙飞豹 完成日期: 2016年6月15日 2014年6月 摘要

对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部分之间的大摩擦来传递动力且能分离的装置。离合器主要功用是切断和实现对传动系的动力传递,保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换挡齿轮之间的冲击;在工作中受到大的动载荷时,能限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。 本文通过对轿车整车参数的分析,并在拆装轿车膜片弹簧离合器及对其进行结构分析的基础上,对轿车离合器进行重新设计,使得轿车离合器设计更合理。首先对轿车离合器的结构型式进行合理选择,主要是对从动盘数及干湿式的选择、压紧弹簧的结构型式及布置和从动盘的结构型式选择,并利用CAXA电子图板软件绘制轿车膜片弹簧离合器装配图;再进行离合器的基本结构尺寸和参数的选择及计算;最后进行离合器零件的结构选型及设计计算,主要是对从动盘总成设计,压盘、传力片的设计校核,膜片弹簧主要参数的选择、设计和强度校核,并绘制离合器零件图。 关键词:轿车离合器膜片弹簧设计校核

目录 第一章离合器方案的确定 (4) 1.1 车型分析 (4) 1.2 方案选择 (4) 第二章离合器基本参数的确定 (5) 2.1 后备系数 (6) 2.2 单位压力 (7) 2.3 摩擦片外径、内径和厚度 (7) 2.4 摩擦因数、摩擦面数和离合器间隙 (8) 第三章离合器零件的结构选型及设计计算 (9) 3.1 从动盘总成设计 (9) 3.1.1 从动盘总成的结构型式的选择 (9) 3.1.2 从动片结构型式的选择 (10) 3.2 离合器盖总成设计 (10) 3.2.1 离合器盖设计 (11) 3.2.2 压盘设计 (11) 3.3膜片弹簧的设计 (11) 3.3.1 膜片弹簧基本参数的选择 (11) 3.3.2 膜片弹簧材料及制造工艺 (14) 3.4 扭转减振器 (14) 3.4.1 扭转减振器的功用 (15) 3.4.2 扭转减振器组成 (15) 3.4.3 减振器的结构设计 (15) 3.4.4从动盘毂的设计校核 (17) 参考文献 (18) 致谢 (19)

汽车离合器课程设计说明书

1 《汽车设计》课程设计 题目:汽车离合器设计 专业:交Y 班级:091 学号:200900207XXX 姓名:XXX 指导老师:韦志林 完成日期: 成绩:

1 目录 任务与背景分析 (4) 1离合器主要参数选择 (5) 1.1 初选摩擦片外径D、内径d、厚度b (5) 1.2 后备系数β (5) P (6) 1.3 单位压力 1.4 摩擦因数f、离合器间隙Δt (6) 2 离合器基本参数的优化 (6) 2.1 设计变量 (6) 2.2 目标函数 (7) 2.3 约束条件 (7) 3摩擦片尺寸校核与材料选择。 (7) 4膜片弹簧的设计 (8) 5.扭转减振器的设计 (11) 6减振弹簧的计算 (12) 6.1减振弹簧的分布半径R0 (12) 6.2单个减振器的工作压力P (12) 6.4减振弹簧刚度k (13) 6.5减振弹簧有效圈数 (13) 6.6减振弹簧总圈数n (13) l (14) 6.7减振弹簧最小高度min 6.8全部减震弹簧总的工作负荷 (14) 6.9单个减震弹簧的工作负荷P (14) 6.9.1减震弹簧总变形量 (14) 6.9.2减震弹簧自由高度 (14) 6.9.3减震弹簧预变形量 (14) 6.9.4减震弹簧安装高度 (14) 6.9.5从动片相对从动毂的最大转角 (14) 7.1从动盘毂 (15) 7.2从动片 (15) 7.3波形片和减振弹簧 (15) 8压盘设计 (15) 8.1离合器盖 (15) 8.2压盘 (16) 8.2.3分离轴承 (16) 9.总结 (17) 10参考文献 (17)

1 前言 对于内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,按动力传递顺序来说,离合器应是传动系中的第一个总成。目前,目前汽车上广泛采用弹簧压紧的摩擦式离合器,摩擦离合器是一种依靠主、从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构和操作机构等四部分。 离合器是设置在发动机与变速器之间的动力传递机构,其主要功用是:切断和实现发动机对传动系的动力传递,保证汽车起步时将发动机与传动系统平顺地结合,确保汽车平稳起步;在换挡时将发动机与传动系统分离,减少变速器中换挡齿轮之间的冲击;在工作中受到较大的动载荷时,能限制传动系统所承受的最大转矩,以防止传动系各零部件因过载而损坏;有效地降低传动系中的振动和噪声。 随着汽车发动机转速、功率的不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。从提高离合器工作性能的角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。 设计的目的和意义:本次设计,我力争把离合器设计系统化,让离合器在任何行驶条件下,既能可靠的传递发动机的最大转矩,并有适当的转矩储备,又能防止过载。结合时要完全、平顺、柔和,保证起初起步时没有抖动和冲击。分离是要迅速、彻底。从动部分转动惯量要小,以减轻换挡时变速器齿轮间的冲击,便于换档和减小同步器的磨损。应有猪狗的吸热能力和良好的通风效果,以保证工作温度不致过高,延长寿命。操纵方便、准确,以减少驾驶员的疲劳。具有足够的强度和良好的动平衡,以保证其工作可靠、使用寿命长。为离合器设计者提供一定的参考价值

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

离合器设计课程设计报告书

机械工程学院·车辆工程专业课程设计说明书题目:华西牌CDL6603轻型客车 姓名: 班级学号: 指导教师:

目 录 目 录 (1) 第1章 离合器的设计目的及原理概述 (3) 1.1离合器的设计目的 (3) 1.2离合器的工作原理 (3) 1.3离合器的设计要求 (3) 第2章 离合器的结构方案分析 (5) 2.1车型、技术参数 (5) 2.2从动盘数的选择 (5) 2.3压紧弹簧和布置形式的选择 (5) 2.4膜片弹簧的支承形式 (6) 2.5压盘的驱动方式 (6) 第3章 离合器主要参数的选择 (8) 3.1后备系数β (8) 3.2摩擦因数f 、摩擦面数Z 和离合器间隙△t (8) 3.3单位压力p 0 (8) 3.4摩擦片外径D 内径d 和厚度b (9) 3.5计算校核 (9) 3.5.1离合器的摩擦力矩T c 与结构参数(R c )的确定 (9) 3.5.2最大圆周速度 (10) 3.5.3单位摩擦面积传递的转矩c0T (10) 3.5.4单位摩擦面积滑磨功 (10) 第4章 膜片弹簧的设计 (12) 4.1膜片弹簧的基本参数的选择 (12) 4.1.1 截锥高度H 与板厚h 比值 h H 和板厚h 的选择 ....................... 12 4.1.2自由状态下碟簧部分大端R 、小端r 的选择和r R 比值 ................ 12 4.1.3膜片弹簧起始圆锥底角 的选择 (12) 4.1.4 分离指数目n 的选取 (12) 4.1.5 膜片弹簧最小端内半径0r 及分离轴承作用半径f r (12) 4.1.6 切槽宽度δ1、δ2及半径e r (13) 4.1.7 压盘加载点半径R1和支承环加载点半径r1的确定 (13) 4.1.8膜片弹簧材料 (13) 4.2膜片弹簧的弹性特性曲线 (13) 第5章 扭转减振器的设计 (15) 5.1扭转减振器主要参数 (15) 图5-1三级非线性减震器扭转特性曲线 (15) 5.1.1极限转矩 j T (15)

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

进气系统设计计算报告

密级: 编号: 进气系统设计计算报告 项目名称:力帆新型三厢轿车设计开发 项目编号: ETF_TJKJ090_LFCAR 编制:日期: 校对:日期: 审核:日期: 批准:日期: 上海同济同捷科技股份有限公司 目录 1 进气系统概述 (2) 系统总体设计原则 (2) 系统的工作原理及组成 (2) 2 进气系统结构的确定及设计计算 (2) 进气系统设计流程 (2) 进气系统流量的确定 (3) 拟选定空气滤清器的允许阻力计算及设计原则 (4) 滤清效率要求 (7) 空滤器滤芯面积确定及滤纸选用 (8) 进气系统结构的确定 (9) 进气系统管路阻力估算 (10)

3 结论 (12) 4 参考资料及文献 (12) 1进气系统概述 1.1 系统总体设计原则 在国内外同挡次同类型轿车的进气系统结构深入比较分析的基础上进行设计和选型,系统设计满足发动机获得高的充量系数,尽可能低地降低发动机的功率损失.此外为了适当降低发动机的进气噪声,在管路中布置谐振腔. 1.2 系统的基本组成 进气系统一般由空气滤清器入口管,空气滤清器,空气滤清器出口连接管,节气门体,怠速控制阀阀体等组成. 2系统结构的确定及设计计算 2.1 进气系统流量的确定 LF7160选用的发动机为宝马型电喷发动机,发动机对进气系统流量的要求取决于发动机本身的因素,即发动机的排量和发动机的工况要求,不同的工况有不同的流量要求.在进气系统流量满足的情况下,发动机实际充入的空气取决于自身的因素,首先,初步确定发动机最大功率工况点进气流量。 式中: V——发动机排量3m; n——最大功率点转速min /r; η——充量系数; 1 η——汽缸数效率; 2 τ——冲程数,四冲程取2,二冲程取1 上式中发动机参数

《离合器课程设计》doc

目录 前言 (2) 一、离合器概述 (3) 1.1离合器设计的基本要求 (3) 1.2膜片弹簧离合器结构 (3) 1.3膜片弹簧离合器的优点 (4) 二、离合器摩擦片参数的确定 (4) 2.1摩擦片参数的选择 (4) 2.2摩擦片基本参数的约束条件 (8) 三、膜片弹簧的设计 (10) 3.1膜片弹簧基本参数的选择 (10) 3.2膜片弹簧的弹性特性曲线 (11) 3.3膜片弹簧基本参数的约束条件 (13) 3.4膜片弹簧强度计算与校核 (14) 四、扭转减振器的设计 (15) 4.1扭转减振器主要参数 (15) 4.2减振弹簧的计算 (17) 五、离合器其他主要部件的结构设计 (19) 5.1从动盘毂的设计 (20) 5.2从动片的设计 (20) 5.3离合器盖结构设计 (20) 5.4压盘的设计 (21) 六、离合器的操纵机构 (22) 6.1离合器操纵机构的要求 (22) 6.2操纵机构型式的选择 (22) 七、设计小结 (22) 八、参考文献 (23)

前言 对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连接的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构和操纵机构等四部分。主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,操纵机构是使离合器主、从动部分分离的装置。 随着我国自动档轿车的增加,我国传统离合器行业的发展前景日益担忧,不少企业都在寻求新的持续发展的途径。 DCT技术在中国良好的发展前景,将使我国摩擦片汽车离合器行业获得新的发展机遇。但是,市场竞争也很激烈,长春一东是国内汽车离合器制造行业龙头企业,已形成75万套的生产力,是国内规模最大,系列最宽的离合器生产厂家,行业地位较高。公司在主机配套市场处于龙头地位,面向全国64家主机厂供货,占领了国内中重型商用车市场的半壁江山。 双质量飞轮是我国传统汽车离合器发展的一种方向,目前我国已经有Luk、Excedy 等外资企业在中国组装生产双质量飞轮,吉林大华、湖北三环的双质量飞轮也进入产业化阶段,但双质量飞轮在我国发展前景依然有待市场进一步验证。 液力变矩器需求随着我国汽车自动档比重的增加而加大,国内除上海萨克斯早已量产液力变矩器产品外,广州优达佳、上海Excedy、南京Valeo等外资企业已经相继开始组装生产液力变矩器。由于我国AT技术的本土化存在很大困难,发展液力变矩器对国内企业仍存在较高的风险。

进气系统设计计算

进气口位置: 进气系统的设计须满足以下条件: ●避免机舱内热空气吸入 ●避免雨滴和雾气直接吸入 ●避免排气灰尘吸入 ●从空滤器至涡轮增压器入口之间的进气管必须由耐蚀材料制成 ●进气系统使用的分离式接头(如罩与空滤器外壳的接头)必须位于空滤器上部 ●进气系统必须能够进行定期维护,且进行维护时不需要打开空滤器和涡轮增压器之间进气系统的任何部件 ●尽可能低的系统阻力,以保证最大限度的利用柴油机功率 ●进气系统部件之间的接头和其它接合处,比如与空压机的接头,必须保持有效密封,避免灰尘或其它污染物进入过滤空气中。 进气口尺寸应设计得足够大,且没有锐弯和面积改变,为减小阻力,还应有平滑的转换导管来与进气管相连。发动机舱应充分通风,来发散出这些热量。为保护热敏元件,发动机连续运转时机舱内的最高温度不允许超过(推荐) 空滤器的选择及布置: 一、根据发动机厂家推荐在2200rpm是所需空气流量为1500m3/h,结合以下计算: 1发动机性能参数: 发动机型号:L340 额定功率Ne(kW):2505 额定转速n(r/min):2200: 排量Vh(L):8.9(C系统8.3) 空滤器流量VG(m3/h)的确定 ⑴增压后发动机所需的空气流量V(m3/h)的确定 V=Vh×n/2×60/1000=8.9×2200/2×60/1000=587.4(m3/h) ⑵发动机所需理想状态空气量Vo(m3/h)的确定(汽车设计理论) V o=ε×(ToT)0.75×V×ηvo×ψs 式中:V o-发动机所需理想状态空气量(m3/h) 大气环境温度(k)取313(273+40);T-增压中冷后气体温度(k)取333(273+60)(要求不高于环境温度的20);ηvo-充气效率取0.87(推荐);ψs-扫气效率取1.05 ε-增压比2.18 V o=2.18×(313333)0.75×587.4×0.87×1.05=1116.67(m3/h) ⑶空压机流量Vk(m3/h)的确定(推荐为320L/min) bVk=Vkh×nk×601000 式中:Vkh-空压机公称排量(L);nk-空压机的转速(r/min); Vk=0.229×1400×601000=19.2(m3/h) ⑷空滤器流量VG的确定(空滤器流量上述设计的储备流量) VG=1.066×(V o+Vk)=1.066×(1116.67+19.2)=1212(m3/h) L考虑到以后布置功率加大380马力发动机 结合两者得出按照发动机厂家的推荐空滤器流量≥1500 m3/h5 二、流通面积的确定 在确定了空滤器容积大小的同时,还应校核一下系统中所允许的气流流速。进气系统内的气流流速不宜超过30m/s,因为过高的气流流速会产生很大的流阻和进气噪声,对发动机会造成过大的功率损失。依据这一原则,在结构设计前先要确定空滤器进口、出口及连接管等部位允许的最小流通面积。 最小流通面积Smin=V o/(3.6×Vmax)×10-3(m2)

(完整版)汽车设计离合器课程设计

汽车设计课程设计离合器设计说明书 姓名:范小南 班级:B110210 学号:B11021023

目录 一、离合器设计的目的及相关概述 (1) 1.1 离合器基本功用 (1) 1.2 离合器相关结构的介绍 (1) 1.3 离合器的设计要求 (2) 1.4拉式膜片弹簧的优点 (3) 二、离合器摩擦片参数的确定 (3) 2.1摩擦片相关参数确定之前的数据准备 (3) 2.1.1后背系数确定 (3) 2.1.2单位压力的确定 (4) 2.1.3摩擦因数、摩擦面数和离合器间隙 (4) 2.2 摩擦片参数的选择 (5) 2.2.1初选摩擦片参数外径D、内径d和厚度b (5) 2.2.2 离合器传递最大转矩 (6) 2.3摩擦片参数的校核 (6) 2.3.1 摩擦片最大圆周速度的校核 (6) 2.3.1 单位滑磨功的校核 (6) 三、膜片弹簧的设计 (6) 3.1 膜片弹簧参数的设计 (7) 3.2 膜片弹簧参数的校核 (9) 四、主要零部件的设计 (10) 4.1 扭转减震器的设计 (10) 4.2 扭转用弹簧的设计 (12) 4.3 从动盘毂的设计 (14) 4.4 离合器盖结构的设计 (15) 4.5 压盘的设计 (14) 4.5.1 设计要求 (15) 4.5.2 压盘几何尺寸及材料的确定 (15) 4.5.3 压盘的校核 (16) 4.6 支撑环 (16) 五、操纵机构 (16) 5.1 操纵机构的简介 (16) 5.2离合器踏板行程计算 (18) 5.3 踏板力计算 (13) 六、设计小结 (19) 七、参考文献 (21) 附录 (22)

一、离合器设计的目的及相关概述 了解乘用车离合器的构造,掌握离合器的工作原理,了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法,通过对以上几方面的了解,从而熟悉轿车离合器的工作原理,同时,学会如何查找文献资料、相关书籍,培养学生动手设计项目,掌握单独设计课题和项目的方法,从而设计出满足整车要求并符合相关标准、具有良好的制造工艺性,结构简单,便于维护的乘用车离合器,为以后从事汽车方面的工作或工作设计打下良好的基础,通过这次课程设计,使学生充分认识到设计工程所需要的步骤,以及自身所应具备的专业素质,未进入社会提供良好的学习机会,对与由学生向工程技术人员转变具有重要的现实意义。 1.1离合器基本功用 离合器通常安装在发动机和变速器之间,其主动部分与发动机飞轮相连,从动部分与变速器相连。 1)在汽车起步时,通过离合器主、从动部分的滑磨而使它们的转速逐渐接近,以确保汽车起步平稳。 2) 当变速器换挡时,通过离合器主、从动部分的迅速分离来切断动力的传递,以减轻齿轮的冲击,保证换挡时工作平稳。 3) 当离合器转矩超过其所能传递的最大转矩时,其主、从动部分之间将产生滑磨,以防止传动系统过载。 1.2 离合器相关结构的介绍 膜片弹簧离合器总成由膜片弹簧、离合器盖、压盘、传动片和分离轴承总成等部分组成。 1)离合器盖 离合器盖一般为120o或90o旋转对称的板壳冲压结构,通过螺栓与飞轮连接在一起。离合器盖是离合器中结构形状比较复杂的承载构建,压紧弹簧的压紧力最总都要由它来承受。 2)膜片弹簧 膜片弹簧是离合器最重要的压紧元件,在其内孔圆周表面上开有许多均布的长径

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

捷达离合器设计毕业设计

捷达离合器设计毕业设 计 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

捷达离合器设计 摘要 近年来,我国在设计的汽车和汽车制造技术已经取得了很大的进步,这是大家有目共睹的。而离合器作为汽车传送系中的一大重要组成部分,肩负着传递动力、减震跟防止过载等重要作用,所以离合器更成为了汽车发展和进步的一个重要因素,是不容忽视的。 此次设计是从理论计算上阐述了捷达轿车离合器容量的计算,离合器从动盘的尺寸,后备系数,摩擦片外径的尺寸等。设计包括对从动盘总成、压盘、离合器盖的设计校核优化。具体设计计算扭转减振器、摩擦片、压盘、离合器盖、膜片弹簧、传动片等多个部件总成。 在离合器动力学的基础上,分析和计算的原始,简要描述了离合器的部分主要设计参数的选择和设计要点,如类型选择、确定承载力,模型等。简要介绍传统设计方法的检查。 关键词:离合器;膜片弹簧;摩擦片;设计方法 目录 摘要……………………………………………………………………………………………. 1.前言 随着现代科技的飞速发展,尤其是液压液力的传动技术,电子技术在汽车上得到广泛的运用,现代汽车发生了巨大的变化。而离合器作为汽车传动系的一大重要组成部分,肩负着传递动力、减振跟防止过载等重要作用。所以离合器成为了现代汽车发展不可忽略的重要因素。随着自动变速器技术的发展跟完善,离合器的结构跟性能也随之变化。了解离合器的基本构造,掌握离合器的工作原理。了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法,通过对上述几方面的了解,便于熟悉汽车离合器的工作原理。我们要学会怎样查找文献资料、相关书籍,培养学生动手设计项目、自学的能力,掌握单独设计课题和项目的方法,设计出满足整车要求并符合相关标准、具有良好的制造工艺性且结构简单、便于维护的轿车离合器,为以后从事汽车方面的工作或工作中设计其它项目奠定良好的基础。通过这次课程设计,使学生充分地认识到设计一个工程项目所需经历的步骤,以及身为

制动系统设计规范

一、国标要求 1、GB 12676-1999《汽车制动系统结构、性能和试验方法》 2、GB 13594-2003《机动车和挂车防抱制动性能和试验方法》 3、GB 7258-1997《机动车运行安全技术条件》

二、整车基本参数及样车制动系统主要参数整车基本参数 样车制动系统主要参数

三、计算 1. 前、后制动器制动力分配 1.1 地面对前、后车轮的法向反作用力 公式: g z h dt du m Gb L F +=1 ………………………………(1) g z h dt du m Ga L F -=2 (2) 参数:1z F ——地面对前轮的法向反作用力,N ; 2z F ——地面对后轮的法向反作用力,N ; G ——汽车重力,N ; b ——汽车质心至后轴中心线的水平距离,m ; a ——汽车质心至前轴中心线的距离,m 。 m ——汽车质量,kg ; g h ——汽车质心高度,m ; L ——轴距,m ; dt du ——汽车减速度,m/s 2 四、制动器的结构方案分析 制动器有摩擦式、液力式和电磁式等几种。电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。液力式制动器只用作缓速器。目前广泛使用的仍为摩擦式制动器。 摩擦式制动器按摩擦副结构形式不同,分为鼓式、盘式和带式三种。带式只用作中央制动器。 一、鼓式制动器 鼓式制动器分为领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、双向增力式等几种,见图la ~f 。 不同形式鼓式制动器的主要区别有:①蹄片固定支点的数量和位置不同。②张开装置的

02进气系统教案

A 组织教学学生考勤填写日志 B 课前提问 C 导入新课 第二节进气系统 (一)进气系统的组成与型式 进气系统是测量和控制汽油燃烧时所需要的空气量的。其组成是由测量空气流量的方式决定的,根据测量空气流量的方式不同,进气系统有质量流量式的进气系统(用于L型EFI 系统)、速度密度式的进气系统(用于D型EFI系统)和节流速度式的进气系统三种。 (二)进气系统主要零部件的结构 1、空气滤清器 电控汽油喷射发动机的空气滤清器与一般发动机的空气滤清器相同,注意安装方向。 2、空气流量计 目前汽车上所用的空气流量计主要有叶片式空气流量计、卡门涡旋式空气流量计、热线式空气流量计和热膜式空气流量计等四种。 (1)叶片式空气流量计 图1-6所示是叶片式空气流量计的结构,图1-7所示是叶片式空气流量计的空气通道,图1-8所示是叶片式空气流量计的电位计部分结构。 叶片式空气流量计由测量板(叶片)、缓冲板、阻尼室、旁通气道、怠速调整螺钉、回位弹簧等组成,此外内部还设有电动汽油开关及进气温度传感器等。 当吸入空气推开测量板的力与弹簧变形后的回位力相平衡时,测量板即停止转动。用电位计检测出测量板的转动角度,即可得知空气流量。 叶片式空气流量计电位器的内部电路如图1-10所示,电位计检测空气量有电压比与电压值两种方式。在VB端子上加有蓄电池电压而形成电压VC,那么,检测出来的是VB-E2与VC-VS的电压比。如表1-1中的图所示。电压值的检测方法为:吸入空气量∝随电位计动作变化的电压值。 当在VC点加上一定的电压(+5V)时,电位计滑动触头的动作随吸入空气量变化,VS-E2间的电压变化直接作为吸入空气量信息,把滑动触头电压值送入电控单元并进行A/D变换,即可以数字信号输出检测结果。滑动触头电压与吸入空气量成正比,呈线性关系。 表1-1为以电压比与电压值两种检测方式的对比表。

进气系统设计开发指南--排气室

进气系统设计指南

进气系统由于整车布置需要,整体布置在机舱内右侧,由于现有车型进气系统都是布置在车体左侧,因此,相对现有车型,进气系统设计变动较大。 1. 进气系统的构成和布置 1.1空滤器总成的布置 空滤器的布置在机舱右侧。 1.1.1 空滤器的型式 空滤器采用塑料壳体,本体和上盖壳体上下分开型式,进气口在本体,向车 体右侧,出气口在上盖,出气口带法兰与空气流量计通过两个螺栓联接,法 兰口粘接有橡胶密封圈保证与流量计接触端面密封。 1.1.2滤芯的结构型式 滤芯采用折叠的无纺布通过注塑框架固定平板式结构,橡胶密封圈保证与空 滤器壳体密封面密封。 1.1.3空滤器总成的安装方式 空滤器总成采用三点固定方式,两点利用现有的孔位,固定金属安装支架, 另一点借用动力转向罐支架。 1.2 进气导管的构成和布置 进气导管由进气隔热板进气导管与谐振器导管口构成 1.2.1 进气导管的结构 进气导管由进气隔热板和进气导管构成,隔热板一方面起隔热作用,同时起 固定进气管的作用。进气口从右侧翼子板引导进气,另一歧管连接谐振器管 口。 1.2.2 进气导管布置位置 进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内。

进气导管进气口大气侧,管口内径为:80mm 1.2.4 进气导管安装方式 进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内,另一端卡装在空滤器本体。 1.3 谐振器的结构和布置 谐振器的型式采用亥姆霍兹(Helmholtz)共振腔, 1.3.1 谐振器的布置位置 谐振器布置在翼子板右侧内, 1.3.2 谐振器的基本尺寸 谐振器管口内径为:40mm,连接管的长度为:35mm 1.3.3 谐振器的安装方式 谐振器通过两个金属支架,固定在引擎盖右侧,利用现有侧孔位,通过螺母固定。 1.4 进气胶管的结构和布置 进气胶管根据与空滤器联接的流量计的位置和发动机进气口位置设计布置1.4.1 进气胶管的结构 进气胶管中部设计三个波纹,胶管外侧面布置纵横交叉加强筋,加强筋间距22~28mm,容易吸塌的部位,加强筋的高度为5mm,其他部位加强筋高度为4mm。 1.4.2 进气胶管布置位置 进气胶管根据流量计和发动机进气口位置确定,保证与护风圈(间隙30mm 以上)、引擎盖间隙(30mm以上),同时考虑检查机油量时,插拔机油尺干涉检查。

拉式膜片弹簧离合器课程设计

拉式膜片弹簧离合器课程设计 汽车设计课程设计说明书 设计题目:拉式膜片弹簧离合器设计 姓名高阳周龙辉程续朝褚帅 院系交通学院 专业交通运输 年级交通本1401 学号 20142803331 20142803330 20142803329 20142803325 2017年06月30日 目录 摘要………………………………………………………………………………………… 1 1 绪论…………………………………………………………………………………………2 1.1离合器概论……………………………………………………………………………… 2 1.2 离合器的功用……………………………………………………………………………2 1.3 离合器的工作原理………………………………………………………………………3 1.4 膜片弹簧离合器的概论…………………………………………………………………4 1.5 拉式膜片弹簧离合器的优点……………………………………………………………5 2 离合器结构方案选取………………………………………………………………………5 2.1 离合器车型的选定

………………………………………………………………………5 2.2 离合器设计的基本要求…………………………………………………………………5 2.3 离合器结构设计…………………………………………………………………………6 2.3.1 摩擦片的选择…………………………………………………………………………6 2.3.2 压紧弹簧布置形式的选择……………………………………………………………6 2.3.3 压盘的驱动方式………………………………………………………………………6 2.3.4 分离杠杆、分离轴承…………………………………………………………………7 2.3.5 离合器的散热通风……………………………………………………………………7 3 离合器基本结构参数的确定………………………………………………………………7 3.1 摩擦片主要参数的选择…………………………………………………………………7 3.2 离合器后备系数β的确定………………………………………………………………8 3.3 单位压力P的确定………………………………………………………………………9 3.4单位压力P0的确定………………………………………………………………………9 4 离合器压盘设计…………………………………………………………………………10 4.1 压盘的传力方式选择……………………………………………………………………10 4.2 压盘的几何尺寸的确定…………………………………………………………………10 .3 压盘传动片的材料选择…………………………………………………………………10 4 5离合器膜片弹簧设计.................................................................................11 5.1 膜片弹簧的结构特点..............................................................................11 5.2 膜片弹簧的变形特性和加载方式...............................................................11 5.3 膜片弹簧的弹性变形特性........................................................................11 5.4 膜片弹簧的参数尺寸确定........................................................................13 5.4.1 H/h比值的选取.................................................................................14 5.4.2 R及R/r确定 (14)

乘用车制动设计及仿真

绪论 制动系的功能 汽车制动系是用于使行驶中的汽车减速或停车,使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。 汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置。行车制动装置用于使行驶中的汽车强制减速或停车,并使汽车下短坡时保持的适当稳定车速。其驱动机构常采用双回路或多回路结构,以保证其工作可靠。 驻车制动装置用于使汽车可靠而无时间限制地停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不用液压或气压驱动,以免其产生故障。 汽车制动系统应具备以上的功能。这些功能是设置在汽车上的一套专门的装置来实现的。这些装置是由制动控制机构和执行机构来组成的。也就是由供能装置、操纵机构、传动机构、制动器、调节制动力装置、制动防抱装置、报警装置和压力保护装置等组成。 制动器的原理介绍 制动器就是刹车装置。是使机械中的运动件停止或减速的机械零件。俗称刹车、闸。制动器主要由制动架、制动件和操纵装置等组成。有些制动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。有些制动器已标准化和系列化,并由专业工厂制造以供选用。制动器有摩擦式、液力式和电磁式等几种。电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。液力式制动器只用作缓速器。目前广泛使用的仍为摩擦式制动器。摩擦式制

排气系统设计

奇瑞汽车有限公司设计指南 编制: 审核: 批准: 发动机工程研究一院

目录 一、主题与适用范围 1、主题 2、适用范围 二、排气消声系统的总成说明及功用 三、设计应用 1、设计规则和输入 2、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比 2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失以及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3、系统及零部件的设计 3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取

3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 净化装置 3.6 补偿器 3.6.1 波纹管 3.6.2 球形连接 3.7 橡胶吊环 3.8 隔热部件 3.9 材料选择 3.9.1 排气管、消声器内组件 3.9.2 消声器外壳体 四、排气消声系统的设计开发流程 五、修订说明 六、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计以及开发的流程等。 2、适用范围: 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车的排气消声系统设计二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1)、引导发动机排气,使各缸废气顺畅的排出; (2)、由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存 在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低排气噪声; (3)、降低排气污染物CO,HC,NO X等的含量,达到排气净化的作用; 注:在本指南中,我们将只介绍排气管和排气消声装置的详细设计,对排气歧管和排气净化装置的详细设计见其他设计指南。 典型的排气消声系统如图1所示: 图1 三、设计应用

相关文档
最新文档