自动驾驶仿真蓝皮书2019版_自动驾驶仿真技术的意义

自动驾驶仿真蓝皮书2019版_自动驾驶仿真技术的意义
自动驾驶仿真蓝皮书2019版_自动驾驶仿真技术的意义

第1章自动驾驶仿真技术的意义

1.1仿真是自动驾驶研发测试的基础关键技术

2015年工信部关于《中国制造2025》的解读中首次 出了智能网联汽车概念,明确了智能网联汽车的发展目标。2017年发布的《中国智能网联汽车技术路线图》确定了智能网联汽车的定义、技术构架、发展目标路径与重大创新优先行动项。技术路线图指出:测试评价是智能网联汽车基础支撑技术之一。其中自动驾驶系统计算机仿真是自动驾驶车辆测试和试验的基础关键技术,也是未来行业定义自动驾驶车辆相关开发流程与技术准入标准的基础工具。借鉴航空领域的工程实践, 仿真软件已经成为飞机设计仿真分析的标准工具,不使用该仿真工具分析无法获得飞机适航许可。在自动驾驶汽车领域,我们可以预计采用计算机仿真方法测试自动驾驶车辆安全性,未来也将成为汽车设计的一种标准方法与规范。仿真测试与真实物理测试构成相互结合的有机整体,两者缺一不可。

麦肯锡在2018年发布的中国自动驾驶市场研究报告曾指出,未来自动驾驶价值链最重要的三项能力为自动驾驶软件开发、硬件生产和自动驾驶系统及整车验证与集成,它们也是实现差异化竞争的最大技术瓶颈。其中居于前两位的重要技术能力“自动驾驶软件开发”和“自动驾驶系统及整车验证与集成”,在很大程度都依托于计算机仿真技术 供的共性技术的支撑。对于汽车制造与技术企业而言,自动驾驶仿真系统贯穿产品的研发与使用生命全周期。从产品概念选型到产品运行数据收集与系统升级,仿真系统既作为工程技术开发人员的工具箱,帮助实现产品的安全性与稳定性,又作为企业管理人员的数据知识库,帮助累积企业的设计流程、工程经验与数字模型等宝贵的无形资产。对于国家监管与测试机构而言,自动驾驶系统仿真作为分析与检测工具对汽车功能安全性与智能水平高低进行评价。仿真系统不但有助于我国完善汽车的认证标准与质量监督测试方法,而且也有助于我国参与国际法规标准化的制定,为测试场景库与仿真测试方法 供标准化的数据交换格式。

近年来自动驾驶系统的研发与测试迅速发展,但业界仍未就如何在现实世界中进行安全性测试达成一致。自动驾驶系统测试的目标是确定车辆设计运行区域(ODD)。因为未知的危险交通场景难以穷尽,所以基于场景的实车测试方法存

2在技术瓶颈。按照美国高速公路管理局的统计数据,驾驶者平均需要行驶85万公里才会经历一次警方报告事故,接近1.5亿公里才会经历一次致命事故。产业观点通常认为每个自动驾驶系统需要160亿公里的驾驶数据来优化。配置一支1000辆自动驾驶测试车的车队需要花费大约50年的时间才能完成足够的里程测试。正是由于无法进行充分的道路测试,需要投入的时间和费用也不能承受,所以行业普遍共识是需要基于计算机仿真技术对自动驾驶系统进行虚拟测试与评价。

随着汽车技术的不断演进,汽车已经由机械电子为基础的硬件主导演进为以数据为基础的软件主导,汽车原有的电子系统升级为物理信息系统。自动驾驶仿真测试,是指通过计算机仿真技术,建立现实静态环境与动态交通场景的数学模型,让自动驾驶汽车与算法在虚拟交通场景中进行驾驶测试。传统的计算机仿真软件在解决以下几方面的问题上都存在不足,例如高精度地图制作与匹配,高逼真静态场景的建立,先进感知传感器的物理仿真,驾驶员模型与智能交通体模型仿真,动态场景库建设等。新一代具有信息物理特征的仿真系统已经逐渐出现,不但可以更高效的迭代和验证自动驾驶算法,而且可以更好地满足对物理信息系统的整体测试需求。百度、腾讯与Waymo 等都在使用企业自研的内部仿真系统,而服务于汽车行业的外部商业软件也逐步出现,例如51VR 、AAI 、CARLA 、

Cognata 、

Panosim 等第三方自动驾驶仿真测试平台。仿真测试已经成为大多数企业研发自动驾驶系统的共同需求。目前Waymo 在虚拟世界Carcraft 的测试里程突破70亿英里,每天测试里程为1000万英里。

智能网联汽车需要采集海量的道路感知数据,才能对算法进行有效训练。为了尽量多的采集数据,汽车制造商往往通过几十台,甚至数百台路测车辆来解决实际场景数据收集问题。尽管自动驾驶虚拟测试里程的长短可以作为一项简单易懂的测评指标,但是脱离了具体交通场景,里程本身不足以成为一项有效的衡量指标。典型场景与危险场景往往不会随着测试里程增多而持续增加,很快会显示出长尾效应,路试后期很难短时间收集到更有价值的场景了。另一个事实是各国的交通环境显然有着巨大的差异,即使各地区的道路环境与交通习惯也存在较大差异性和多样性。只有测试环境中具有足够丰富而多样的场景挑战,才能使训练与测试的里程具备真正的价值,使得算法可以更好地适应本地独有的交通环境和驾驶规则。目前,追求自动驾驶系统的国际化与不同地区的通用性面临非常多的实际挑战,广泛的公开道路测试依然很难覆盖复杂多样的交通场景。自动驾驶仿真系统可以 供更加丰富多样的静态环境,连续动态

的随机交通流,结合边缘案例与危险案例的参数泛化技术,可以在有限的虚拟

值场景出现的频度与密度。

1.2仿真虚拟测试的根本是保证车辆安全上路

各国政府都在努力推动智能网联汽车的发展,传统车企与高科技企业积极响应,从不同路线研究与发展自动驾驶技术。确保车辆的行驶安全是全行业的共同目标,因为智能网联汽车发展的首要动力是安全。研究显示,90%的碰撞事故是由人类造成的错误导致的,而通过自动驾驶技术有可能减少由人类因素导致的交通事故,从而极大地减少道路死亡。尽管安全是自动驾驶研发中的第一要义,是对于采用未经充分验证的算法与硬件集成的自动驾驶汽车,其在公共道路的测试极易引发致命的交通事故。2018年3月Uber一辆自动驾驶汽车发生了与行人的碰撞事故,直接导致其路测许可被暂停。特斯拉因Autopilot辅助驾驶系统而导致的驾驶员死亡事故更不止一起。2016年1月一辆特斯拉在京港澳高速行驶时,与前方的道路清扫车发生追尾事故,导致驾驶员身亡,特斯拉公司承认车辆在案发时处于自动驾驶状态;同年6月,美国佛罗里达州也发生了特斯拉与横穿马路的重型卡车相撞的事故,导致驾驶人当场身亡。车辆的功能安全与预期功能安全开发已经成为智能汽车研发中的重要问题。参与到自动驾驶技术研究的公司纷纷发布行驶安全报告,报告中强调仿真虚拟测试为软件算法的迭代 供了基础的训练数据,为不安全行为的识别和处理 供了量化的测试环境,为风险控制策略 供了早期快速的评价工具。

自动驾驶事故促使各国车辆技术监管机构 高了警惕,开始慎重审视在公共道路上进行的自动驾驶道路测试。在我国,至今未允许企业在公共开放的高速公路进行自动驾驶测试工作。为解决实际道路测试问题,国家与各地区积极投入资金建设一批封闭测试场地,并有条件的开放了若干指定道路。全国多省市出台了自动驾驶测试管理规范,发放测试牌照,允许全国数十辆测试车在有限的区域内进行测试。相比于旺盛的测试需求,国内自动驾驶测试场地数量远远无法满足要求。由于各城市出台的测试规范均 出在指定的封闭测试场进行测试的门槛,使得测试场往往被一个企业包场。在包场情况下,测试场的多场景利用率低,局部测试装置闲置,而场外多个企业排队等候。实车测试方法在客观上减缓了技术迭代发展速度,也影响了产业发展。

自动驾驶仿真技术可以帮助认证机构去完善对汽车智能化软件产品的认证流程与监督方法,尤其是从测试技术上,弥补目前偏重实车路试的不足。通过完善

仿真的海量自动化测试流程,不但可以增加测试工况范围和复杂程度,更可以对其零部件、子系统与整车集成进行不同层级的全链条测试。通过仿真覆盖实车不能实现的边缘场景,在虚拟测试环境下及早发现实车测试不易甄别的软件故障,仿真测试将逐步成为实车测试的前 条件。加快自动驾驶仿真测试能力建设,可以帮助自动驾驶封闭测试区和示范区进行更高效和全面的测试, 高测试的安全性,节省测试的时间与成本。

仿真系统有能力承载自动驾驶车辆运行全生命周期中的实时数据。当智能网联汽车获得认证许可后,自动驾驶系统仿真平台用来存储车辆实时行驶数据,收集并分析车辆遇到的危险工况并作为复现决策的依据,一方面用于检验产品的故障原因,另一方面 供产品的优化数据,从而保证汽车产品质量的安全可靠与持续升级。最终形成更为科学有效的功能测试方法和产品性能评价指标,形成完整的信息物理系统。

1.3发展自主仿真软件做行业研发的备用系统

计算机仿真技术 供了一种更为通用的底层技术,是中国智能制造完整技术链条中的根基之一。产品研发过程的技术经验,工程师的实践积累,产品开发流程的优化,都在融入进计算机仿真软件与其搭建的数据信息体系中。发展自动驾驶自主仿真软件平台,是在培养一批人才和建立一套备用系统。当国外的巨头对工业软件实施断供,那么这套系统就可以立即投入使用,保证我国汽车自动驾驶技术与智慧交通与出行的持续自主发展。

中国目前深度地参与到了全球技术与标准制定的竞争之中。汽车产业是当今中国国民经济的支柱产业,也是中国加入世界贸易组织和参与贸易自由化全球化的典型产业。根据《中国制造2025》的解读,中国还处在中低端制造梯队,成为制造强国至少需要30年。工业与信息化部对智能汽车制定了发展目标:要求2020年基本ADAS自主份额达50%,2025年基本建成自主的智能网联汽车产业链与智慧交通体系。智能汽车同时面临国内使用环境与国外不同的情况,国内必须坚持走自主开发的路线,才能制造出适合中国的汽车产品,未来形成对汽车产品质量测试的标准化方法与认证流程。

2018年5月国际标准化组织组建自动驾驶测试场景工作组,中国首次作为国际标准工作组召集人,在智能汽车的国际标准化领域作出中国贡献。目前,智能汽车仿真软件国外产品占据主导位置,但数据格式各异,国内的数据标准严重受

到国外软件限制。目前是国内外法规标准建立的窗口期,抢占技术规范的制高点至关重要。谁参与到仿真测试方法与数据格式标准化工作中,在标准形成的后期谁就能更快速获得技术话语权并主导市场。中国在参与标准化制定过程中,正坚持走科技自主之路,需要拿出适合中国道路交通特点的方案。

未来软件定义智能汽车,而仿真是测试软件最基本最有效的工具。只有开发出自主的仿真测试平台,才能获得标准规范的制定主动权,保证汽车产品在中国市场的安全底线。目前自动驾驶仿真软件有:AAI、ANSYS-OPTIS、CARLA、Cognata、Dassault、dSPACE、IPG-Carmaker、Mathworks、Metamoto、MSC-VIRES、Panosim、ParallelDomain、TASS-PreScan、VI-Grade、51VR等。其中大多数仿真软件 供的产品与服务主要以支持ADAS(自动驾驶L2级)开发为主,对自动驾驶仿真所需要的呈现几何级数增长的大规模道路和动态场景进行仿真还缺乏必要的计算架构,对分布式部署与加速计算能力支持薄弱。国内仅有极少数软件公司有能力 供本地的技术工程支持。国内汽车行业的工程开发软件以往一直被国外成熟软件所垄断,随着技术演进直至近两三年,以51VR和Panosim为代表的国内自主研发企业逐渐发力自动驾驶仿真软件的研发与商业化应用。

1.4仿真测试是自动驾驶技术发展的必然结果

据布鲁金斯学会统计,2014年至2017年,全球自动驾驶领域的投资总额超过了800亿美元。另一家独立智库统计显示,2017年投到自动驾驶技术领域的资金,占到全球汽车科技行业投资总额的七成多。波士顿咨询公司则称,到2035年全球自动驾驶汽车销量将达1200万辆,其中超过1/4在中国售出。据推算,未来5年仿真软件与测试的国际市场总规模约在百亿美元左右。尽管L3级别自动驾驶技术无法短期实现大规模量产,但是在特定区域限定场景下的L3与L4级别自动驾驶功能的商业化落地已指日可待。例如自动代客泊车、交通拥堵自动驾驶等功能在2020年将实现更多车型的量产。商业化加速落地,将引起汽车行业对自动驾驶功能持续快速的差异化和精细化研发投入,行业将对仿真虚拟测试产生更多需求。

根据汽车行业研发与测试发展的客观规律,计算机仿真技术早已被大规模应用在车辆机械电子系统的设计研发中。可以预计,适用于自动驾驶系统的仿真技术也将会同机械电子系统仿真一样被大规模地应用于汽车产品的研发流程当中。汽车是专业化分工极强的产业,主机厂并没有对仿真测试工具持续研发与维护升级的兴趣,之前仿真软件供应商已经很好地证明了第三方专业化仿真

软件完全可以满足主机厂研发的定制化需求。以往的仿真软件不能很好的支持自动驾驶感知决策算法软件的迭代与测试,对复杂场景的构建也缺乏相应自动化技术。国际车厂与新技术企业通过内部研发和对外投资的方式,搭建了企业内部的仿真平台。国内企业对自动驾驶研发略晚于国际,较国际企业投入在研发的资金强度也普遍较低。针对自动驾驶仿真技术的使用,中国企业目前既没有成熟的国际经验可以参考,又没有完整的技术解决方案可以直接采用,同样还处于技术探索与积累期。未来企业内建的自动驾驶开发平台,以及满足自动驾驶算法开发与整车系统集成的商业化仿真软件必将成为研发链条上的底层基础工具之一。

智能网联汽车已经进化为信息物理系统的一部分,仿真软件也将形成智能网联汽车与智能交通的中央数据平台。仿真软件通过大数据与云计算平台,记录车辆运行真实数据和软件算法的决策过程,复现车辆行驶的具体行为。最终作为智能交通的大数据载体,记录与管理单车、车队、道路与交通设施。仿真技术不仅仅帮助人工智能算法安全应用于智能汽车,未来也是车队运营、道路设施与智慧交通的管理平台。

动感仿真汽车驾驶模拟器设备

ZG-DG6型动感汽车驾驶模拟器(六自由度) 一、ZG-DG6型4D动感驾驶模拟器系统组成: ZG-DG6型4D动感驾驶模拟器由模拟驾驶舱、视景模拟驾驶软件、数据采集系统、六自由度运动平台、微型控制器、伺服驱动系统等组成(如下图)。二、ZG-DG6型4D动感驾驶模拟器六自由度运动平台: 六自由度平台系统由Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。下平台安装在地面的固定基座基上,上平台为支撑平台。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,实现前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动。 三、ZG-DG6型4D动感驾驶模拟器产品特点: 3.1、动感平台结构稳定,设计合理,科技先进,质量有保障,部件耐磨性强,适合于长时间运行; 3.2、4D动感矢量合力智能模拟技术实现,让你在驾驶中随时感受前后左右四个方向实时变化,沉浸于驾车的状态中; 3.3、还原各种路况效果,驾驶者可以体验路面颠簸起伏造成的垂直方向的失重或超重带来的冲击力; 3.4、最新采用二自由度电动缸动感平台设计原理,改善了液压、气动和电动推杆驾驶模拟器的成本高、笨重动态。 四、ZG-DG6型4D动感驾驶模拟器软件: 新版汽车驾驶模拟器软件符合“公安部123号令”考评规则。小车(科目二)场地5项,分别为:倒车入库、坡道定点停车和起步、侧方停车、曲线行驶、直角转弯;大车(科目二)场地16项,分别为:桩考、坡道定点停车和起步、侧方停车、通过单边桥、曲线行驶、直角转弯、通过限宽门、通过连续障碍、起伏路行驶、窄路掉头、模拟高速公路、连续急弯山区路、隧道、雨天、雾天湿滑路、紧急情况处置。新版汽车驾驶模拟器软件道路驾驶技能考试(科目三)内容包括:上车准备(系安全带)、起步、直线行驶、加减挡位操作、变更车道、靠边停车、直行通过路口、路口左转弯、路口右转弯、通过人行横道线、通过学校区域、通过公共汽车站、会车、超车、掉头、夜间行驶等训练考试项目。产品完全符合“中

验证自动驾驶汽车的性能及功能扩展性

验证自动驾驶汽车的性能及功能扩展性 随着自动驾驶量产时间点的临近,各大汽车OEM厂商也在加快相关技术的测试和验证。 在日前举行的奥迪Q8 SUV发布会上,德国奥迪表示将于2021年打造并推出基于Aicon 概念车的首个自动驾驶车队。 近日,奥迪公司宣布与以色列自动驾驶仿真测试初创公司Cognata合作,以加快自动驾驶技术的开发进程。后者的仿真平台可以再现真实世界的城市,提供了一系列测试场景,包括模拟现实条件的交通模型。 Cognata的这款模拟平台利用了人工智能、深度学习、计算机视觉等技术,旨在提供一款方案,验证自动驾驶汽车的性能及功能扩展性。 今年初,Cognata就宣布公司正在投放一款基于云端的自动驾驶车辆验证用模拟引擎,英伟达与微软为其提供了相应的技术。 Cognata在2017年拿到了500万美元的融资,投资方包括Maniv Mobility(主要来自捷豹路虎、法雷奥等汽车OEM及零部件厂商)、空中客车公司的风险基金等。 传统汽车要走向自动驾驶,除了各家技术方案公司的努力,包括但不限于OEM、自动驾驶公司,还需要对实验结果进行不断测验,进行对称调试优化。 路测无疑是最直接的方式,但由于汽车的重量以及速度,在实际场景中测试有重大的安全隐患,尤其是在技术尚未成熟之前。可是没有实际的路测,技术的更新升级似乎难度又很大。 尤其是今年上半年,UBER的自动驾驶车在美国亚利桑那州坦佩市的全球首例由自动驾驶汽车酿成的死亡事故发生之后,对于自动驾驶测试是否应该在技术未成熟之前上路测试引发了业界的反思与讨论。 随后,英伟达宣布推出一套名为“NVIDIA DRIVE Constellation”,使用照片级真实感模拟、基于云的自动驾驶汽车测试系统,是一款基于两种不同服务器的计算平台。

自动驾驶行业分析之全球篇

2018年自动驾驶行业分析 之全球篇 撰写时间:2018年6月

目录

第1章概述 自动驾驶驾驶的概念与定义 自动驾驶的定义 目前的自动驾驶可分为两类。一类是目前非常火爆的无人驾驶,更强调的是车的自主驾驶以实现舒适的驾驶体验或人力成本的节省,典型的例子为百度和Google的无人车;一类是ADAS(全称为Advanced Driver Assistance System,即高级辅助驾驶系统),发展历史已久,早在1970年就已进入车厂布局中。两者都是利用安装在车上的各式各样传感器收集数据,并结合地图数据进行系统计算,从而实现对行车路线的规划并控制车辆到达预定目标。随着人们对安全、舒适的驾驶体验的不断追求,自动驾驶成为汽车的新方向。 图表1:ADAS与无人驾驶的区别 不过,ADAS也可以视作无人驾驶汽车的前提,随着ADAS实现的功能越来越多,渐进式可实现无人驾驶。 自动驾驶分级

关于汽车智能化的分级,业界统一采用SAE International的标准,即国际汽车工程师协会制定的标准。 SAE的标准把自动驾驶分为了L0~L5,其中L0指的是人工驾驶。标准具体规定如下: 图表2:自动驾驶分级 数据来源:SAE 目前市场上L3级别的自动驾驶汽车已经准备上路,汽车供应链正在投入下一个阶段L4级别自动驾驶汽车的研发。 自动驾驶产业链 产业链结构图 自动驾驶产业链相对较长,主要分为上中下游。上游主要为原材料,包括锂、钴、铜以及半导体等;中游为各种软硬件产品,包括传感器、自动驾驶平台等;下游为整车集成,以及车队管理系统,车载娱乐、车内办公等附加服务。

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 自动驾驶汽车的硬件架构、传感器、线控等硬件系统 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 自动驾驶汽车硬件系统概述 从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解: 一、自动驾驶系统的硬件架构 二、自动驾驶的传感器 三、自动驾驶传感器的产品定义 四、自动驾驶的大脑 五、自动驾驶汽车的线控系统

自动驾驶事故分析 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。 从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

自动驾驶汽车测试的重要性 (是德科技)

白皮 书 《测试对于自动驾驶汽车的 推广至关重要》 随着传统汽车制造商与新参与者纷纷投资研发创新技术,自动驾驶汽车(AV)领域的发展日新月异。尽管自动驾驶汽车有可能提升汽车的安全性和驾驶便利性, 但其复杂的设计要求必须使用测试和验证系统进行严格测试,确保在各种交通、路况和天气条件下的行车安全。当然,自动驾驶汽车将使用基于人工智能(AI)的方法,这将使汽车能够通过电信业务和基础设施提供商进行通信。 自动驾驶汽车技术的基础是互联汽车概念。系统会与汽车进行通信,交流道路和交通状况、附近的汽车以及与驾驶体验有关的其他关键信息。自动驾驶汽车技术将多种传感器、计算机和软件整合在一起,创造出自动驾驶汽车。从统计学上来说,这些汽车在安全行驶里程方面已经超越人工驾驶汽车。在大约 94% 的重大车祸中,常见的、可预见的驾驶员人为错误往往是肇事原因之一,例如超速或注意力分散等。

根据 Waymo(Google 以前的自动驾驶汽车项目)的报告,在以 2 英里时速行驶总共超过500 万英里的过程中,仅发生过一次事故,但没有造成任何人身伤害。即使这样,让消费者树立对全自动驾驶汽车的信任也是一个挑战。例如,根据 2018 年美国汽车协会(AAA)的一项调查1,有 73% 的美国驾驶员表示,他们非常担心驾驶自动驾驶汽车;而 63% 的美国成年人表示他们在步行或骑车时与自动驾驶汽车共享道路会感觉不安全。 安全性及其他优点 基于驾驶员错误所造成的事故数量,安全性是最受关注的问题,而自动驾驶汽车可能带来的最大好处就是安全性的提高。将人为错误排除在驾驶环节之外,可以大大减少交通事故中的人身伤亡。 部署自动驾驶汽车技术还有其他好处。例如,随着人口的老龄化,自动驾驶汽车技术将为老年人和残疾人提供更多的出行自由。此外,它还可能创造新的运输方式和商业模式,例如自动驾驶出租车队和共享自动驾驶汽车公司;这些模式可以提高个人生产率。

三屏汽车驾驶模拟器介绍讲解学习

三屏汽车驾驶模拟器 介绍

ZG-601A3P型主被动式三屏汽车模拟器 一、ZG-601A3P型主被动式三屏汽车模拟器产品概述: 座舱外壳材质:驾驶座舱采用ABS外壳用模具一次铸造成型,无小块拼接,防潮防裂,坚固耐用,永不变型;外观简洁大方、时尚亮丽。五大操作件及仪表台采用真车实件配置,转向机构采用真车方向机总成构建,实车转数方向自动回位;档位外罩采用桑塔纳真车中央通道,具有真车实感。 变速器:采用桑塔纳实车变速箱总成。档位为:倒档、一档、二档、三档、四档、五档和空挡(自动档只含前进档、倒车档和驻车档)。 离合器:离合器采用实车压盘,实现半联动力感,离合器结合、分离、半联动状态感觉明显,分级输出。知名品牌真实汽车配件。 驾驶座舱:驾驶舱是由转向器、油门、离合器、脚刹车、手刹车等操纵机件及座椅等组成。组件必须是真车实物配件。环保,防火外壳。 传感器:信号为模拟量或数字量,输出变化时声音、视像同步变化(音量变化不少于5级),滞后小于50毫秒。有力度变化,力度均适合青少年儿童使用。 转向器:转向器转向范围不小于0-1060度(数字量分级不小于180脉冲/圈),反应灵敏,能够自动回正。油门、刹车信号分级输出,不少于5级,或无级输出。 汽车座椅:专业汽车座椅、美观、耐用。前后可调,适合青少年及儿童使用。 (公司可根据客户要求订做:奥迪、帕萨特、富康、捷达、长安逸动、宝来、北汽勇士、东风猛士、南京依维柯、东风EQ1118/1121/1122/1141、解放CA1121/1122/1141、斯太尔、猎豹、陕汽等车型) 二、ZG-601A3P型主被动式三屏汽车模拟器软件概述: ZG-601A3P型主被动式三屏汽车模拟器软件是我公司在2017年新款软件,全角度视角,画面清楚真实感强,功能强大,外观时尚,配有3台32寸液晶显示器,带有主被动式练习训练功能。整体画面宽大逼真,它突破了原来在行驶十字路口向左拐的视线盲区,在驾驶过程中能清楚看到左右两侧交通状况,训练时更加方便自如,从而清楚的观察车辆与路面的位置关系;并新增加“公安部123号令场地考试项目。” ZG-601A3P型主被动式三屏汽车模拟器完全符合“中华人民共和国公安部 令第123 号令”及教育部新的国家机动车驾驶员训练大纲要求,小型汽车、小型自动挡汽车、残疾人专用小型自动挡载客汽车和低速载货汽车场地5项必考;大型客车、牵引车、城市公交车、中型客车、大型货车场地16项必考,产品具有自主知识产权。

自动驾驶虚拟仿真测试介绍

自动驾驶虚拟仿真测试介绍 自动驾驶虚拟仿真测试介绍(1):是什么 一、引子 二、自动驾驶汽车的仿真测试的不同手段 三、不同仿真测试手段的选择 一、引子 说到仿真测试大家可能会觉得陌生,不过其原理其实已经被广泛采用。 比如李雷想要开车从北京去上海,但是不知道需要多长时间,于是他做了这样的估算: 北京到上海距离s=1200km,开车时速v=120km/h,那么需要的时间为t=s/v=10h;考虑到不是全程高速、中间可能会休息,假设平均时速v’=80km/h会更合理,于是需要的时间为t=s/v’=15h。 通过这个例子,我们可以体会到两点:

仿真即是通过一组公式模仿真实世界,或者说使用一个数学模型简化替代真实世界; 数学模型的复杂度越高,计算结果与真实世界越相近,但是建模难度越高、计算速度越慢。 二、自动驾驶汽车的仿真测试的不同手段 我们首先考虑真实世界的情况,自动驾驶汽车在开放道路进行测试时,可以用下图来表示: 自动驾驶车辆主要由传感器、控制器和执行器构成(当然这主要是指自动驾驶部分,车身、底盘等传统车辆部分暂且不提),驾驶员驾驶车辆在不同的道路、交通和天气环境下接受测试。当然高级别的自动驾驶不需要驾驶员,所以图中用虚线表示。 当在仿真环境中模拟其中的不同部分时,可以得到仿真测试的不同手段。列举如下表所示:

注:后面会有一篇详细介绍不同仿真测试手段的区别,敬请关注。 三、不同仿真测试手段的选择 经常会有人遇到要不要做HIL、要不要买个视频暗箱、要不要买个驾驶模拟器等等疑问,这时如果能先自问自答这样一个问题应该会有所帮助:我们准备测试的被测对象是什么? 如果被测对象仅仅是开发阶段的算法,那只使用MIL/SIL就可以;如果被测对象是要在实车使用的控制器,那可能需要一套HIL设备提前进行测试、提前发现问题。如果不采用视频暗箱、雷达回波模拟器等设备就不能实现测试闭环,那此类传感器信号仿真设备也是需要的。 诸如此类,如果能时刻谨记被测对象是什么和测试目的是什么,应该对选择仿真测试手段有很大帮助。 自动驾驶虚拟仿真测试介绍(2):为什么 一、仿真测试是汽车工程师的自然需求 二、仿真测试是汽车开发流程的必然要求

自动驾驶车辆主动安全控制设备及方法的制作方法

本申请公开了一种自动驾驶车辆主动安全控制装置及方法,包括:多个超声波雷达、多个压力传感器、紧急制动模块;所述各超声波雷达,用于监测周边信息,并将接收到的反射波信号转换成电信号发送至压力传感器;所述各压力传感器,用于将电信号转换成数字压力信号,发送至紧急制动模块;所述紧急制动模块,用于将所述数字压力信号的值与预设阈值进行比较,根据比较结果,将对应命令发送至刹车。通过将反射波信号转换为精度更高的数字压力信号,通过对比阈值,只对大于等于阈值的情况作出反应,能及时地、自动地、可靠地检测车辆周边的情况,从而能够有效地减轻事故的危害程度,尤其适用于自动驾驶车辆。 技术要求 1.一种自动驾驶车辆主动安全控制装置,其特征在于,包括:多个超声波雷达、多个压力传感器、紧急制动模块; 所述多个超声波雷达,用于监测周边信息,并将接收到的反射波信号转换成电信号发送 至压力传感器; 所述多个压力传感器,用于将电信号转换成数字压力信号,发送至紧急制动模块; 所述紧急制动模块,用于将所述数字压力信号的值与预设阈值进行比较,根据比较结 果,将对应命令发送至刹车。

2.如权利要求1所述的一种自动驾驶车辆主动安全控制装置,其特征在于,所述多个超声波雷达相互间隔开地布置在车的外侧,且在车辆的四侧各设置至少一个所述超声波雷达。 3.如权利要求2所述的一种自动驾驶车辆主动安全控制装置,其特征在于,所述同一侧各相邻超声波雷达之间的距离为0.8米至1.2米,各超声波雷达的安装位置距离地面高度为0.55米至0.7米。 4.如权利要求1所述的一种自动驾驶车辆主动安全控制装置,其特征在于,所述紧急制动模块包括行车电脑单元和排气制动单元; 所述行车电脑单元,用于接收数字压力信号的值与预设阈值进行比较,在所述数字压力信号的值大于等于所述预设阈值的情况下,所述行车电脑单元通过CAN总线将制动信号发送给排气制动单元; 所述排气制动单元,用于接收制动信号,并控制排气制动蝶阀关闭排气软管。 5.一种自动驾驶车辆主动安全控制方法,其特征在于,包括: 对周边区域发射超声波,获取反射波信号; 将反射波信号转换成数字压力信号; 比较数字压力信号的值和预设阈值; 根据比较结果发送控制命令; 根据控制命令执行制动。 6.如权利要求5所述的一种自动驾驶车辆主动安全控制方法,其特征在于,所述根据比较结果发送控制命令,包括: 若所述数字压力信号的值大于等于预设阈值,则控制排气制动蝶阀关闭排气软管,并发送刹车命令。 技术说明书

TCMAX116-01—2018自动驾驶车辆道路测试能力评估内容与方法

ICS 01.110 T00/09 T/CMAX 中关村智通智能交通产业联盟团体标准 2018-02-11 发布2018-02-11 实施 中关村智通智能交通产业联盟发布

T/CMAX 116-01—2018 目次 前言 .................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 评估内容 (3) 5 评估操作要求 (6) 6 评估评判 (20) 附录 A (31) 附录 B (63) I

T/CMAX 116-01—2018 II 前言 本标准按照GB/T1.1-2009《标准化工作导则_第1部分》给出的规则起草。 本标准作为《北京市关于加快推进自动驾驶车辆道路测试有关工作的指导意见(试行)》 及《北京市自动驾驶车辆道路测试管理实施细则(试行)》配套落实技术文件。 本标准除编辑性修改外,主要内容变化如下: ——修改了规范性引用文件(见2,见2018.2版2) ——增加了术语和定义自动驾驶系统(见3.3) ——增加了术语和定义相同自动驾驶车辆(见3.9) ——增加了术语和定义背景车辆(见3.10) ——增加了术语和定义评估车辆(见3.11) ——修改了评估内容评估车型(见4.2,见2018.2版4.2) ——修改了评估内容评估内容与评估分级(见4.4,见2018.2版4.4) ——修改了评估内容评估内容与评估车型(见4.5,见2018.2版4.5) ——修改了评估操作要求一般规定的章条编号(见5.1,见2018.2版5.1) ——增加了评估操作要求申请能力评估前提(见5.1.1) ——修改了评估操作要求评估操作要求(见5.1.3,见2018.2版5.1.2) ——修改了评估操作要求评估记录工具(见5.1.4,见2018.2版5.1.3) ——修改了评估操作要求场景布置规定(见5.1.5,见2018.2版5.1.4) ——修改了专项操作要求的章条编号(见5.2,见2018.2版5.2) ——修改了专项操作要求交通标志(见5.2.1,见2018.2版5.2.1) ——修改了专项操作要求紧急情况处置(见5.2.11,见2018.2版5.2.11) ——修改了专项操作要求人工介入后的可操控性(见5.2.12,见2018.2版5.2.12)

智能驾驶测试解决方案

智能驾驶测试解决方案 智能网联汽车集中运用了计算机、现代传感、信息融合、模式识别、通信网络及自动控制等技术,是一个集环境感知、规划决策和多等级自动驾驶控制于一体的技术综合体。 为此在智能网联汽车研发过程中测试和验证面临巨大的挑战。一方面,需要新的测试方法以改进传统路测方法,解决传统测试中需要大量行驶里程所带来的一些问题。另一方面,由于发展初期有限的市场渗透率,测试验证过程还需考虑混合交通环境下其他交通参与者的驾驶行为对自动驾驶汽车功能产生的重大影响。 AA作为Vector、Rohde & Schwarz、IPG、Pi innovo公司、PikeTec、HQRadar 公司的技术合作伙伴,将为中国汽车客户提供智能网联相关测试系统及服务,主要包括L1-L5自动驾驶控制系统的快速原型开发工具、MIL/HIL/VIL测试系统、车联网功能测试系统、FOTA功能测试,毫米波雷达测试及仿真系统等,全面助力智能网联汽车的研发与生产。

概述 随着技术的发展,汽车量产搭载的自动驾驶技术已经由初级的L1/L2辅助驾驶,向L3甚至更高级别演进。高级别的自动驾驶技术依赖更多传感器,那么在环境感知、多传感器融合、决策规划、车辆控制执行、功能安全等方面测试的挑战将日益增大。 AA作为国内一流测试方案服务商,为各主机厂、控制系统/传感器供应商在研发的各阶段提供解决方案。 ●智能驾驶车辆架构设计 AA提供PREEvision架构设计工具,给用户一个完整的协同开发平台,支持从电子电气架构设计到产品系列开发的全过程。 ●智能驾驶快速原型

AA提供OpenECU快速原型开发工具。该工具可在Matlab/Simulink环境进行开发,具有高效的自动代码生成功能,可为自动驾驶控制原型开发提供有效支撑。 ●智能驾驶仿真测试:MIL/SIL/HIL/VIL 美国兰德公司研究表明,自动驾驶需要行驶数亿、甚至数千亿英里验证其可靠性,实车驾驶需要行驶数十年、甚至数百年才能完成可靠性验证。同时美国N-FOT项目研究表明“完成一次公共道路测试的成本至少在100万美元以上”。 基于时间和成本的综合考量,我们可以通过虚拟仿真技术,对道路环境、交通、感知系统、决策规划系统和执行系统进行仿真建模,在实验室环境下实现智能驾驶系统的虚拟仿真测试,加速智能驾驶研发。 智能驾驶仿真测试与传统仿真测试相比,对车辆动力学仿真精度要求更高,更关注车与环境的交互,更重视测试场景的分析和测试场景数据库的建设。 ●智能驾驶MIL/SIL解决方案 MIL/SIL测试主要测试算法模型的功能逻辑。AA基于行业主流的虚拟仿真软件(如IPG公司的CarMaker、TESIS公司的DYNA4等)和PikeTec公司的TPT自动化测试工具,提供完整智能驾驶MIL/SIL解决方案,覆盖AEB、LDW、TSR、HMA、LCDA、LKA、IACC、TJP、TJA、APA等决策规划控制算法MIL测试,同时也能覆盖传感融合

PDF资料:自动驾驶汽车软件单元测试

HEICON Global Engineering GmbH Kreuzweg 22, 88477 Schwendi Internet: www.heicon-ulm.de Blog: http://blog.heicon-ulm.de Software unit testing: Aerospace best practices usable in autonomous vehicles?

HEICON –Global Engineering GmbH HEICON is a specialized engineering company which provides consulting-and development support with a focus on software-based embedded systems. The efficient implementation of methods and processes is the area of our engagement. Founding: 2018 Headquarter:Schwendi near Ulm Membership: Revenue Distribution: 71% 72% 39% 16% 23%20% 28% 36% 35% 6%18% 14% 4% 3%10%11%19% 1%2%8%19%18%2%8%4%5%7%0% 10%20%30%40%50%60%70%80%90%100% 2013 2014 2015 2016 2017 Other Sectors Military Space Railway Industrial Automation Automotive Aerospace

【CN109801534A】基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910124021.7 (22)申请日 2019.02.19 (71)申请人 上海思致汽车工程技术有限公司 地址 201108 上海市闵行区金都路3669号6 幢1层B14室 (72)发明人 邹博  (74)专利代理机构 上海科盛知识产权代理有限 公司 31225 代理人 蔡彭君 (51)Int.Cl. G09B 9/04(2006.01) (54)发明名称 基于自动驾驶模拟器的驾驶行为硬件在环 仿真测试系统 (57)摘要 本发明涉及一种基于自动驾驶模拟器的驾 驶行为硬件在环仿真测试系统,包括仿真模块、 传感器模块、域控制器DCU、摄像头暗箱和驾驶模 拟器,摄像头暗箱包括第二显示器和摄像头,还 包括驾驶模拟器,驾驶模拟器包括第一显示器、 用于驾驶员输入驾驶控制信号的驾驶输入装置 和安装有模拟驾驶程序的计算机,第一显示器和 驾驶输入装置均与计算机连接,仿真模块基于传 感器模块采集的数据生成仿真模型,接收驾驶输 入装置发送的驾驶员输入的驾驶控制信号,更新 仿真模型,并由第二显示器和第一显示器同步显 示,摄像头采集第二显示器显示的内容并发送至 域控制器DCU,由与控制器进行学习。与现有技术 相比, 本发明具有提高自动驾驶稳定性等优点。权利要求书1页 说明书3页 附图2页CN 109801534 A 2019.05.24 C N 109801534 A

权 利 要 求 书1/1页CN 109801534 A 1.一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,包括仿真模块、传感器模块、域控制器DCU和摄像头暗箱,所述摄像头暗箱包括第二显示器和摄像头,所述摄像头与域控制器DCU连接,其特征在于,还包括驾驶模拟器,该驾驶模拟器包括第一显示器、用于驾驶员输入驾驶控制信号的驾驶输入装置和安装有模拟驾驶程序的计算机,所述第二显示器、第一显示器和驾驶输入装置均与计算机连接,所述计算机还与仿真模块连接; 所述仿真模块基于传感器模块采集的数据生成仿真模型,接收驾驶输入装置发送的驾驶员输入的驾驶控制信号,更新仿真模型,并由第二显示器和第一显示器同步显示,所述摄像头采集第一显示器显示的内容并发送至域控制器DCU,由与控制器进行学习。 2.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述摄像头暗箱还包括透镜,该透镜设于第二显示器和摄像头之间。 3.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述驾驶输入装置为模拟驾驶台。 4.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述仿真模块包括HIL硬件和HIL软件, 所述HIL硬件包括电源管理模块、可编程电源、实时仿真系统、负载箱、故障注入单元、断路测试盒,用于实现Simulink等仿真模型的实时运行, 所述HIL软件包括试验管理软件、自动化测试软件、故障注入软件。 5.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述传感器模块包括雷达暗箱和超声波暗箱。 6.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述域控制器DCU执行以下步骤: 阶段1:基于传感器模块采集的数据和驾驶控制信号训练决策模型; 阶段2:基于传感器模块采集的数据和训练好的决策模型输出驾驶控制信号。 7.根据权利要求6所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述驾驶控制信号包括方向盘、油门踏板、刹车踏板控制信号,所述阶段1具体包括以下步骤: 基于传感器模块采集的数据和驾驶控制信号得到包括跟车距离、加减速度、车辆与车道线的距离参数在内的期望参数,并利用传感器模块采集的数据和期望参数对决策模型进行训练。 2

汽车驾驶模拟训练的应用与展望

现代汽车驾驶模拟训练技术的应用与展望 于小辉 一、模拟训练技术的沿革与现状 二、模拟训练技术实现的可能 三、模拟训练技术的基本构成 四、在组训中的应用 五、未来的发展趋势 附件:《模霸2001版——汽车驾驶智能模拟培训系统》教学课程设置 我国目前汽车驾驶培训学校4000余所(不含军队),教练车10万余辆,年培训量300余万人,行业年收入近80亿元,然而年利润确不足15亿元,利润率在10—20%之间徘徊,原因何在?当然,原因是多方面的,但就行业内部的因素而言,究其根本原因,是培训成本高而培训效率低所至。在培训行业垄断经营的年代里,这个的问题并不突出,但随着市场经济的不断建立和成熟,“合理成本”与“合理价格”的矛盾将会日益突出。因而,大幅度地提高汽车驾驶员培训效益问题已成为当务之急。运用科学的培训手段,采取低成本高效率的培训方法,是获得市场生存可能的必由之路,因此,汽车驾驶模拟训练技术也就应运而生。 所谓模拟培训技术它是现代培训方式的一种,是在设备、场地、材料等环境条件受限制的情况下,通过使用某些廉价的仿真替代品来进行培训,以提高操作者技能的训练过程。汽车驾驶模拟培训技术可以大幅度地提高培训效率和降低培训成本,据资料介绍,前苏联、东欧、北欧、美、日等国培训专家强调:“把汽车模拟驾驶训练和场地驾驶训练结合起来的教学方法,是极

为成功的教学方法,这种方法将来还会继续使用。”由此可见,模拟与实车相结合的训练方法是公认的一种科学的训练方法。 多少年来,为普及和推广模拟培训技术,投入的人力不下万人,投入的财力不下亿元,然而至今为止,在全国范围内,模拟设备的覆盖率仍不足5%,既使已拥有模拟设备的单位,其模拟设备的利用率也不足50%,多少公司加盟进来,又多少公司暗然转行,为什么?笔者想就此谈一点浮浅的认识,请各位专家指正。 一、模拟训练技术的沿革与现状 (一)国际模拟培训理论的发展 模拟培训技术最早起源于1881年美国工程师 F.W.泰勒(Frecerick.W.Taylor)的“时间研究”,其成果对于二十世纪初美国和西欧一些国家为提高劳动生产率而推行的“泰勒制”曾产生过很大影响。正如列宁所指出的,泰勒等学者“按科学来分析人在劳动中的机械动作,制定最精确的工作方法,实行最完善的统计和监督制等等。”显然,他们为技术培训的科学化进行了开创性的研究。但是,研究者们只是着眼于对人的外显的操作动作进行客观分析,较少涉及人的心理因素,实际上是把人与机器等同起来,其结果是,在这种片面的实用主义观点指导下所设计的“合理的动作结构”与劳动者的心理活动产生了巨大的冲突。因此,这种培训也未完全达到提高生产率的目的。 二次世界大战期间,美国进行了军事飞行员的心理选拔和操作能力的训练研究。一些研究者认为,技术培训是通过练习和指导来进行的神经—肌肉的调节活动,研究的主要对象应是生理活动,而不是认识或心理活动。这种把微动作简单相加、被动反应的机械主义培训观点显然妨碍了人的技术能力的提高。不过,从行为的角度客观研究人的操作技能的掌握规律,特别是借助一些教学机器等现代化手段进行培训,在技术教育中也是取得了一定成效

自动驾驶分级整理

图1 分级的中文参考 两种自动驾驶分级的区别 NHSTA国家高速路安全管理局 SAE International国际汽车工程师协会 L0:自动化水平 特点:只有环境感知,功能目的是辅助增强驾驶员对环境和危险的感知能力。 驾驶员操作:方向盘、油门、刹车一个都不能少。 L1:特定功能的自动化 驾驶员完全主导。车辆会介入控制1项或者多项,多项功能同时出现的时候,这些功能是工作是分开的。驾驶员可以放弃部分控制权(方向盘、油门&刹车之一),给系统来接管。 特点:此项是大部分公司目前在做的,大部分的功能都是单独一个ECU(Electronic Control Unit电子控制单元)来开发。 驾驶员操作:在ACC(自适应巡航控制系统 Adaptive Cruise Control)情况下,油门和刹车不用;在AEB(自动紧急制动 Automatic Emergency Braking)情况下,刹车可不用(这里不刹车不代表不碰撞,伤害小一些)。 L2:组合功能 驾驶员和汽车来分享控制权。系统同时具有纵向和侧向的自动控制,且具备两项以上。驾驶员可以放弃主要控制权,驾驶员需要观察周围情况,并提供安全操作。驾驶员必须随时待命,在系统退出的时候随时接上。

特点:系统需要进行融合,需要两个ECU进行配合,系统之间进行高度耦合。 驾驶员操作:只要用眼睛看就行,在某些时候车辆自己可以运行。 核心问题:系统不够智能或者没办法提前预知自己不行,退出的警告时间非常短。 L3:有限度的自动驾驶 在某些环境条件下,驾驶员可以完全放弃操控,交给自动化系统进行操控。如果系统需要人员做一些操作,驾驶员偶尔来帮下忙。驾驶员不需要全身关注看车外的情况。 特点:系统某些条件下完全负责整个车辆的操控。 驾驶员操作:系统需要提示帮忙的时候回来,其他时候可以放松;当系统不行的时候,需要驾驶员来帮助。 (NHTSA)L4:全自动驾驶 只要输入出发地和目的地,责任完全交给车辆端。 (SAE)L4:高度自动化 驾驶操作和环境观察仍然都由系统完成。在L3的基础上,人不需要对所有的系统要求进行应答。比如只需要在某些复杂地形或者天气恶劣的情况时,才需要人对系统请求做出决策,而其他情况下系统能独自应付自动驾驶。 (SAE)L5:完全自动化 车上没有方向盘,没有刹车,没有油门,你尽管放心地在车上睡觉、玩手机,因为系统已经可以应付所有的情况。

自动驾驶汽车培训课件

无人驾驶汽车 自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种透过电脑系统实现无人驾驶的智能式的汽车。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。现时自动驾驶技术正在研究及测试中,还没有批准作商业营业或私人使用。 都取得了突破性的进展。中国从20世纪80年代开始进行无人驾驶汽车的研究,国防科技大学在1992年成功研制出中国第一辆真正意义上的无人驾驶汽车。 2005年,首辆城市无人驾驶汽车在上海交通大学研制成功, 世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。 无人驾驶汽车是通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。 它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。

集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。 防抱死制动安全是拉动无人驾驶车需求增长的主要因素。每年,驾驶员们的疏忽大意都会导致许多事故。既然驾驶员失误百出,汽车制造商们当然要集中精力设计能确保汽车安全的系统。"无人"驾驶系统种类繁多,其中有些根本算不上"无人",还有些活像是科幻小说中的东西。 防抱死制动系统其实就算无人驾驶系统。虽然防抱死制动器需要驾驶员来操作但该系统仍可作为无人驾驶系统系列的一个代表,因为防抱死制动系统的部分功能在过去需要驾驶员手动实现。不具备防抱死系统的汽车紧急刹车时,轮胎会被锁死,导致汽车失控侧滑。驾驶没有防抱死系统的汽车时,驾驶员要反复踩踏制动踏板来防止轮胎锁死。而防抱死系统可以代替驾驶员完成这一操作--并且比手动操作效果更好。该系统可以监控轮胎情况,了解轮胎何时即将锁死,并及时做出反应。而且反应时机比驾驶员把握得更加准确。防抱死制动系统是引领汽车工业朝无人驾驶方向发展的早期技术之一。 另一种无人驾驶系统是牵引或稳定控制系统。这些系统不太引人注目,通常只有专业驾驶员才会意识到它们发挥的作用。牵引和稳定

自动驾驶仿真蓝皮书2019修改版_自动驾驶仿真测试标准介绍

第6章自动驾驶仿真测试标准介绍 6.1中国标准现状 6.1.1国家级自动驾驶道路测试标准 2018年4月12日,工业和信息化部、公安部、交通运输部联合发布了《智能网联汽车道路测试管理规范(试行)》。该规范自2018年5月1日起开始施行。这是我国首个针对自动驾驶汽车测试的考核评价标准。 根据规范中的解释,规范中 到的智能网联汽车指的是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,并最终可实现替代人来操作的新一代汽车,即通常意义上的智能汽车、自动驾驶汽车。这其中包括乘用车、商用车,但不包括低速汽车和摩托车。 表6-1国家级智能网联汽车标准及法律法规

6.1.2省市级自动驾驶道路测试标准 据不完全统计,截至2019年2月21日,全国共有22个省市区出台了智能网 联汽车测试管理规范或实施细则,其中有14个城市发出测试牌照,牌照数量总计100余张。 表6-2各省市自动驾驶汽车道路测试相关政策

6.2欧盟与美国标准现状 6.2.1美国自动驾驶仿真标准现状 (1)Waymo-Carcraft自主仿真平台 Waymo采用自主研发的仿真平台,基于仿真环境的网络训练,封闭道路和实际道路测试补充优化。每一天,数字汽车都要在虚拟世界行驶800万英里。Waymo 进行过结构化的场景设计,转化为模拟场景,目前已经完成了20000个场景转化。 在模拟中,Waymo跳过了对象识别这一步。Waymo不会向系统输入原始数据,让它识别行人,而是直接告诉汽车:这里有一个行人。Waymo会为不同的对象建模,对象按模型移动,Carcraft场景构建师也会编写程序,让它们以精准方式移动,用来测试特殊行为。一旦为场景搭建了基本架构,就可以测试所有的重要变量。在四向停车点前,你可以让不同的汽车、行人、自行车骑手调节抵达时间、停留时间和移动速度,还可以修改其它变量,进行测试。你只需要确定赋值范围,然后软件就会自动创建所有场景组合并运行。 (2)NVIDIA-DriveConstellation DriveConstellation,是一款软硬件一体的自动驾驶仿真系统,可帮助对自动驾驶技术进行测试。该系统通过云计算能力来模拟无人驾驶汽车在行驶过程中所遇到的突发情况,收集相关数据。该平台由两个不同的云计算解决方案组成,“ConstellationSimulator”服务器使用英伟达的图形处理器(GPU)运行DriveSim软件,该软件可以生成一个真实的虚拟世界,然后可将虚拟世界输入到虚拟汽车的传感器;第二个服务器名为“ConstellationVehicle”,由DriveAGX车载计算机驱动,负责处理模拟的传感器数据。 Constellation可以生成逼真的数据流,创建各种测试环境,模拟暴雨和暴雪等各种天气条件,以及不同的路面和地形。此外,它还可以模拟白天不同时间的眩目强光以及晚上有限的视野。由于该系统是分散管理的,开发人员能够上传交通场景,整合自己的车辆和传感器模型,并且让整个车队的测试车辆可以行驶“数十亿”英里的模拟里程。

自动驾驶仿真蓝皮书2019版_自动驾驶仿真测试的方法及应用

第2章自动驾驶仿真测试的方法及应用 2.1自动驾驶仿真技术方法 自动驾驶仿真技术,是计算机仿真技术在汽车领域的应用,它比传统ADAS 仿真系统研发更为复杂,对系统在解耦和架构上的要求非常高。类似其它通用仿真平台,它必须尽可能的真实,而对仿真系统进行分析和研究的一个基础性和关键性的问题就是将系统模型化,通过数学建模的方式将真实世界进行数字化还原和泛化,建立正确、可靠、有效的仿真模型是保证仿真结果具有高可信度的关键和前 。 对于自动驾驶仿真系统,需要对哪些模块数学建模以及如何精准建模,一直是近几年研究的热点。需求来源于自动驾驶的工作原理本身,所以我们先简单回顾下自动驾驶汽车控制架构,目前行业内普遍认为,自动驾驶汽车是通过搭载先进的车载传感器、控制器和数据处理器、执行机构等装置,借助车联网、5G和V2X等现代移动通信与网络技术实现交通参与物彼此间信息的互换与共享,从而具备在复杂行驶环境下的传感感知、决策规划、控制执行等功能。驾驶系统基于环境感知技术对车辆周围环境进行感知,并根据感知所获得的信息,通过车载中心电脑自主地控制车辆的转向和速度,使车辆能够安全可靠地行驶,并达到预定目的地。 图2-1自动驾驶汽车控制架构

自动驾驶的关键技术是环境感知技术和车辆控制技术,如图2-1所示。其中环境感知技术是无人驾驶汽车行驶的基础,车辆控制技术是无人驾驶汽车行驶的核心,包括决策规划和控制执行两个环节,这两项技术相辅相成共同构成自动驾驶汽车的关键技术。自动驾驶的整个流程归结起来有三个部分,首先,是通过雷达、激光雷达、摄像头、车载网联系统等对外界的环境进行感知识别;然后,在融合多方面感知信息的基础上,通过智能算法学习外界场景信息,预测场景中交通参与者的轨迹,规划车辆运行轨迹,实现车辆拟人化控制融入交通流中;第三,跟踪决策规划的轨迹目标,控制车辆的油门、刹车和转向等驾驶动作,调节车辆行驶速度、位置和方向等状态,以保证汽车的安全性、操纵性和稳定性。无论是环境感知技术,还是车辆控制技术,自动驾驶都需要大量的算法支持,而算法研发本来就是个不断迭代的过程,在算法不成熟的条件下,为了配合自动驾驶汽车的功能和性能开发,我们必须遵循从纯模型的仿真,到半实物的仿真,到封闭场地和道路测试,并最终走向开放场地和道路测试这一开发流程。这一流程已经越来越被业内人士所认可。密歇根州立大学的自动驾驶专家彭晖教授曾说过,任何成功的自动驾驶系统都是99%以上的模拟,加上一些精心设计的结构化测试,再加上一些路测。Waymo也很早就创建了Carcraft,据报道,仅仅在一天内,Waymo就可能在路况特别复杂的地方模拟成千上万次驾驶。现在,Waymo汽车每天在虚拟世界中行驶的里程数超过1287万公里。在2016年,他们的虚拟总里程数达到40亿公 里,而在真实公路上行驶的谷歌无人驾驶汽车只行驶了483万公里。 仿真技术的基本原理是在仿真场景内,将真实控制器变成算法,结合传感器仿真等技术,完成对算法的测试和验证。NVIDIA在自动驾驶相关论文中较为详细的解释了一种基于端到端深度学习原理的仿真测试,其主要过程如下: 1.架构:设计深度卷积神经网络(CNN),包括标准化层,卷积层,全连接层,输入为道路影像图片,输出为方向盘控制角度。 2.训练:仿真器根据之前准备好的由前置摄像头拍摄的道路影像,每一帧图片对应的人类司机操控方向盘的旋转角度作为真实参考值,用于校正CNN的输出角度,利用这些数据对CNN进行训练,使输出角度和真实角度的平均平方误差到达最小。 3.数据处理:对于每一帧图片,随机移动、翻转、扭曲、遮挡、改变亮度等,并相应改变方向盘的真实角度,用于模拟汽车的不同位置和环境,以期达到正态分布的仿真情境。

相关文档
最新文档