高三数学《数列概念、方法、题型、易误点》汇总

高三数学《数列概念、方法、题型、易误点》汇总
高三数学《数列概念、方法、题型、易误点》汇总

高三数学概念、方法、题型、易误点总结(三)

班级 姓名

三、数 列

1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。

如(1)已知*

2

()156

n n a n N n =∈+,则在数列{}n a 的最大项为__ ;

(2)数列}{n a 的通项为1

+=

bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;

(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;

(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式

)(1n n a f a =+得到的数列}{n a 满足)(*

1N n a a n n ∈>+,则该函数的图象是 ( )

A B C D

2.等差数列的有关概念:

(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 如设{}n a 是等差数列,求证:以b n =

n

a a a n

+++ 21 *n N ∈为通项公式的数列{}n b 为

等差数列。

(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = ;

(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ ;

(3)等差数列的前n 和:1()

2

n n n a a S +=

,1(1)

2

n n n S na d -=+

如(1)数列 {}n a 中,*

11(2,)2

n n a a n n N -=+

≥∈,32

n a =

,前n 项和152

n S =-

,则

1a =_,n = ;

(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T .

(4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b A +=

提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )

3.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和2

11(1)()2

2

2

n n n d d S na d n a n -=+

=

+-

是关于n 的二次函数

且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有

2m n p a a a +=.

如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____ ;

(2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则( ) A 、1210,S S S 都小于0,1112,S S 都大于0B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0

(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*

{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a

a 成等比数列;若{}

n a 是等比数列,且0n a >,则{lg }n a 是等差数列.

如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。

(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,

S S a -=奇偶中,21(21)n S n a -=-?中(这里a 中即n a );:

(1):奇偶

S S k k =+。

如(1)在等差数列中,S 11=22,则6a =______;

(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.

(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n

A f n

B =,则

2121

(21)(21)(21)n n n n

n

n a n a A f n b n b B ---=

==--.

如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3

413-+=n n T S n

n ,

那么

=n

n b a ___________;

(7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。法一:由不等式组???

? ?????≥≤???≤≥++000011n n n n

a a a a 或确

定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。上述两种方法是运用了哪种数学思想?

(函数思想),由此你能求一般数列中的最大或最小项吗?

如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值;

(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ?<,则使前n 项和0n S >成立的最大正整数n 是 ;

(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.

4.等比数列的有关概念:

(1)等比数列的判断方法:定义法

1(n n

a q q a +=为常数),其中0,0n q a ≠≠或

11

n n n

n a a a a +-=

(2)n ≥。

如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1

n a +为____;

(2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。

(2)等比数列的通项:11n n a a q -=或n m n m a a q -=。

如设等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和公比q .

(3)等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n

n a q S q

-=-

11n a a q q

-=-。

如(1)等比数列中,q =2,S 99=77,求9963a a a +++ ;

(2))(10

1

∑∑==n n

k k n C 的值为__________;

特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对

q 分1q =和1q ≠两种情形讨论求解。

(4)等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。

提醒

:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个如已知两个正数,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______

提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;

(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,

2

2

,,,,a a a aq aq q q

…(公比为q );但偶数个数成等比时,不能设为…33,,,aq aq q a q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。

如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的

和是16,第二个数与第三个数的和为12,求此四个数。

5.等比数列的性质:

(1)当m n p q +=+时,则有m n p q a a a a = ,特别地,当2m n p +=时,则有2

m n p a a a = .

如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___; (2)各项均为正数的等比数列{}n a 中,若569a a ?=, 则3132310log log log a a a +++= 。

(2) 若{}n a 是等比数列,则{||}n a 、*

{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、

成等比数列,则{}n n a b 、{

}n n

a b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列

232,,n n n n n S S S S S -- ,…也是等比数列。当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.

如(1)已知0a >且1a ≠,设数列{}n x 满足1l o g 1l o g a

n a n x x +=+(*)n N ∈,且

12100

100x x x +++= ,则101102200x x x +++= .; (2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为___ ___;

(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若

10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,

则{}n a 为摆动数列;若1q =,则{}n a 为常数列.

(4) 当1q ≠时,b aq

q

a q q

a S n

n

n +=-+

--=

1111,这里0a b +=,但0,0a b ≠≠,这

是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。

如若{}n a 是等比数列,且3n n S r =+,则r = (5) m n m n m n n m S S q S S q S +=+=+.

如设等比数列}{n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为_____ ;

(6) 在等比数列{}n a 中,当项数为偶数2n 时,S q S =偶奇;项数为奇数21n -时,

1S a q S =+奇偶.

(7)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。

如设数列{}n a 的前n 项和为n S (N ∈n ), 关于数列{}n a 有下列三个命题:①若

)(1

N ∈=+n a a n n ,则{}n a 既是等差数列又是等比数列;②若()R ∈+=b a n b n

a S n 、2

,则

{}n a 是等差数列;③若()n

n S 11--=,则{}n a 是等比数列。这些命题中,真命题的序号是

6.数列的通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。

如已知数列 ,32

19,1617,815,413

试写出其一个通项公式:__________;

⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{

11,(1)

,(2)

n n n S n a S S n -==-≥。

如①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;

②数列{}n a 满足122

1112522

2

n n

a a a n +

++

=+ ,求n a

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)

(1)

n f n f n a n f n =??

=?≥?-?。

如数列}{n a 中,,11=a 对所有的2≥n 都有2

321n a a a a n = ,则=+53a a ______ ;

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-

1a +(2)n ≥。

如已知数列{}n a 满足11a =,n n a a n n ++=--11

1(2)n ≥,则n a =________ ;

⑸已知

1()n n

a f n a +=求n a ,用累乘法:121121

n n n n n a a a

a a a a a ---=???? (2)n ≥。

如已知数列}{n a 中,21=a ,前n 项和n S ,若n n a n S 2=,求n a

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。特别地,(1)形如1n n a ka b -=+、1n

n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

如①已知111,32n n a a a -==+,求n a ;

②已知111,32n n n a a a -==+,求n a ;

(2)形如11n n n a a ka b

--=

+的递推数列都可以用倒数法求通项。

如①已知1111,31

n n n a a a a --==+,求n a ;

②已知数列满足1a =1

,=n a ;

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);

(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

如数列{}n a 满足11154,3

n n n a S S a ++=+=

,求n a ;

7.数列求和的常用方法:

(1) 公式法:①等差数列求和公式;②等比数列求和公式,

特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;

③常用公式:1123(1)2n n n ++++=+ ,222

112(1)(21)6

n n n n +++=++ ,

3333

2(1)123[]2

n n n +++++= .

如(1)等比数列{}n a 的前n 项和S n=2n-1,则2

232221n a a a a ++++ =_____ ;

(2)计算机是将信息转换成二进制数进行处理的。二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=?+?+?+?,那么将二进制

1

20052)11111(个转换成十进制数是_______ ;

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

如求和:1357(1)(21)n n S n =-+-+-+--

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).

如①求证:01235(21)(1)2n n

n n n n C C C n C n +++++=+ ;

②已知2

2

()1x

f x x

=

+,则111

(1)(2)(3)(4)()()()234f f f f f f f ++++++=______;

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

如(1)设{}n a 为等比数列,121(1)2n n n T na n a a a -=+-+++ ,已知11T =,24T =,

①求数列{}n a 的首项和公比;②求数列{}n T 的通项公式.;

(2)设函数)1(4)()1()(2-=-=x x g x x f ,,数列}{n a 满足:12,()n a f a =(n a =-

))(()1++∈N n a g a n n ,①求证:数列}1{-n a 是等比数列;②令2

12()(1)(1)h x a x a x =-+- (1)n

n a x ++- ,求函数)(x h 在点3

8=

x 处的导数)3

8(h ',并比较)3

8

(h '与n n -22的大小。

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③

2

2

111

1

1(

)1

21

1

k

k k k <

=

-

--+,

2

11111111

(1)(1)1

k

k k k

k k k k k

-

=

<

<

=-

++--;

11

1

1[

](1)(2)

2(1)

(1)(2)

n n n n n n n =

-

+++++ ;⑤

11

(1)!!(1)!

n

n n n =-

++;

=

<<

=.

如(1)求和:

111

14

47

(32)(31)

n n +

++

=??-?+ ;

(2)在数列{}n a 中,1

1

++=

n n a n ,且S n=9,则n =_____ ;

(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。 如①求数列1×4,2×5,3×6,…,(3)n n ?+,…前n 项和n S = ;

②求和:111

112

123

123n

+

+

++

=+++++++ ;

8. “分期付款”、“森林木材”型应用问题

(1)这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.

(2)利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利和为:(1)(12)(1)n S p r p r p nr =+++++

(1)()2

n n p n r +=+

(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:

若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清。如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++ (等比数列问题).

如(1).家用电器一件2000元,实行分期付款,每期付款数相同,每期为一个月,购买后一个月付款一次,共付12 次即购买一年后付清,若按月利率10?(按复利计算),则每期应付款 元(精确到元)

(2).某厂今年初贷款a 万元,年利率为r ,从今年末起,每年年末偿还固定数量金额,5年内还清,则每年应还金额为多少万元?

(3).某地区原有的森林木材存量为a ,且每年的增长率为25%,因生产建设的需要每年年底要砍伐木材的量为b ,设n a 为n 年后该地区森林的木材存量。 (1)求n a 的表达式;

(2)为保持生态环境,防止水土流失,该地区每年的森林木材存量应不少于

a 9

7,如果

a b 72

19=

,那么今后该地区会发生水土流失吗?若会,要经过几年?(lg2=0.30)

(答:

125

);(答:n a <1+n a )(答:3λ>-)(答:A )(答:210n +)(答:8

33

d <≤)(答:

13a =-,10n =)(答:2*

2*12(6,)

1272(6,)n n n n n N T n n n n N ?-≤∈?=?-+>∈??)(答:27)(答:B )(答:225)

(答:2)(答:5;31)(答:

62

87

n n --)(答:前13项和最大,最大值为169)(答:4006)(答:

56

)(答:6n =,12

q =

或2)(答:44)(答:2046)(答:A >B )(答:15,,9,3,1或0,4,

8,16)(答:512)(答:10)(答:100

100a )(答:40)(答:-1)(答:-2)(答:②③)(答:

11212n n a n +=++)(答:{3,12,2n n n a n ==≥)(答:{

114,1

2,2n n n a n +==≥)(答:6116

)(答

1n a =

(答:4(1)

n a n n =+)(答:1231n n a -=- )(答:11

532n n n a -+=- )

(答:1

32n a n =-)(答:21

n a n =)(答:{

1

4,1

34,2n n n a n -==≥ )(答:413

n

-)(答:200521-)(答:(1)n

n -?)(答:72

)(答:①11a =,2q =;②122n n T n +=--)(答:①略;②

8()(1)213n h n '=-+ ,当1n =时,)38(h '=n n -22;当2n =时,)3

8(h 'n n -2

2)(答:31

n n +)(答:99)(答:(1)(5)3n n n ++)(答:21n n +)

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

上海2020高三数学一模分类汇编-函数(详答版)

2020年一模汇编——函数 一、填空题 【杨浦1】函数12 ()f x x - =的定义域为 【答案】(0,)x ∈+∞ 【解析】12 ()f x x -== (0,)x ∈+∞ 【长宁,嘉定,金山2】方程27x =的解为 【答案】2log 7x = 【解析】本题考察了对数的概念 【杨浦3】已知函数()f x 的反函数1 2()log f x x -=,则(1)f -= 【答案】 12 【解析】因为2 1log 12=-,所以1(1)2 f -= 【宝山3】函数)1(3 1 <=-x y x 的反函数是 . 【答案】1log 3+=x y ,]1,0(∈x 【解析】y x ,互换,1 3 -=y x ?1log 3 +=x y ]1,0(∈x 【普陀5】设函数()log (4)(01)a f x x a a =+≠>且,若其反函数的零点为2,则a =__________. 【答案】2 【解析】反函数-1 (2)0f =,有2 (0)log (04)=log 2=2a a f =+,易知2a = 【崇明5】函数 ()f x =的反函数是 . 【答案】1 2()1(0)f x x x -=-≥ 【解析】令1+= x y ,2211y x x y ∴=+?=-

【徐汇5】 已知()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,那么使得(2)()f f a -≤成立的实数a 的取值范围是 【答案】 (][),22,-∞-+∞U 【解析】由题,()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,则 ()f x 在 (],0-∞上单调递减,(2)()f f a -≤,则2a -≤,解得a 的取值范围是(][),22,-∞-+∞U 【闵行6】设函数22log (1)1 ()log 1 x f x x --= ,则方程()1f x =的解为 【答案】2x = 【解析】22222log (1)1 ()=log (1)log log (1)1log 1 x f x x x x x x --= -+=-=Q ()()12 100x x x x -=?? ∴-??? >>2x ∴= 【奉贤8】已知点()3,9在函数()1x f x a =+的图像上,则()f x 的反函数为()1 f x -= __________. 【答案】()2log 1x - 【解析】将点()3,9代入函数()1x f x a =+中得2a =,所以()12x f x =+,用y 表示x 得 ()2log 1x y =-,所以()1f x -=()2log 1x - 【虹口8】设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为_________. 【答案】1 【解析】由于函数2()log (41)x f x =-的反函数为)12(log 4+=x y ,当1()2()f x f x -=, 即)12(log 2)14(log 42+=-x x ,计算出1=x 【松江8】已知函数()y f x =存在反函数()-1y f x =,若函数()+2y f x =的图像经过 点 ()16 ,,则函数()-12+log y f x x =的图像必过点__________. 【答案】 ()43, .

2017年高考理科数学分类汇编 导数

导数 1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 【答案】A 【解析】()()2121e x f x x a x a -'??=+++-??? , 则()()324221e 01f a a a -'-=-++-?=?=-????, 则()()211e x f x x x -=--?,()()212e x f x x x -'=+-?, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-. 【考点】 函数的极值;函数的单调性 【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同。 (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值。 2.【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1 【答案】C 【解析】由条件,211()2(e e )x x f x x x a --+=-++,得: 221(2)1211211(2)(2)2(2)(e e ) 4442(e e )2(e e ) x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++ ∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-?++=, 解得12 a =. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想 【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

最新高考理科数学试题分类汇编:三角函数(附答案)

2013年高考理科数学试题分类汇编:三角函数(附答案)一、选择题 1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知 2 10 cos 2sin ,= +∈αααR ,则=α2tan A. 34 B. 43 C.43- D.3 4- 2 .(2013年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中 , ,3,4 AB BC ABC π ∠== =则sin BAC ∠ = 4 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数 sin(2)y x ?=+的图象沿x 轴向左平移 8 π 个单位后,得到一个偶函数的图象,则?的一个可 能取值为 (A) 34π (B) 4π (C)0 (D) 4π - 5 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ?,内角 ,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b +=且a b >,则B ∠= A.6π B.3π C.23π D.56 π 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是 (A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2 x π =对称 (C)()f x ()f x 既奇函数,又是周期函数 7 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))函数

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

(完整版)江苏高考函数真题汇编

江苏高考数学_函数_十年汇编(2005-2017) 一.基础题组 1. 【2005江苏,理2】函数123()x y x R -=+∈的反函数的解+析表达式为( ) (A )22log 3y x =- (B )23 log 2x y -= (C )23log 2x y -= (D )22 log 3y x =- 2. 【2005 江苏,理 15】函数y =的定义域 为 . 3. 【2005江苏,理16】若3a =0.618,a ∈[),1k k +,k ∈Z ,则k = . 4. 【2005 江苏,理 17】已知 a , b 为常数,若 22()43,()1024,f x x x f ax b x x =+++=++则5a b -= . 5. 【2007江苏,理6】设函数f (x )定义在实数集上,它的图像关于直线x =1 对称,且当x ≥1时,f (x )=3x -1,则有( ) A.f (31)<f (23)<f (32) B.f (32)<f (23)<f (31) C.f (32)<f (31)<f (23) D.f (23)<f (32)<f (3 1) 6. 【2007江苏,理8】设f (x )=l g (a x +-12 )是奇函数,则使f (x )<0 的x 的取值范围是( ) A.(-1,0) B.(0,1) C.(-∞,0) D.(-∞,0)∪(1,+∞) 7. 【2007江苏,理16】某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合.将A 、B 两点间的距离d (cm )表示成t (s )的函数,则d = __________,其中t ∈0,60]. 8. 【2009江苏,理10】.已知1 2 a = ,函数()x f x a =,若实数m 、n 满足()()f m f n >,则m 、n 的大小关系为 ▲ .9. 【2010江苏,理5】设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为__________. 10. 【2011江苏,理2】函数)12(log )(5+=x x f 的单调增区间是 . 11. 【2011江苏,理8】在平面直角坐标系xoy 中,过坐标原点的一条直线与函数()x x f 2 = 的图象交于Q P ,两点,则线段PQ 长的最小值为 .

全国高考理科数学试题分类汇编:函数

2013年全国高考理科数学试题分类汇编2:函数 一、选择题 1 .(2013年高考江西卷(理))函数 的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c <<,则函数 ()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A 3 .(2013年上海市春季高考数学试卷(含答案))函数 1 2 ()f x x - =的大致图像是( ) 【答案】A 4 .(2013年高考四川卷(理)) 设函数 ()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1 [,-11]e -, (C)[1,1]e + (D)1 [-1,1]e e -+ 【答案】A 5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ?-+≤?+>? ,若|()f x |≥ax ,则a 的取值范围是 A.(,0]-∞ B.(,1]-∞ C.[2,1]- D.[2,0]- 【答案】D 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数 ()()21=log 10f x x x ?? +> ??? 的反函数()1=f x -

高考理科数学试题分类汇编:三角函数(附答案)

20XX 年高考理科数学试题分类汇编:三角函数(附答案) 一、选择题 1 .(20XX 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知 2 10 cos 2sin ,= +∈αααR ,则=α2tan A. 34 B. 43 C.43- D.3 4- 2 .(20XX 年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 3 .(20XX 年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中 , ,3,4 AB BC ABC π ∠== =则sin BAC ∠ = 4 .(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数 sin(2)y x ?=+的图象沿x 轴向左平移 8 π 个单位后,得到一个偶函数的图象,则?的一个可 能取值为 (A) 34π (B) 4π (C)0 (D) 4π - 5 .(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ?,内角 ,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b +=且a b >,则B ∠= A.6π B.3π C.23π D.56 π 6 .(20XX 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是 (A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2 x π =对称 (C)()f x ()f x 既奇函数,又是周期函数 7 .(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))函数 cos sin y x x x =+的图象大致为

2019年全国各地高考文科数学试题分类汇编2:函数

2019年全国各地高考文科数学试题分类汇编2:函数 一、选择题 1 .(2019年高考重庆卷(文))函数21 log (2) y x = -的定义域为 ( ) A .(,2)-∞ B .(2,)+∞ C .(2,3) (3,)+∞ D .(2,4)(4,)+∞ 【答案】C 2 .(2019年高考重庆卷(文))已知函数3 ()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则 (lg(lg 2))f = ( ) A .5- B .1- C .3 D .4 【答案】C 3 .(2019年高考大纲卷(文))函数()()()-1 21log 10=f x x f x x ? ?=+ > ??? 的反函数 ( ) A . ()1021x x >- B .()1 021 x x ≠- C .()21x x R -∈ D .()210x x -> 【答案】A 4 .(2019年高考辽宁卷(文))已知函数()) ()21ln 1931,.lg 2lg 2f x x x f f ?? =+++= ??? 则 ( ) A .1- B .0 C .1 D .2 【答案】D 5 .(2019年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 ( ) A .()0()g a f b << B .()0()f b g a << C .0()()g a f b << D .()()0f b g a << 【答案】A 6 .(2019年高考陕西卷(文))设全集为R , 函数()1f x x =-M , 则C M R 为 ( ) A .(-∞,1) B .(1, + ∞) C .(,1]-∞ D .[1,)+∞ 【答案】B 7 .(2019年上海高考数学试题(文科))函数 ()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

十年高考真题分类汇编 数学 专题 函数

十年高考真题分类汇编(2010—2019)数学 专题03函数 1.(2019?天津?理T8)已知a ∈R,设函数f(x)={x 2-2ax +2a ,x ≤1, x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立, 则a 的取值范围为( ) A.[0,1] B.[0,2] C.[0,e] D.[1,e] 【答案】C 【解析】(1)当a ≤1时,二次函数的对称轴为x=a.需a 2 -2a 2 +2a ≥0.a 2 -2a ≤0.∴0≤a ≤2. 而f(x)=x-aln x,f'(x)=1-a x = x -a x >0 此时要使f(x)=x-aln x 在(1,+∞)上单调递增,需1-aln 1>0.显然成立. 可知0≤a ≤1. (2)当a>1时,x=a>1,1-2a+2a ≥0,显然成立. 此时f'(x)= x -a x ,当x ∈(1,a),f'(x)<0,单调递减,当x ∈(a,+∞),f'(x)>0,单调递增. 需f(a)=a-aln a ≥0,ln a ≤1,a ≤e,可知11. 若关于x 的方程f(x)=-1 4x+a(a ∈R)恰有两个互异的实 数解,则a 的取值范围为( ) A.54,9 4 B. 54,94 C. 54,9 4 ∪{1} D.54, 94 ∪{1} 【答案】D 【解析】当直线过点A(1,1)时,有1=-14+a,得a=5 4. 当直线过点B(1,2)时,有2=-14+a,a=9 4. 故当54≤a≤9 4时,有两个相异点. 当x>1时,f'(x 0)=-1x 0 2=-1 4,x 0=2. 此时切点为2,1 2,此时a=1.故选D.

2011—2017年新课标全国卷1理科数学分类汇编 函数及其性质

2.函数及其性质(含解析) 一、选择题 【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B . [1,1]- C . [0,4] D . [1,3] 【2017,11】设,,x y z 为正数,且235x y z ==,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 【2016,7】函数x e x y -=22在]2,2[-的图像大致为( ) A . B . C . D . 【2016,8】若1>>b a ,10<?,, ,若|f (x )|≥ax ,则a 的取值范围是( ) A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 【2012,10】已知函数1 () f x = ,则()y f x =的图像大致为( ) A . B . D .

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

上海市各区县2015届高三上学期期末考试数学理试题分类汇编:三角函数

上海市各区县2015届高三上学期期末考试数学理试题分类汇编 三角函数 一、填空题 1、(宝山区2015届高三上期末)函数3tan y x =的周期是 2、(虹口区2015届高三上期末)在ABC ?中,角A B C 、、所对的边分别为a b c 、、,若75,60,A B b =?=?=,则c = 3、(黄浦区2015届高三上期末)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与圆心在原点的单位圆(半径为1的圆)交于第二象限内的点4 (,)5 A A x ,则sin 2α= .(用数值表示) 4、(嘉定区2015届高三上期末)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知A c C a cos 2cos 3=, 3 1 tan = A ,则= B _________ 5、(金山区2015届高三上期末)方程:sin x +cos x =1在[0,π]上的解是 ▲ 6、(静安区2015届高三上期末)已知△ABC 的顶点)6,2(A 、)1,7(B 、)3,1(--C ,则△ABC 的内角BAC ∠的大小是 .(结果用反三角函数值表示) 7、(静安区2015届高三上期末)已知αtan 、βtan 是方程04332=++x x 的两根,α、)2 ,2(π πβ- ∈,则 βα+= . 8、(浦东区2015届高三上期末)函数sin y x x =的最大值为 9、(普陀区2015届高三上期末)函数?? ? ??-π=x y 4tan 的单调递减区间是 10、(普陀区2015届高三上期末)在ABC ?中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若32=a ,2=c , 120=A ,则=?ABC S 11、(青浦区2015届高三上期末)已知函数2cos y x =与2sin(2)(0)y x ??π=+≤<,它们的图像有一个横坐标为 3 π 的交点,则?的值是 12、(松江区2015届高三上期末)已知函数()sin()3 f x x π ω=+(R x ∈,0>ω)的最小正周期为π,将) (x f y =图像向左平移?个单位长度)2 0(π ?< <所得图像关于y 轴对称,则=? ▲ 13、(徐汇区2015届高三上期末)已知3 sin 5 θ=- ,则cos 2θ=__ __

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

相关文档
最新文档