一文读懂电阻和电容的不同

一文读懂电阻和电容的不同
一文读懂电阻和电容的不同

电阻在电路中的作用:电阻主要作用就是阻碍电流流过,应用于限流、分流、降压、分压、负载与电容配合作滤波器及阻匹配等。数字电路中功能有上拉电阻和下拉电阻。

电容器具有隔直流、提供容抗参数和贮存电能等作用,广泛地被用于隔直流、谐振、信号耦合、滤波、移相、能量转换和传感等电路中。

电阻,电路中对电流通过有阻碍作用并完成能量消耗的元件,单位是欧,电阻是电工计算中一个非常重要的物理量,不同材料的电阻率各不相同。

电容,电容是衡量导体储存电荷能力的物理量,两个相互绝缘的导体上,加上一定的电压,它们就会出现一定的电荷量,其中一个导体带正电,另一个储存着大小相等的负电荷。

在使用电阻器和电容器时,经常要了解它们的主要参数。一般情况下,对电阻器应考虑其标称阻值、允许偏差和标称功率;对电容器则需了解其标称容量、允许偏差和耐压。

一文读懂电阻和电容的不同

电阻器和电容器的标称值和允许偏差一般都标在电阻体和电容体上,而在电路图上通常只标出标称值,电解电容则常增标耐压,特殊用途电容器除标出耐压外还要注明品种。它们的标志方法分为下列4种。

1、直标法:直标法是将电阻器和电容器的标称值用数字和文字符号直接标在电阻体和电容体上,其允偏差则用百分数表示,未标偏差值日的即为±20%的允许偏差。

2、文字符号法:文字符号法是将电阻器和电容器的标称值和允许偏差用数字和文字符号按一定规律组合标志在电阻体和电容体上。电阻器和电容器标称值的单位标志符号见表1,允许偏差的标志符号见表2.先举几个电阻器的例子:6R2J表示该电阻标称值为6.2欧姆(Ω),允许偏差为±5%;3k6k表示表示电阻值为3.6千欧(kΩ),允许偏

差10%;1M5则表示电阻值为1.5兆欧(MΩ),允许偏差±20%.再举几个电容器的例子:2n2J表示该电容器标称值为2.2纳法(nF),即2200皮法(pF),允许偏差为±5%;47nk 表示电容器容量为470纳法(nF)或0.47微法(uF),允许偏差±10%.在电路图中,电阻器的欧姆符号Ω和电容量的法拉符号F常可略去不标。

一文读懂电阻和电容的不同

3、色标法:普通电阻器用四色环标志,精密电阻器用五色环标志,紧靠电阻体一端头的色环为第一环,露着电阻体本色较多的另一端头为末环。色标法在电容器上也常用。使用者需熟记表示数字0-9的黑、棕、红、橙、黄、绿、蓝、紫、灰、白各色环的顺序。色标法在各种电子学入门书中介绍较多,这里不再详述。

4、数码表示法:在产品和电路图上用三位数字表示元件的标称值的方法称为数码表示法。常见于进口电器机心和合资企业产品中,如寻呼机、手机中的贴片电阻几乎无一例外地用数码表示法。在三位数码中,从左至右第一、二位数表示电阻标称值的第一、二位有效数字,第三位数为倍率10n的“n”(即在前两位数后加0的个数),单位为Ω。例如标志为222的电阻器,其阻值为2200Ω即2.2kΩ;标志是105的电阻器阻值为1MΩ;标志是4R7的电阻器阻值为4.7Ω。需要注意的是要将这种标志法与传统方法区别开来:如标志为220的电阻器其电阻值为22Ω,只有标志为221的电阻器其阻值才为220Ω。标志是0或000的电阻器,实际是跳线,阻值为0Ω。

目前电子市场上大多数圆片电容器、瓷介电容器和cbb电容器都用数码表示法,读数法与电阻器上的相同。

电容电感在射频电路的作用

EMI/EMC设计经验总结 电容 一、电容的应用: (一)电容在电源上的主要用途:去耦、旁路和储能。 (二)电容的使用可以解决很多EMC问题。 二、电容分类: (一)按材质分类: 1、铝质电解电容: 通常是在绝缘薄层之间以螺旋状绕缠金属箔而制成,这样可以在电位体积内得到较大的电容值,但也使得该部分的内部感抗增加。 2、钽电容: 由一块带直板和引脚连接点的绝缘体制成,其内部感抗低于铝电解电容。 3、陶瓷电容: 结构是在陶瓷绝缘体中包含多个平行的金属片。其主要寄生为片结构的感抗,并且低于MHz的区域造成阻抗。 应用描述: 铝质电解电容和钽电解电容适用于低频终端,主要是存储器和低频滤波器领域。 在中频范围内(从KHz到MHz),陶质电容比较适合,常用于去耦电路和高频滤波.特殊的低损耗陶质电容和云母电容适合月甚高频应用和微波电路。 为了得到最好的EMC特性,电容具有低的ESR(等效串联电阻)值是很重要的,因为它会对信号造成大的衰减,特别是在应用频率接近电容谐振频率场合。 (二)按作用分类: 1、旁路电容: 电源的第一道抗噪防线是旁路电容。主要是通过产生AC旁路,消除不想要的RF能量,避免干扰敏感电路。 通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。 要选择最合适的旁路电容,我们要先回答四个问题: (1)需要多大容值的旁路电容 (2)如何放置旁路电容以使其产生最大功效 (3)要使我们所设计的电路/系统要工作在最佳状态,应选择何种类型的旁路电容? (4)隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。)其中第二个问题最容易回答,旁边电容应尽可能靠近每个芯片电源引脚来放置。距离电源引脚越远就等同于增加串联电感,这样会降低旁路电容的自谐振频率(使有效带宽降低)。 通常旁路电容的值都是依惯例或典型值来选取的。例如,常用的容值是1μF和0.1μF。简单的说,将大电容作为低频和大电流电路的旁路,而小电容作为高频旁路。 旁路电容主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。旁路电容一般作为高频旁路电容来减小对电源模块的瞬态电流需求。通常铝电解电容和胆电容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470μF范围内。若PCB板上有许多集成电路、高速开关电路和具有长引线的电源,则应选择大容量的电容。 2、去耦电容: 去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。主要是为器件提供信号状态在高速切换时所需要的瞬间电流,避免射频能量进入配电网络,为器件提供局部化的直流电压源。去耦电容一般都采用高速电容。 高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以

电容屏与电阻屏的工作原理

电容触摸屏的原理 电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。 电容式触摸屏在触摸屏四边均镀上狭长的电极,在导电体内形成一个低电压交流电场。在触摸屏幕时,由于人体电场,手指与导体层间会形成一个耦合电容,四边电极发出的电流会流向触点,而电流强弱与手指到电极的距离成正比,位于触摸屏幕后的控制器便会计算电流的比例及强弱,准确算出触摸点的位置。电容触摸屏的双玻璃不但能保护导体及感应器,更有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。 电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。由于电容随温度、湿度或接地情况的不同而变化,故其稳定性较差,往往会产生漂移现象。该种触摸屏适用于系统开发的调试阶段。 编辑本段电容触摸屏的缺陷 电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。 电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。 我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。 电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。 此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。 电阻屏的原理: 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。

电感和电容在无功功率中的作用介绍

电力系统电压与无功补偿 现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。信息请登陆:输配电设备网 1. 电压与无功补偿 电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。 国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。信息来 自:https://www.360docs.net/doc/cb10952622.html, 电容和电感并联接在同一电路时,当电感吸收能量时,正好电容释放能量;电感放出能量时,电容正好吸收能量。能量就在它们中间互相交换。即电感性负荷所需的无功功率,可以由电容器的无功输出得到补偿,因此我们把具有电容性的装置称为“无功补偿装置”。 电力系统常用的无功补偿装置主要是电力电容器和同步调相机。信息来 源:https://www.360docs.net/doc/cb10952622.html, 若电力负荷的视在功率为S,有功功率为P,无功功率为Q,有功功率、无功功率和视在功率之间的关系可以用一个直角三角形来表示,以有功功率和无功功率各为直角边,以视在功率为斜边构成直角三角形,有功功率与视在功率的夹角称为功率因数角。有功功率与视在功率的比值,我们称为功率因数,用cosf表示,cosf = P/S。它表明了电力负荷的性质。 P = UIcosf Q = UIsinf

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

电容式触摸屏与电阻式触摸屏的对比

计算机图形技术 实 验 报 告 学院电子信息工程学院年级一年级 班级信号与信息处理学号P1******* 姓名戈小娟 2012 年9 月23 日

一、实验目标 了解电阻式触摸屏与电容式触摸屏,激光打印机的基本工作原理,并对电阻式触摸屏与电容式触摸屏的优缺点有着基本的认识。 二、实验内容 电阻式触摸屏的原理: 触摸屏包含上下叠合的两个透明层,四线和八线触摸屏由两层具有相同表面电阻的透明性材料组成,五线和七线触摸屏由一个阻性层和一个导电层组成,通常还要用一种弹性材料来将两层隔开。当触摸屏表面受到的压力(如通过笔尖或手指进行按压)足够大时,顶层和底层之间会产生接触。所有的电阻式触摸屏都采用分压器原理来产生代表X坐标和Y坐标的电压。分压器是通过将两个电阻进行串联来实现的。上面娿电阻R1连接正参考电压VREF,下面的电阻R2接地。两个电阻连接点处的电压测量值与下面那个电阻的阻值成正比。 为了在电阻式触摸屏上的特定方向测量一个坐标,需要对一个阻性层进行偏置:将它的一边接VREF,另一边接地,同时,将未偏置的那一层连接到一个ADC的高阻抗输入端。当触摸屏上的压力足够大,使两层之间发生接触时,电阻性表面背分隔为两个电阻。它们的阻值与触摸点到偏置边缘的距离成正比。触摸点与接地边之间的电阻相当于分压器中下面的那个电阻。 因此,在未偏置层上测得的与触摸点到接地边之间的距离成正比。如图1所示。 电阻式触摸屏的优缺点: 优点:它的屏和控制系统都比较便宜,反应灵敏度也很好,而且不管是四线电阻式触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,能适应各种恶劣的环境。它可以用任何物体来触摸,稳定性能较好。 缺点:它的外层薄膜容易被划伤导致触摸屏不可用,多层结构会导致很大的光损失,对于手持设备通常需要加大背光源来弥补透光性不好的问题,但这样会增加电池消耗。

关于四线电阻触摸屏与五线电阻屏的小区别

关于四线电阻触摸屏与五线电阻屏的小区别 随着触摸应用技术的日益普及,多点触控已经日渐成为市场新焦点, 无论使用者是否真有多点需求, 许多公司在触摸屏的选型上如果不去参考或了解多点的功能及趋势, 这个选型很可能被认为是不够专业的. 要实现多点功能的触摸屏已经越来越多, 然而大家的注意力仍集中在投射电容(Projected Capacitive), 这不得不归功于苹果iPhone 的风采. 事实上早有许多厂商跟使用者前仆后继的投入投射电容屏的研发生产及导入, 但许许多多的困难与阻碍横在眼前, 造成完美演出的比率实在不高. 值此同时, 电阻式多点触摸屏也已经悄悄的逼进市场的聚光灯下. 由于拥有稳定不受干扰的特性, 加上容易量产的好处, 整体购得成本又远低于投射电容, 虽然透光度较低, 但整体比较起来, 仍是暇不掩瑜, 值得各类中小尺寸多点需求的触摸屏选型者甚重考虑. 当前电阻式多点触摸技术可大致分为模拟矩阵电阻AMR(Analog Matrix Resistive)、电压驱动式电阻(V oltage-driven)又称为数字矩阵电阻DMR(Digital Matrix Resistive)及五线多点电阻或称为MF(Multi-Finger)三类。ARM与DMR基本上可以说是四线电阻的一种延伸设计,结构上依然是上下两层,上层为透明导电薄膜(ITO Film)下层为透明导电玻璃(ITO Glass) ,中间是绝缘的透明间隔颗粒物(dot spacer)。 AMR 是沿X 与Y两个方向在ITO层蚀刻出一条一条平行排列的区块(channels),两层channels纵横迭加在一起就类似将整个触摸屏划分成很多小矩阵

电容的识别方法详解.

电容的识别方法详解 电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示, 其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=103 毫法(mF)=10 6 微法(uF)=10 9 纳法(nF)=10 12 皮法(pF) 即:1 u F=103 nF ;1 nF=10 -3 u F ;1 u F=10 6 pF ;1 pF=10 -6 u F 容量大的电容其容量值在电容上直接标明,如10uF/16V。 容量小的电容其容量值在电容上用字母表示或数字表示。 ●字母表示法:1m=1000 uF;1P2=1.2PF;1n=1000PF ●数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍 率。如:102表示10×102 PF=1000PF ;224表示22×10 4 PF=0.22 u F 1. 直标法 容量单位:F(法拉)、μF(微法)、nF(纳法)、pF(皮法或微微法)。 1法拉(F)=106 微法(uF)=10 12 微微法(pF); 1微法(uF)=103 纳法(nF)=10 6 微微法(pF);1纳法(nF)=10 3 微微法(pF) 4n7 表示4.7nF或4700pF ;0.22 表示0.22μF;51 表示51pF 。 有时用大于1的两位以上的数字表示单位为pF的电容,例如101表示100 pF。用小于1的数字表示单位为μF 的电容,例如0.1表示0.1μF。 2. 数码表示法 一般用三位数字来表示容量的大小,单位为pF。前两位为有效数字,后一位表示位率。 即乘以10n ,n为第三位数字。如223J代表22×10 3 pF=22000pF=0.022μF,允许误差 为±5% ,这种表示方法最为常见。 3. 色码表示法 这种表示法与电阻器的色环表示法类似,颜色涂于电容器的一端或从顶端向引线排列。色码一般只有三种颜色,前两环为有效数字,第三环为位率,单位为pF。有时色环较宽,如红红橙,两个红色环涂成一个宽的,表示22000pF。 小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示。 色标法就是用不同颜色的色带或色点,按规定的方法在电容器表面上标志出其主要参数码相的标志方法。电容器的标称值、允许偏差及工作电压均可采颜色进行标志,其规定见下表图。 电容器主要参数的色标规定

电容、电阻、电感作用及滤波电路的简单分析

(一)电容: 1.一般是过滤作用,比如比如电解电容可以过滤低频,陶瓷电容可过滤高频。,原理就是电容的通交隔直特性,电容对交流信号通路,信号频率越高,阻抗越小,电容容量越大,阻抗越小,而对直流信号断路。比如直流电源正负极接一个电容,对交流信号来说相当于短路,于是波动信号就会通过这个电容而消耗掉,于是电压就更稳定,同理,如果在数字地接一电容,那么波动信号就会通过它与地短接,流入地端,而不流入下一级电路。 2.由于正常情况下,并联补偿电容是带电的,并用来补偿线路中的无功功率,提高功率因数,减少电的浪费。当设备或者线路需要维修时,虽然电线或者设备已经断电了,但是这时候的补偿电容由于是两端还有一定的电压,如果这时候人一旦碰到电容或者和电容相连的线路时,人就会有触电危险。但是如果我们在断电后,利用接地线把存储在补偿电容两端的电经过地线直接引入大地,这样使得电容不带电,从而保证维修人员的安全。 3.电容会充电放电的,接地也可以是放电过程,使电容器保持在一端了零电位。从而使电容容量达到最优。 4.耦合电容,又称电场耦合或静电耦合。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。 电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开,同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。 5.电容能抑制器件两端电压变化率,起缓冲作用。同理电感抑制器件两端电流变化率,如整流电路中电感使导通角增大,续流二极管使输出电压平均值增大。 (二)电阻: 上拉电阻、下拉电阻的作用 所谓上,就是指高电平;所谓下,是指低电平。上拉,就是通过一个电阻将信号接电源,一般用于时钟信号数据信号等。下拉,就是通过一个电阻将信号接地,一般用于保护信号。这是根据电路需要设计的,主要目的是为了防止干扰,增加电路的稳定性。一般就是刚上电的时候,端口电压不稳定,为了让他稳定为高或低,就会用到上拉或下拉电阻。有些芯片内部集成了上拉电阻,所以外部就不用上拉电阻了。但是有一些开漏的,外部必须加上拉电阻。假如没有上拉,时钟和数据信号容易出错,毕竟,CPU的功率有限,带很多BUS线的时候,提供高电平信号有些吃力。而一旦这些信号被负载或者干扰拉下到某个电压下,CPU无法正确地接收信息和发出指令,只能不断地复位重启。 假如没有下拉,保护电路极易受到外界干扰,使CPU误以为被保护对象出问题而采取保护动作,导致误保护。 1.TTL驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平 2 .OC门必须加上拉,提高电平值

通常我们说的电容屏就是指电容式触摸屏CapacityTouch

通常我们说的电容屏就是指电容式触摸屏(Capacity Touch Panel),主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。是利用人体的电流感应进行工作的。电容屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),最外层是只有0.0015mm厚的矽土玻璃保护层,夹层ITO涂层作工作面,四个角引出四个电极,内层ITO为屏层以保证工作环境。 电容屏的优点: 1、可以多点触摸啦,现在使用在IP上的多点触摸电容屏只能实现两点的同时触控,以后会发展成三点,四点,N点。 2、定位精度高。 电容屏的缺点: 1、电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后会漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。 2、电容屏只能感应带生物电的物体触摸,比如手指,而且周围环境对他的影响是致命的,如果你的手指有手汗,电容屏可能就不能再给你提供服务了,如果你在充满水蒸气的浴室,或者桑拿房,电容屏可能就要

罢工了,如果你想用其他的物体(比如手写笔,牙签,棉签等)去操作电容屏,他也不会给你任何反应的。 电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。电阻式触摸屏基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂有ITO (纳米铟锡金属氧化物)涂层,ITO具有很好的导电性和透明性。当触摸操作时,薄膜下层的ITO会接触到玻璃上层的ITO,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X、Y值,而完成点选的动作,并呈现在屏幕上。 电阻屏的优点: 1、造价便宜,反应灵敏度也很好 2、能适应各种恶劣的环境,任何情况下(比如上厕所,洗澡,泡桑拿),任何环境中(比如下雨,下雪,高温,超低温),用任何东西(比如指甲,牙签,打火机,舌头)都可以准确的触摸电阻屏。 电阻屏的缺点: 1、只能单点触控,意思就是一次你只能触摸一个地方,如果你去触摸另一个地方,那是没有效果的。 2、电阻屏由于需要一定的压力,时间长了容易造成表面磨损,影响产品的使用寿命;

贴片元件的识别方法

贴片元件的识别方法 贴片元件由于体积小、自感系数小,安装容易(底板不需打孔),因而被广泛采用。但由于体积小,故型号或数值不可能完全标出,只能用代码表示。下面向读者简要介绍几种贴片元件的识别方法。 一、贴片电阻 贴片电阻有矩形和圆柱形两种(见图1)其中矩形贴片电阻基体为黄棕色,其阻值代码用白色字母或数字标注。标注方法主要有两种: 1.三位数字标注法这种标注阻值的方法是:其中第1、2位数字为有效数字,第3位数字表示在有效数字的后面所加“0”的个数,单位:Ω。如果阻值小于10Ω,则以“R”表示Ω。举例见表1。 2.一个字母和一位数字标注法这种标注方法是:在电阻体上标注一个字母和一个数字。其中字母表示电阻值的前两位有效数字。(详见表2),字母后面的数字表示在有效数字后面所加“0”的个数,单位是“Ω”。举例如表3 所示。

关于圆柱形贴片电阻的阻值标注方法与传统带引线电阻的色环表示法完全相同,在此不再赘述。 二、贴片电容 贴片电容的外形与贴片电阻相似,只是稍薄(见图2)。一般贴片电容为白色基体,多数钽电解电容却为黑色基体,其正极端标有白色极性。贴片电容像贴片电阻一样,也有片形和圆柱形两种,其中圆柱形贴片电容酷似贴片柱形电阻,只是通体一样粗,而电阻则两头稍粗。 贴片电容的数值标注方法主要有三种: 1.一个字母和一个数字表示法这种方法是:在白色基线上打印一个黑色字母和一个黑色数字(或在方形黑色衬底上打印一个白色字母和一个白色数字)作为代码。其中字母表示容量的前两位数字,详见表4。后面的数字则表示在前面二位数字的后面再加多少个“0”。单位“pF”。举例见表5。 2.颜色和一个字母表示法这种方法是用电容上标一颜色加一个字母的组合来表示电容量。其字母的含义仍见表4,其颜色则表示在字母代表的容量后面再添加“0”的个数,单位为“pF”,详见表6。例如:红色后面还印有“Y”字母,则表示电容量为8.2×100=8.2pF,黑色后面带印有“H”字母,则表示电容量为2.0×10的1次方=20pF,白色后面加印有“N”字母,则表示

电阻触摸屏和电容触摸屏的区别

电阻触摸屏和电容触摸屏的区别 电阻触屏俗称“软屏”,多用于Windows Mobile系统的手机;电容触屏俗称“硬屏”,如iPhone 和G1等机器采用这种屏质的。一、室内可视效果两者通常很好。二、触摸敏感度1、电阻触屏:需用压力使屏幕各层发生接触,可以使用手指(哪怕带上手套),指甲,触笔等进行操作。支持触笔在亚洲市场很重要,手势和文字识别在哪里都被看重。2、电容触屏:来自带电的手指表层最细微的接触也能激活屏幕下方的电容感应系统。非生命物体、指甲、手套无效。手写识别较为困难。三、精度1、电阻触屏:精度至少达到单个显示像素,用触笔时能看出来。便于手写识别,有助于在使用小控制元素的界面下进行操作。2、电容触屏:理论精度可以达到几个像素,但实际上会受手指接触面积限制。以至于用户难以精确点击小于1cm2的目标。四、成本1、电阻触屏:很低廉。2、电容触屏:不同厂商的电容屏价格比电阻屏贵10%到50%。这点额外成本对旗舰级产品无所谓,但可能会让中等价位手机望而却步。五、多点触摸可行性1、电阻触屏:不可能,除非重组电阻屏与机器的电路连接。 2、电容触屏:取决于实现方式以及软件,已在G1的技术演示以及iPhone上实现。G1的1.7T版本已经可以实现浏览器的多点触摸特性。六、抗损性1、电阻触屏:电阻屏的根本特性决定了它的顶部是柔软的,需要能够按下去。这使得屏幕非常容易产生划痕。电阻屏需要保护膜以及相对更频繁的校准。有利的方面是,使用塑料层的电阻触屏设备总体上更不易损,更不容易摔坏。2、电容触屏:外层可以使用玻璃。这样虽然不至于坚不可摧,而且有可能在严重冲击下碎裂,但玻璃应对日常碰擦和污迹更好。七、清洁1、电阻触屏:由于可以使用触笔或指甲进行操作,更不容易在屏幕上留下指纹、油渍和细菌。2、电容触屏:要用整个手指进行触摸,但玻璃外层更容易清洁。八、环境适应性1、电阻触屏:具体数值不得而知。但有证据表明使用电阻屏的Nokia 5800可以在-15°C至+45°C的温度下正常工作,对湿度也没什么要求。2、电容触屏:典型的操作温度在0°至35°之间,需要至少5%的湿度(工作原理所限)。九、阳光下可视效果1、电阻触屏:通常很糟,额外的屏幕层面反射了大量阳光。2、电容式触控屏利用人体的电流感应进行工作。电容式触控屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO(镀膜导电玻璃),最外层是一薄层矽土玻璃保护层,ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,人体电场、用户和触控屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触控屏四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息。电容式触控屏原理电容式触控屏优点:与电阻式触控屏和电磁式感应板相比,电容式触控屏表现出了更加良好的性能。由于轻触就能感应,使用方便。而且手指与触控屏的接触几乎没有磨损,性能稳定,经机械测试使用寿命长达30年。另外,整个产品主要由一块只有一个高集成度芯片的PCB组成,元件少,产品一致性好、成品率高。电容式触控屏缺点:代表流行风向标的iPhone上使用电容式触控屏无疑进一步印证了其拥有的各项优势。然而,瑕不掩瑜,电容式触控屏也面临着以下一些挑战:由于人体成为线路的一部分,因而漂移现象比较严重;电容式感应输入技术在中小尺寸平板显示器上输入或控制点状目标(如点击软键盘上的电话号码或输入中英文字)时的性能有待改进;温度和湿度剧烈变化时性能不够稳定,需经常校准;不适用于金属机柜;当外界有电感和磁感的时候,可能会使触控屏失灵。另外一点一但触摸屏损坏维修成本比较高。电阻触摸屏:电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。电阻触摸屏剖面

电感电容电阻滤波电路

电感电容电阻滤波电路 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。 电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了) 对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。 如上图所示为10MHz低通滤波电路。该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。 如上图所示为有源高通滤波电路。该电路的截止频率fc=100Hz。电路中,R1与R2之比和C1与C2之比可以是各种值。该电路采用R1=R2和C1=2C2。采用C1=C2和R1=2R2也可以。

滤波电路分类详解 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S' (C)L-C电感滤波(D)π型滤波或叫C-L-C滤波

电阻,电容,电感,二极管,三极管,在电路中的作用

电阻,电容,电感,二极管,三极管,在电路中的作用 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R

常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ ,1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。 如果一个电阻上标为223,则这个电阻为22KΩ。电阻在手机机板上一般的外观示意图如图5所示,其两端为银白色,中间大部分为黑色。

色环电阻、电容的识别

色环电阻 色环电阻,是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。具体读法可参考右图 黑,棕,红,橙,黄,绿,蓝,紫,灰,白 0,1,2,3,4,5,6,7,8,9 银或金的前一还(即最后一环)表示零的个数 银(10%)或金(5%)表示误差,最后读 例如,红,黄,棕,金表示240欧 色环电阻分四环和五环,通常用四环 第三环可以金色(代表第二位是小数点后)和银色的(代表第一位是小数点后),最后一环误差可以无色(20%)

色环实际上是早期为了帮助人们分辨不同阻值而设定的标准,事实上,在普及万用表的今天,这种标识已经很少有其存在的意义了。而且色环电阻也比较大,不适合现代高度集成的性能要求。 电阻的分类 a.按阻值特性:固定电阻、可调电阻、特种电阻(敏感电阻) . 不能调节的,我们称之为固定电阻,而可以调节的,我们称之为可调电阻.常见的例如收音机音量调节的,主要应用于电压分配的,我们称之为电位器. b.按制造材料:碳膜电阻、金属膜电阻、线绕电阻,捷比信电阻,薄膜电阻等. C.按安装方式: 插件电阻、贴片电阻 d.按功能分:负载电阻,采样电阻,分流电阻,保护电阻等 电阻的主要参数 a. 标称阻值:标称在电阻器上的电阻值称为标称值.单位: Ω, kΩ, MΩ.标称值是根据国家制定的标准系列标注的,不是生产者任意标定的. 不是所有阻值的电阻器都存在. b.允许误差:电阻器的实际阻值对于标称值的最大允许偏差范围称为允许误差.误差代码:F 、G 、J、K… (常见的误差范围是:0.01%,0.05%,0.1%,0.5%, 0.25%,1%,2%,5% 等) c. 额定功率:指在规定的环境温度下,假设周围空气不流通,在长期连续工作而不损坏或基本不改变电阻器性能的情况下,电阻器上允许的消耗功率.常见的有1/16W 、1/8W 、1/4W 、1/2W 、1W 、2W 、5W 、10W 阻值和误差的标注方法 a.直标法—将电阻器的主要参数和技术性能用数字或字母直接标注在电阻体上. eg: 5.1k Ω 5% 5.1k Ω J b.文字符号法—将文字、数字两者有规律组合起来表示电阻器的主要参数. eg: 0.1Ω=Ω1=0R1, 3.3Ω=3Ω3=3R3,3K3=3.3KΩ c.色标法—用不同颜色的色环来表示电阻器的阻值及误差等级.普通电阻一般有4环表示,精密电阻用5环. d.数码法 用三位数字表示元件的标称值。从左至右,前两位表示有效数位,第三位表示1 0^n(n=0~8)。当n=9时为特例,表示10^(-1)。 0-10欧带小数点电阻值表示为XRX,RXX. eg : 471=470Ω 105=1M 2R2=2.2Ω 塑料电阻器的103表示10*10^3=10k。片状电阻多用数码法标示,如512表示5. 1kΩ。电容上数码标示479为47*10^(-1)=4.7pF。而标志是0或000的电阻器,表示是跳线,阻值为0Ω。数码法标示时,电阻单位为欧姆,电容单位为pF,电感一般不

电阻、电容、电感的区别

电阻、电容、电感的区别 电容、电感与电阻的区别,很多老师和同学都是不熟悉的,甚至在交流电路中,有很多人还将它们的作用混为一谈,都按电阻的作用来进行分析,从而造成了很多低级错误,笔者在此略作一个辨析,以供大家参考。 一、对电流影响的本质不同 1、电阻 导体电阻对电流的阻碍作用,实际上是自由电荷与导体中其余部分的碰撞(比如金属导体中自由电子和金属阳离子的碰撞),使自由电荷的定向移动能量损失,转化为其余部分热运动动能的过程,有序的定向移动向无序的热运动的转化,即电能向内能的转化,这种无序的热运动不能完全自发的转化为有序的自由电荷定向移动,也就是说,这种能量转化具有方向性。 2、电容 在不稳定电路中,当与电容器并联的其余部分两端电压高于电容器两极板间电压时,就会在其余部分和电容器之间形成充电电流,电容器被充电,定向移动的电荷被转移到电容器极板上,在两板间形成电场,将电路中的电能转化为储存于两板间的电场能,能量还是有序的。当与电容器并联的其余部分两端电压低于电容器两极板间电压时,就会在电容器和其余部分之间形成放电电流,电容器被充电,电荷从电容器极板上转移到电路中发生定向移动,将储存于两板间的电场能转化为电路中的电能。从上述分析可以看出来,如果不考虑电磁辐射的话,电容器充放电,实际上是两种有序运动的相互转化。 3、电感 在不稳定电路中,当与电感器(线圈)串联的电路中电流增加时,电流形成的磁场增强导致电感器中磁通量增大,进而引起自感电动势阻碍电流的增加,这一过程,电路中传来的电能转化为电感器中的磁场能;反过来,当与电感器(线圈)串联的电路中电流减小时,电流形成的磁场减弱导致电感器中磁通量减小,进而引起自感电动势阻碍电流的减弱,这一过程,电感器中的磁场能转化为电路中的电能。从上述分析可以看出来,如果不考虑电磁辐射的话,电感器的自感现象,实际上也是两种有序运动的相互转化。 二、对电流影响的表现不同 1、暂态电路中 (1)电阻:阻碍电流R U I = (2)电容: ①充电过程:阻碍电流R U U I C -=,可以将此式变形为R U R U I C -=,其中R U 可以看作是电路中的电压产生的正向电流,R U C 可以看作是电容器电压产生的反向电流,电路中的电流是这两个电流的和。②稳定过程:相当于断路,阻止电流。③放电过程:充当电源C U I R =,提供电压,使电路中形成电流。(3)电感:①电流增强:阻碍电流增加U E I R -= 自,可以将此式变形为E U I R R =-自,其中R U 可以看作是电路中的电压产生的正向电流,E R 自 可以看作是电感器自感电动势产生的反向电流,电路中的电流是这两个电 流的和。 ②稳定过程:相当于导线,导通电流。 ③电流减弱:充当电源E I R =自 ,提供电压,使电路中形成电流。

各种触摸屏的优点和缺点

各有优点和缺点! 触摸屏的主要类型 从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏 。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式, 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于 1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导

相关文档
最新文档