线性方程组的类型和解法

线性方程组的类型和解法
线性方程组的类型和解法

线性方程组的常见类型及对应Matlab 解法

张海伟 精仪学院 2011202048

摘要:

本作业首先介绍了线性方程组的分类方法,然后在分类的基础上,分析了求解不同线性方程组的方法。介绍了与方程组类型相对应的Matlab 解法,着重介绍了初等变换法、向量空间概念求解法及两者的结合求解线性方程组的方法。

线性方程组按照方程个数和未知数的数量关系,可以分为适定、欠定和超定方程组。方程个数等于未知数个数者为适定方程组;方程个数少于未知数个数者为欠定方程组,方程个数多于未知数个数者为超定方程组。按照等式右边的常数是否全部为零,可分为齐次和非齐次方程组。常用的方法有消元法、克拉默法则方法、逆矩阵乘积法、初等变换法和向量空间概念法。

一、消元法

消元法是求解低阶多元线性方程组的方法,此时线性方程组必须是适定方程组,一般用于二元一次或者三元一次方程组,当未知数的个数增多时,计算效率低甚至无法求解。

二、克拉默法则

当系数行列式不为零时,适定方程组有唯一解,其解如下所示:

/1,2,,i i x D D

i n ==???

其中D 是系数行列式,D i 是在系数行列式基础上结合方程组右边常数形式形成的新行列式。在此法则中,行列式的计算显得非常重要。

克拉默法则克服了消元法计算效率低甚至无法计算多元一次方程组的缺点,但不能用于系数行列式为零,以及欠定或者超定方程组的情况的求解。

Matlab 举例:

解线性方程组12341234

123412345242235232110

x x x x x x x x x x x x x x x x +++=??+-+=-??---=-??+++=?

程序:

clc

clear

A=[1 1 1 1;...

1 2 -1 4;...

2 -

3 -1 -5;...

3 1 2 11];

b=[5 -2 -2 0]'; D=det(A);

A1=[5 1 1 1;... -2 2 -1 4;...

-2 -3 -1 -5;...

0 1 2 11];

A2=[1 5 1 1;...

1 -

2 -1 4;...2 -2 -1 -5;...

3 0 2 11];

A3=[1 1 5 1;...

1 2 -2 4;...

2 -

3 -2 -5;...

3 1 0 11];

A4=[1 1 1 5;...

1 2 -1 -2;...

2 -

3 -1 -2;...

3 1 2 0];

x1=det(A1)/D;

x2=det(A2)/D;

x3=det(A3)/D;

x4=det(A4)/D;

X=[x1,x2,x3,x4]'

结果:

X =

1

2

3

-1

结果分析:由求解过程可以看出,克拉默法则需要求矩阵的行列式,所以只适应于方阵方程的求解。

三、逆矩阵乘积法

对于适定方程组,可以把它表达成矩阵方程的形式:

AX = b

解矩阵X可以利用逆矩阵求出:

X = A-1b

矩阵运算的实质是把矩阵当做是一个整体的变量来运算,使普通数的运算大大简化。但是该方法的前提是A可逆,本质上仍然是系数的行列式0

A≠。对于阶数比较高的系数矩阵A,直接求解其逆矩阵是比较困难的,此时可以用数学软件,如Matlab进行求解,提高运算效率。当0

A=是,或者对于欠定或者超定方程组,逆矩阵乘积法仍然无法实现。

clc

clear A=[1 1 1 1;...

1 2 -1 4;...

2 -

3 -1 -5;...

3 1 2 11];

b=[5 -2 -2 0]'; XX=inv(A)*b X=XX’

结果:

X =

1.0000

2.0000

3.0000 -1.0000

结果分析:该方法在本质同样是保证系数矩阵的行列式不为零,若矩阵行列式为零,则其逆不存在,此时该方法失效。同时可以发现,其解是小数的形式,说明在求解逆矩阵的过程中存在数值近似解。

四、初等变化法

对于欠定或者超定方程组的求解,初等变换法是最直接、最简单的方法,同时该方法也能用于适定方程组的求解。因此,初等变换法是一种求解线性方程组的普适方法和最基本方法。秩是矩阵的本征参数,利用系数矩阵的秩和增广矩阵秩的关系,可以判断线性方程组解的情况。

clc

clear

A=[1 1 1 1;...

1 2 -1 4;...

2 -

3 -1 -5;...

3 1 2 11];

b=[5 -2 -2 0]';

B=[A,b];

C=rref(B);

X=C(:,5)'

结果:

X =

1 2 3 -1

结果分析:该方法适用于适定方程、欠定和超定方程。当系数矩阵为方阵时,用Matlab rref指令求得其增广矩阵的最后一列即为其解的值。当系数矩阵不是方阵时,该方法同样可以求解,但不能直接得出其解的值,可以结合向量空间的概念得方程组的通解。

第 3 页共7 页

五、利用向量空间概念求解线性方程组 (一)线性方程组有关定理

对于线性方程组AX = b ,其中,A =()ij m n a ?,X =12(,,,)n x x x '???,

12(,,,)m b b b b '=???。

定理1:

(1) 若()(|)r A r A b ≠,则线性方程组无解;

(2) 若()(|)r A r A b n ==,则线性方程组存在唯一解; (3) 若()(|)r A r A b n =<,则线性方程组有无穷多个解。 定理2:

对线性方程组的导出组AX = b ,若()r A r n =<,则导出组的基础解系含有n —r 个解向量,

(1) 若12,,,n r ξξξ-???为导出组的基础解系,则导出组AX = 0的通解为1122n r n r k k k ξξξ--++???+。

(2) 若0ξ是AX = b 的一个特解,则01122n r n r k k k ξξξξ--+++???+就是AX = b 的通解。

(二)线性方程组的Matlab 解法 (1) 利用左除命令“ \ ”求出方程组的特解

对于线性方程组AX = b ,在Matlab 软件里面常用矩阵的左除命令“ \ ”求出该线性方程组的一个解。若A 是方阵,则A \ b 和()inv A b ?基本一致;若A 不是方阵,则需用“A \ b ”命令使Matlab 软件自动选择适当的方法来求解。

若AX = b 无解,则命令“ \ ”将给出一个最小二乘意义上的近似解,使得AX —b 的长度达到最小。若AX = b 有无穷多解,则命令“ \ ”将给出一个具有最多零元素的特解。若AX = b 有唯一解,则命令“ \ ”给出这个唯一解。

(2) 讨论线性方程组是否有解的Matlab 方法

对于线性方程组AX = b ,首先给系数矩阵A 和常数列矩阵b 赋值,然后用命令“rank ”分别求出系数矩阵A 和增广矩阵(A ,b )的秩,在根据定理1进行判断。

(3) 用Matlab 求方程组通解的方法

为求线性方程组AX = b 的通解,首先根据系数矩阵和增广矩阵

的秩判断方程组是否有解。若方程组有解,则用“A \ b”求出该方程组的一个特解,再用命令“null(A)”求出导出组AX=0的一个基础解系,得到其通解,然后运用定理2得出AX = b的通解。

(三)基于向量空间概念用Matlab求解线性方程组实例与行变换法求解

求解线性方程组

12345

12345

2345

12345

23376

3236

2263

543312

x x x x x

x x x x x

x x x x

x x x x x

++++=

?

?+++-=

?

?

+++=

?

?+++-=

?

的通解

解:

(1) 先通过定理1判断方程组解的情况

A=[1 2 3 3 7; ...

3 2 1 1 -3;...

0 1 2 2 6;...

5 4 3 3 -1];

b=[6;6;3;12];

>> rank(A)

ans =

2

>> rank(A,b)

ans =

2

则rank(A)=rank(A,b)=2<5,说明该方程组有无穷多个解。

(2) 求方程组的一个特解

ξ

ξ=A \ b

>> A\b

ans =

2.5000

0.5000

则0(2.50000000.5000)ξ'=,,,,。

(3) 求AX = 0的基础解系

>> null(A) ans =

0.7441 0.1170 0.0000 -0.3144 -0.7949 -0.0000 -0.3616 0.4091 -0.7071 -0.3616 0.4091 0.7071 0.2934 -0.1402 -0.0000

1(0.7441,0.3144,0.3616, 0.3616, 0.2934)ξ'=---,

2(0.1170, 0.7949, 0.4091, 0.4091, 0.1402)ξ'=-- 3(0.0000, 0.0000, 0.7071, 0.7071, 0.0000)ξ'=---

(4) 线性方程组的通解为

01231232.50000.74410.11700.000000.31440.79490.000000.36160.40910.707100.36160.40910.70710.50000.29340.14020.0000X k k k ξξξξ????????

? ? ? ?

--- ? ? ? ?

? ? ? ?=+++=+++-- ? ? ? ?

- ? ? ? ? ? ? ? ?--????????

其中,k 1,k 2,k 3为任意常数。

对该线性方程组进行初等行变换可得:

1

233760122630000000

00000A ?????

?→??????

, 得到其同解的阶梯型方程组12345234523376

2263

x x x x x x x x x ++++=??

+++=? ,令x 3=x 4=x 5=0,

得一特解0(0,3,000)η'=,,;分别令(x 3,x 4,x 5) = (1,0,0),(0,1,0),(0,0,1),可得其导出组的一个基础解系为:

123(1,2,1,0,0)(1,2,0,0,1)(5,6,0,0,1)ηηη'

=-'=-'

=-

故方程组的通解为:

12301153226010000100001X λλλ???????? ? ? ? ?--- ? ? ? ? ? ? ? ?=+++ ? ? ? ? ? ? ? ? ? ? ? ?????????

其中,λ1,λ2,λ3为任意常数。

我们还可以利用rref 指令得到方程的行阶梯,再类似地利用令x 3=x 4=x 5=0,得一特解0(0,3,000)η'=,,;

分别令(x 3,x 4,x 5) = (1,0,0),(0,1,0),(0,0,1),可得其导出组的一个基础解系,并在此基础上求得其通解。

结果分析:向量空间求解的方法仍然需要初等行变换法,解的形式以通解的形式来表达,更能说明其解的本质,尤其是有无穷多解的情况。在非齐次方程组求解过程中,只需求出对应齐次方程组的通解,加上非齐次方程组的一个特解即可,可以非常方便的借助Matlab 软件得到其通解。

【初中】初中数学方程的解法及应用

【关键字】初中 第7讲方程组的解法及应用 ◆考点链接 1.理解二元一次方程(组)的定义;二元一次方程(组)的解的定义. 2.能灵活地运用代入消元法、加减消元法解二元一次方程组. 3.会解简单的三元一次方程组. *4.会解简单的二元二次方程组. 5.能利用方程组解应用题. 注:标有“*”号的是选讲内容. ◆典例精析 【例题1】已知的解,求a,b的值. 解题思路:根据解的定义可得到关于a,b的方程组. 答案:a=2,b=-3 【例题2】解方程组: (1) 解题思路:(1)题可先将方程组中的各方程化简,再用代入法或加减法解二元一次方程组.也可设x+y=a,x-y=b用换元法解.(2)题应首先由一次方程得x=2y再代入二次方程消去x. 答案:(1) 【例题3】求使方程组的解x、y都是正数m的取值范围. 解:由原方程组得,解得

4 000元.公司第一次改装了部分车辆后核算:?已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费的,公司第二次再改造同样多的车辆后,所有改造后的车辆每天的燃料费占剩下未改装车辆每天燃料费的. 问:(1)公司共改装了多少辆出租车??改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节约的燃料费中收回成本? 解题思路:抓住改装后的车辆每天的燃料费占未改装车辆每天燃料费的分率,建立方程组是解此题的关键. 解:设公司第一次改装了y辆出租车,?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降的百分数为x. 答:公司第一次改装了20辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%. (2)设公司一次性将全部出租车改装,m天后就可以从节约的燃料费中收回成本.则100×80×40%×m=4000×100,解得m=125. 答:125天后,就可以从节省的燃料费中收回成本. 【问题2】(枣庄)某水果批发市场香蕉的价格如下表: 张强两次共购买香蕉(第二次多于第一次),共付款264元,?请问张强第一次、第二次各购买香蕉多少千克? 解:设张强第一次购买香蕉x(kg),第二次购买香蕉y(kg),由题意,得040时,由题意,得 (不合题意,舍去) (3)当20

高次方程及解法

高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则 -1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者( x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根 -1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷ (x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项 a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

一元一次方程应用题类型与解题技巧

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学 后第一次接触到用代数的方法处理应用题。因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下: (1)和、差、倍、分问题。 此问题中常用“多、少、大、小、几分之几” 或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关 键词,确定标准量与比校量,并注意每个词的细微差别。 (2)等积变形问题。 此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积。 (3)调配问题。 从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问 题要搞清人数的变化,常见题型有: ①既有调入又有调出; ②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。 (4)行程问题。 要掌握行程中的基本关系:路程=速度X时间。 相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等 量关系。甲走的路程+乙走的路程=全路程 追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 ①同时不同地:甲的时间=乙的时间甲走的路程- 乙走的路程=原来甲、乙相距的路程 ②同地不同时;甲的时间=乙的时间- 时间差甲的路程=乙的路程 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等 量关系是两人所走的路程差等于一圈的路程。 船(飞机)航行问题:相对运动的合速度关系是: 顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度—水(风)流速度。 车上(离)桥问题: ①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。 (5)工程问题。 其基本数量关系:工作总量=工作效率X工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体 数量时,常设总工作量为“1” ,分析时可采用列表或画图来帮助理解题意。 ( 6 )溶液配制问题。

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

解线性方程组直接解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=??? ?+++=?L L L L 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===??? ??? ? ?L L L L L L L Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det() i i A x i n A = =L 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑L L L §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123 212336 ()123315()18315() x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356 ()15957()211793()x x x E x x E x x E ++=?? --=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21( )()15 E E --得 (3)1231234366()15957()3() x x x E x x E x E ++=?? --=-??=? 由(3)得3 213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001????--?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 1112 11,12122 22,112 ,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? L M L M L L M M L M 令(1) ,1,2,,;1,2,,,1ij ij a a i n j n n ===+L L (1)(1)A b A b ??=?? ???? 第1次消去 (1) 110a ≠, 令 (1)1 1(1)11 , 2,3,,i i a l i n a ==L 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n =L (2)(1)(1) 111110 2,3,,i i i a a l a i n =-==L

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

简易方程的解法分类

【求方程的解例题讲解】 ●题型1(把带有x的整式看成整体计算) 7x+5.3=7.4 3x÷5=4.830÷x+25=85 ●题型2(能化简的先化简,再把带有x的整式看成整体计算) 1.4×8-2x=6 5×3-x÷2=8 6x-12.8×3=0.0610.5+x+21=56 ●题型3(带括号的方程,方法1:去括号;方法2:把括号里面的整式看成整体计算) 3(x+0.5)=21 (200-x)÷5=30 ●题型4(含有多个x的要合并成一个x,再计算) 6x-3x=18 1.5x+18=3x x+2x+18=78

【课堂练习】 410-3x=170 9x-40=5 x÷5+9=21 48-27+5x=31 (x-140)÷70=40.1(x+6)=3.3×0.4 4(x-5.6)=1.6 12x=300-4x (27.5-3.5)÷x=4 【作业】 一、填空 1、14.1÷11的商是()循环小数,商可以简写作(),得数保留三位小数约是()。 3、把2.5 4、2.54·、2.545和2.55……用“>”按顺序排列起来()。 4、在○填上“<”、“>”或“=”号。 (1)0.18÷0.09〇0.18×0.09 (2) 0.7×0.7〇0.7+0.7 (3)3.07×0.605〇0.307×6.05 (4) 4.35×10〇0.8×43.5 5、一桶豆油重100千克,每天用去x千克,6天后还剩下79千克,用方程表示是()=79;x=()。

7、小明今年a岁,爸爸的年龄比他的3倍大b岁,爸爸今年()岁。 8、100千克花生可榨油39千克,照这样计算,每千克花生可榨油()千克。 9、两个因数的积是3.6,如果一个因数扩大2倍,另一个因数扩大10倍,积是()。 10、686.8÷0.68的商的最高位在()位上。 二、判断: 1、0.05乘一个小数,所得的积一定比0.05小。() 2、小数除法的商都小于被除数。()5、含有未知数的等式叫做方程。() 三、选择题: 1、下列算式中与99÷0.03结果相等的式子是()。 A、9.9÷0.003 B、990÷0.003 C、9900÷30 3、因为38×235=8930,所以0.38×2.35+100=()。 A.189.3 B. 108.93 C.100.893 4、47.88÷24=1.995,按四舍五人法精确到百分位应写作()。 A. 2.0 B. 2.00 C. 1.99 四、计算 1、直接写出得数。(10分) 0.001+10.099= 3-0.98= 6×0.25= 0.63÷0.9= 1.8×0.4= 8.95÷0.895= 1.2×4= 3.9×0.01= 2.33×1.2= 1.25×0.8=2、竖式计算。(6分) (1)0.58×0.025(列竖式验算)(2)4.194÷1.4(商精确到百分位)

线性方程组的平方根解法

浅析线性方程组的平方根解法 在求解线性方程组时, 直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b 的系数矩阵A 是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1)正定矩阵A 是非奇异的 2)正定矩阵A的任一主子矩阵也必为正定矩阵 3)正定矩阵A的主对角元素均为正数 4)正定矩阵A 的特征值均大于零 5)正定矩阵A的行列式必为正数 定义一线性方程组Ax=b的系数矩阵A是对称正定矩阵,那么Ax=b是对称正定线性方程组。 定义二如果方阵A满足A=AT那么A是对称阵。 2.1.4 平方根法和改进的平方根法 如果A是n阶对称矩阵,由定理2还可得如下分解定理: 定理2若A为n阶对称矩阵,且A的各阶顺序主子式都不为零,则A可惟一分解为:A= LDLT,其中L为单位下三角阵,D为对角阵。 证明因为A的各阶顺序主子式都不为零,所以A可惟一分解为:A= LU 因为,所以可将U 分解为:

i DU i 其中D 为对角矩阵,Ui 为单位上三角阵?于是:A = LDU 仁L(DUI) 因为A 为对称矩阵,所以,A = AT = UITDTL 七U 仃(DLT),由A 的LU 分解的惟一 性即得:L = UIT,即 Ui = LT ,故 A = LDLT 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定 性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好 的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法, 这种方 法目前在计算机上已被广泛应用。 定理3对称矩阵A 为正定的充分必要条件是A 的各阶顺序主子式大于零。 2对称正定矩阵的三角分解 定理(Cholesky 分解)设A 为n 阶对称正定矩阵,则存在惟一的主对角线元素 都是正数的下三角阵L ,使得:A = LLT 。 分解式A = LLT 称为正定矩阵的Cholesky 分解,利用Cholesky 分解来求解系数 矩阵为对称正定矩阵的方程组AX ^ b 的方法称为平方根法。 设A 为4阶对称正定矩阵,则由定理 4 知,A = LLT ,即: a ii a i2 a i3 a i4 l ii 0 0 0 l ii l 2i l 3i l 4i a 21 a 22 a 23 a 24 l 2i l 22 0 0 0 l 22 l 32 l 42 a 3i a 32 a 33 a 34 l 3i l 32 l 33 0 0 l 33 l 43 a 4i a 42 a 43 a 44 l 4i l 42 l 43 144 l 44 将右端矩阵相乘, 并令两端矩阵的元素相等, 于是不难算得矩阵 L 的元素的计算 公式为: 平方根法的计算框图见图 用平方根法求解系数矩阵对称正定的线性方程组时,计算过程是数值稳定 U ii U 22 U l2 U in U ii 1 U nn U 2n U 22 U nn

高次方程及解法

高次方程及解法 ?????????江苏省通州高级中学?徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), Θ(x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程 x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

相关文档
最新文档