土木工程外文翻译---坝的安全与地震

土木工程外文翻译---坝的安全与地震
土木工程外文翻译---坝的安全与地震

中文2320字

英文文献:

DAM SASETY AND EARTHQUAKES

A great tragedy was averted in the 1971 san fernando earthquake just north of Los Angeles in southern california .The tower Van Norman Dam ,less than 10 kilometers from the ruptured fault,had been built 30 years before by using common method od carrying soil for fill into position by water sluices .Subsequently ,additional hydraulic fill had been place in the interior portion of the dam ,leaving only a meter or so of soil on the downstream side to stop the water flowing down onto a densely populated suburban area .Fortunately ,the water in the reservoir wad not at the allowable maximum at the time of the earthquake and the silm earth lip of the dam did not erode ,but held the water in the reservoir until it could be drawn down .Meanwhile , 80,000 persons were evacuated from the downstream area .

The incident exemplifies the importance of evaluating prospective dam sites for seismic sidk .Not only is an earth or concreat dam an expensive structure ,ut it directly affects the economy of the region ,through power generation ,flood control,and irrigation .Asthe population contiues to grow ,structural failure of a large dam will pose increasingly greater disaster for the sizsble numbers exposed to the sudden inundation of the flood plains ,Indeed ,in various counstries major dams are located in areas that in the past have suffered large earthquakes .The likelihood of future damaging earthquakes must be most carefully studied.

The naturally occurring earthquakes aside ,however , we must consider also a curious connections between. Reservoirs and earthquakes .There have been at least 13 incidents countries in which swarms of earthquakes have occurred under or very near a large teservoir soon after it has been newly filed .

The idea that earthquakes might be triggered by impounding surface water is not new .In the 1870’s ,the U.S. corps of engineers rejected proposails for major water storage in the salton sea in suothern California on the grounds that such action might cause earthquakes .the first detailed evidence of such an effcet came will the filling of Lake Mead behind hoover Dam (height 221 meters),Nevada-Arizona ,beginning in 1935 .Although there may have been local seismicity before 1935, the fact is that after

1936 earthquakes were much more common .Nearby seismographs in operation since 1940 have shown that the largest earthquake (magnitude about 5)in 1940, the seismicity declined .The foci of hundreds of detected earthquakes cluster on steeply dipping faults on the east side of the lake and have focal depths of less than 8 kilometers .

In the ensuring years ,similar case historise have been acumulated for several dozen large dams ,but only a few are well documented .Most of these dams are more than 100meters high and ,although the geological framework at the sites varies ,the most convincing examples of reservoir-induced earthquakes occur in tectonic regions with at least some history of earthquakes .Most of the thousands of large dams around the world give no sign of any onnection between reservoir filling and earthquakes; of 500large dams sorutinized in the United States, a pooll in 1976 showed that for only 4 percent of them was an earthquake roported with magnitude greater than 3.0 within 16 kilometers of the dam .

Of particular interest are the following four well-studied examples of earthquakes induced by man-made reservoirs. First ,Lake Kariba in Zambia began filling in 1985 behind a 128-meter high dam . Although there is some evifence for minor earthquakes in the vivinity befor the construction ,up till 1963, when the reservoir was full , more than 2,000 local shocks, most under the reservoir ,were located with the use of nearby seismographs .The largest shock in September 1963 had a magnitude 5.8 ;since then the activity has decreased. .

Then in Koyna,Inia an earthquake(magnitude 6.5)centered close to the dam(height 103meters)caused significant damage on December 11,1967.After impounding began in

1962,reports of local shaking became prevalent in a prevlously almost aseismic area.Seismographs showes that focl were concentraewd at shallow depths under the lake.In 1967 a number of sizeable earthquakes occurred,leading up to the principal earthquake of magnitude 6.5 on December 11.This temblor caused significant damage to buildings nearby,killed 177 persons,and injured more than 1,500.A strong motion seismograph in the dam gallery registered a maximun acceleration of 0.63g.The series of earthquakes recorded at Koyna has a pattert that seems to follow the rhythn of the rainfall.At least a comparison of the frequency of earthquakes and water level suggests that seismicity increases a few months after each rainy seaon when the resercoir level is highest.Such correlations are not so clea in other examples now

known.

Another series of earthquakes,which were quite conclusively reservoir induced occurred in China north of Canton.The Hsingfengkiang Dam(height 105 meters)was completed in 1959.Thereafter increasing numbers of local earthquakes were recorded,the grand total in 1972 amounting to more than 250,000.Of course,most were very small,but on March 19,1962,a strong shock of magnitude 6.1 occurred.The energu released was enough to damage the concrete dam structure,which required partial dewatering and strengthen-ing.Most earthquake foci were at deepest,and some of the foci coincided with intersections of the main nearby faults.

The data are not yet complete for the final example:the massive Nurek Dam(height 317 meters)in Tadzhikistan,USSR,the highest earthfill dam in the world.Even in 1972,before its completion but after water impounding began,signs of increased local seismicity were reported.At this writing the plan is for the full load of stored water to go onto the crust in 1978;the few years following will be anxious ones as many wait to see if a large nearby earthquake shakes the facilty.

How does water in a large reservoir stimulate earthquakes? It is hard to belive that it is entirely the effect of the added weight on the rocks;the actual additional pressure a few kilometers below the reservoir is a small fraction of the natural tectonic stresses already presend.(Calculations indicate that a few kilometers down the added stress to shear the rock is only a fraction of a bar.)A more plausible explanation is the trigger mechannism that induced the Denver and Rangely earthquankes discussed earlier in the chapter. In brief,this mechanism would be as follows,Extra pressure produced by the reserovoir loading spreads out as a pressure wave or pulse into the crust.Its slow rate of spreading may tale it months or years to travel a distance of 5 kilometers,depending on the permeability an amount of fracturing of the rock.But if the pressure pulse finally reaches a zone of microcracks it might force water into them and so decrease the forces that are preventing the already present tectonic strain from initiating sliding and elastic rebound along the faults.

In an area where there is a likelihood of seismic activity,certain preliminary steps must be taken before constrction of a dam.First,whether the cause for concern is a natural or an induced earthquake,it is essential at the design stages to estimate the intensity of ground shaking the structure will sustain during its lifetime.Also preconstruction geodetic surveys of the region are useful for purposes of detecting any changs in crustal deformations associated with reservoir loading.

Furthermore,in order that earthquake effects can be studied,seismographs and other instrumentation should be installed at an early time.

Hydrographs for measuring large water waves (seiches) in the reservoir are also important.In the absence of suitable recording instruments to measure the severity of earthquake motions and of the dam response,the advent of a strong earthquake nearby will pose questions that cannot be answered .If,for example,structural damage has occurred,and no such measurements has been taken,it is impossible to compare behavior with design earthquake conditions and thus to estimate performance for other and perhaps larger shocks,or to make design decisions for repair and strengthening of the sructure.

英文文献翻译:

坝的安全与地震

1971年,在南加利福尼亚洛衫矶以北的圣非南多发生的地震中,避免了一场巨大的灾难。里断裂带不到10公里远的下游处是凡。诺尔曼坝.这座坝是30年前用水槽把土运到坝址出填筑起来的,这是一种常用的填筑方法。随后在坝上又补充进行了水力充填。1971年地震期间,坝内侧出现了一个大的滑坡,坝的下游一侧,只剩下一米左右的土墙阻止水流向人口稠密的郊区流去,幸运的是地震时水库中的水没有达到允许的最高水位,而且极其薄弱的坝体没有被侵蚀。因此在水能够排放前,一直把水挡在水库内,当时有八万人从下游撤离。

这次事故可作为一个例子,说明从地震危险的角度来评价未来坝址是十分重要。土坝或混凝土坝不仅是花钱多的建筑物,而且是通过发电防洪和灌溉也是直接影响着这一地区的经济,由于人口不断增长,大坝失事会给突然泛滥的洪泛平原的大量人口带来日益增大的祸患。确实,在许多国家里,都建在过去曾发生过大地震的地区。为了确保下游居民区的安全,在坝的规划过程中,以及竣工之后都要考虑到未来出现的破坏地震的可能性。当然,对坝址附近的地质条件,包括滑坡和断层,都必须仔细研究。

然而,撤开自然发生的地震不谈,我们还必须考虑水库和地震之间的奇妙关系。至少已有13起发生在不同国家的事故可以表明:大水库刚蓄水后,水库下边或靠近水库的地方就发生了多次地震。

地表蓄水可以激发地震的观点并不新鲜。19世纪70年代,美国陆军工程师团曾拒绝在加利福尼亚南部索尔顿湖大量蓄水。其根据就是认为这种举动可能引起地震。内华达一亚利桑那的胡佛坝(坝高221米)上游的麦德水库在1935年开始蓄水,随之就首次获得了这种作用的详细资料,虽然1935年前,那里可能就有局部地震,但事实是1936年以后,地震频繁的多了,1930年开始使用附近的地震仪表明,1940年的大地震(震级约为5级)后地震便减少了,检测到几百次的地震的震源都在麦德水库东侧急剧下陷的断层出,而震源的深度不到八公里。

在以后的几年里,几十座大坝都有类似的记载,但只有几座有完整的书面材料。这些坝中,绝大多数都高于100米。虽然坝址的构造各不相同,但水库诱发地震的最有说服力的的例子都发生在至少都有地震史的构造地区,全世界几千座大坝中的大部分并没有迹象可以表明水库蓄水和地震之间有任何关系,1976年的一次民众调查表明,美国仔细审查的500座大坝中,只有%4的离坝16公里的区域以内发生过三级以上的地震。

下面仔细研究的人工水库诱发地震的四个例子尤为有趣。第一个例子是赞比

亚的卡里巴湖,坝高128米,1958年开始蓄水.虽然在建坝前就有证据表明附近有小地震,但直到1963年水库蓄满水时,附近的地震仪测到过2000多次局部地震,大部分发生在水库下面。1963年9月发生的最大的一次地震,震级为5.8级,从那以后,地震的活动性就减小了。

第二个例子发生在印度的库依纳。1967年12月11日,震中靠近大坝(坝高103米)的一次6.5级地震造成了严重破坏。1962年水库开始蓄水以后,在这个先前几乎无地震的地区里,局部地震的报告频繁了。地震仪显示出震源都在水库下面很求浅的地方,1967年发生了一连串相当大的地震,导致了12月11日的6.5级的主震。这次地震造成附近饿建筑物严重破坏,177人死亡,1500多人受伤。大坝廊道里的一台强动地震仪记录的最大加速度为0.63g。库依纳的一连串地震记录图形似乎与降雨规律一致。对比地震次数和水库水位至少可以表明每年雨季之后的几个月中,水库水位最高时,地震的次数也增加了。在现在已知的其他例子中,这种相关关系并不那么明显。

完全可以肯定是由水库诱发的另外一连串地震则发生在中国广州的北部。新丰江坝(坝高105米)于1959年完工。此后,实测到的局部地震次数越来越多。1972年总数已达25万多次。当然,大多数地震都是很小的。但是1962年3月19日发生了6.1级的强烈地震,释放出来的能量足够破坏这座混凝土坝的结构。需要部分地放水和加固大坝。多数震源在水库最深处附近,位于地下不到十公里的深处。有些震源与附近的主要断层的交叉重合。

最后一例的数据目前还不完全,是苏联塔吉克的巨大的努列克坝(坝高317米)——世界上最高的土坝。早在1972年,坝还未完工只是开始蓄水的时候,据报告,局部地震就有了增加的迹象。在撰写本文时,计划在1978年达到设计蓄水位的全部荷载就要作用在地壳上。以后的几年将是令人忧虑的几年,因为很多人都在等着瞧附近发生的大地震是否会动摇这个大坝。

大型水库里的水是怎样诱发地震的呢?很难相信这完全是附加重量对岩层作用的结果。在水库下面几公里处实际增加的压力只相当于原有构造应力的很小一部分。(计算表明,在几公里下面,所增加的岩石剪力只有零点几吧)一种似乎更合理的解释是触发机理诱发了本章前面所讨论的丹佛和兰奇丽地震。这种机理简述如下:水库加载产生的额外的水压力以压力波或脉冲传入地壳。它的传播速度缓慢,可能要用几个月或几年的时间才能传播5公里的距离,这取决于岩石的渗透性和破碎程度。但是,如果压力脉冲最终达到达微裂隙区,就可能使水进入这些微小的裂隙缝,从而减少了对已经存在的构造并行的抵抗力,构造变形会促使岩层断层滑动和回弹。

在可能有地震活动的地区,建坝前必须采取一些预防措施。首先,不管关心

的原因还是自然地震,或者是诱发地震,在设计阶段必须估计建筑物在使用期间能经受得住地震强度。施工前该地区的大地测量对于检测与水库加载有关的地壳变形也是有用的。

此外,为了研究地震的影响,应该尽早安装地震仪和其他的仪器。安装测量水库里大的水面波动的自记水位仪也是很重要的。没有适当的记录仪器来测量地震活动和坝的反映强度,附近强烈的地震出现时就会产生一些无法回答的问题。例如,地震出现结构破坏而又没有进行这样的观测,要想对该次地震的特点和所设计的地震情况进行比较,从而估计其他的以及更大地震的破坏程度或作出修复和加固建筑物的设计决策都是不可能的。

土木工程外文翻译.doc

项目成本控制 一、引言 项目是企业形象的窗口和效益的源泉。随着市场竞争日趋激烈,工程质量、文明施工要求不断提高,材料价格波动起伏,以及其他种种不确定因素的影响,使得项目运作处于较为严峻的环境之中。由此可见项目的成本控制是贯穿在工程建设自招投标阶段直到竣工验收的全过程,它是企业全面成本管理的重要环节,必须在组织和控制措施上给于高度的重视,以期达到提高企业经济效益的目的。 二、概述 工程施工项目成本控制,指在项目成本在成本发生和形成过程中,对生产经营所消耗的人力资源、物资资源和费用开支,进行指导、监督、调节和限制,及时预防、发现和纠正偏差从而把各项费用控制在计划成本的预定目标之内,以达到保证企业生产经营效益的目的。 三、施工企业成本控制原则 施工企业的成本控制是以施工项目成本控制为中心,施工项目成本控制原则是企业成本管理的基础和核心,施工企业项目经理部在对项目施工过程进行成本控制时,必须遵循以下基本原则。 3.1 成本最低化原则。施工项目成本控制的根本目的,在于通过成本管理的各种手段,促进不断降低施工项目成本,以达到可能实现最低的目标成本的要求。在实行成本最低化原则时,应注意降低成本的可能性和合理的成本最低化。一方面挖掘各种降低成本的能力,使可能性变为现实;另一方面要从实际出发,制定通过主观努力可能达到合理的最低成本水平。 3.2 全面成本控制原则。全面成本管理是全企业、全员和全过程的管理,亦称“三全”管理。项目成本的全员控制有一个系统的实质性内容,包括各部门、各单位的责任网络和班组经济核算等等,应防止成本控制人人有责,人人不管。项目成本的全过程控制要求成本控制工作要随着项目施工进展的各个阶段连续 进行,既不能疏漏,又不能时紧时松,应使施工项目成本自始至终置于有效的控制之下。 3.3 动态控制原则。施工项目是一次性的,成本控制应强调项目的中间控制,即动态控制。因为施工准备阶段的成本控制只是根据施工组织设计的具体内容确

土木工程类专业英文文献及翻译

PA VEMENT PROBLEMS CAUSED BY COLLAPSIBLE SUBGRADES By Sandra L. Houston,1 Associate Member, ASCE (Reviewed by the Highway Division) ABSTRACT: Problem subgrade materials consisting of collapsible soils are com- mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation. Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils. A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented. Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used. INTRODUCTION When a soil is given free access to water, it may decrease in volume, increase in volume, or do nothing. A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil. The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting. Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be- ginning of the professional practice and have cost many millions of dollars in roadway repairs. The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing with these problem subgrade materials. Each project will have different design considerations, economic con- straints, and risk factors that will have to be taken into account. However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made. For example, typical techniques for dealing with expansive clays include: (1) In situ treatments with substances such as lime, cement, or fly-ash; (2) seepage barriers and/ or drainage systems; or (3) a computing of the serviceability loss and a mod- ification of the design to "accept" the anticipated expansion. In order to make the most economical decision, the amount of volume change (especially non- uniform volume change) must be accurately estimated, and the degree of road roughness evaluated from these data. Similarly, alternative design techniques are available for any roadway problem. The emphasis here will be placed on presenting economical and simple methods for: (1) Determining whether the subgrade materials are collapsible; and (2) estimating the amount of volume change that is likely to occur in the 'Asst. Prof., Ctr. for Advanced Res. in Transp., Arizona State Univ., Tempe, AZ 85287. Note. Discussion open until April 1, 1989. To extend the closing date one month,

土木工程外文翻译

转型衰退时期的土木工程研究 Sergios Lambropoulosa[1], John-Paris Pantouvakisb, Marina Marinellic 摘要 最近的全球经济和金融危机导致许多国家的经济陷入衰退,特别是在欧盟的周边。这些国家目前面临的民用建筑基础设施的公共投资和私人投资显著收缩,导致在民事特别是在民用建筑方向的失业。因此,在所有国家在经济衰退的专业发展对于土木工程应届毕业生来说是努力和资历的不相称的研究,因为他们很少有机会在实践中积累经验和知识,这些逐渐成为过时的经验和知识。在这种情况下,对于技术性大学在国家经济衰退的计划和实施的土木工程研究大纲的一个实质性的改革势在必行。目的是使毕业生拓宽他们的专业活动的范围,提高他们的就业能力。 在本文中,提出了土木工程研究课程的不断扩大,特别是在发展的光毕业生的潜在的项目,计划和投资组合管理。在这个方向上,一个全面的文献回顾,包括ASCE体为第二十一世纪,IPMA的能力的基础知识,建议在其他:显著增加所提供的模块和项目管理在战略管理中添加新的模块,领导行为,配送管理,组织和环境等;提供足够的专业训练五年的大学的研究;并由专业机构促进应届大学生认证。建议通过改革教学大纲为土木工程研究目前由国家技术提供了例证雅典大学。 1引言 土木工程研究(CES)蓬勃发展,是在第二次世界大战后。土木工程师的出现最初是由重建被摧毁的巨大需求所致,目的是更多和更好的社会追求。但是很快,这种演变一个长期的趋势,因为政府为了努力实现经济发展,采取了全世界的凯恩斯主义的理论,即公共基础设施投资作为动力。首先积极的结果导致公民为了更好的生活条件(住房,旅游等)和增加私人投资基础设施而创造机会。这些现象再国家的发展中尤为为明显。虽然前景并不明朗(例如,世界石油危机在70年代),在80年代领先的国家采用新自由主义经济的方法(如里根经济政策),这是最近的金融危机及金融危机造成的后果(即收缩的基础设施投资,在技术部门的高失业率),消除发展前途无限的误区。 技术教育的大学所认可的大量研究土木工程部。旧学校拓展专业并且新的学校建成,并招收许多学生。由于高的职业声望,薪酬,吸引高质量的学校的学生。在工程量的增加和科学技术的发展,导致到极强的专业性,无论是在研究还是工作当中。结构工程师,液压工程师,交通工程师等,都属于土木工程。试图在不同的国家采用专业性的权利,不同的解决方案,,从一个统一的大学学历和广泛的专业化的一般职业许可证。这个问题在许多其他行业成为关键。国际专业协会的专家和机构所确定的国家性检查机构,经过考试后,他们证明不仅是行业的新来者,而且专家通过时间来确定进展情况。尽管在很多情况下,这些证书虽然没有国家接受,他们赞赏和公认的世界。 在试图改革大学研究(不仅在土木工程)更接近市场需求的过程中,欧盟确定了1999博洛尼亚宣言,它引入了一个二能级系统。第一级度(例如,一个三年的学士)是进入

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

土木工程岩土类毕业设计外文翻译

姓名: 学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处Tunnelling and Underground Space Technology 31 (2012) 107–116 学生XXX 学院XXXX 专业班级XXXXX 校内指导教师XXX 专业技术职务XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的

土木工程专业外文文献及翻译

( 二 〇 一 二 年 六 月 外文文献及翻译 题 目: About Buiding on the Structure Design 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程(建筑工程方向) 班 级:土木08-4班 指导教师:

英文原文: Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword:Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the

土木工程毕业设计外文文献翻译修订版

土木工程毕业设计外文文献翻译修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

外文文献翻译 Reinforced Concrete (来自《土木工程英语》) Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships. Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope. Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In

土木工程外文翻译参考3篇

学校 毕业设计(论文)附件 外文文献翻译 学号: xxxxx 姓名: xxx 所在系别: xxxxx 专业班级: xxx 指导教师: xxxx 原文标题: Building construction concrete crack of prevention and processing 2012年月日 .

建筑施工混凝土裂缝的预防与处理1 摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 关键词:混凝土裂缝预防处理 前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 混凝土工程中常见裂缝及预防: 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产 1原文出处及作者:《加拿大土木工程学报》

土木工程毕业设计外文翻译最终中英文

7 Rigid-Frame Structures A rigid-frame high-rise structure typically comprises parallel or orthogonally arranged bents consisting of columns and girders with moment resistant joints. Resistance to horizontal loading is provided by the bending resistance of the columns, girders, and joints. The continuity of the frame also contributes to resisting gravity loading, by reducing the moments in the girders. The advantages of a rigid frame are the simplicity and convenience of its rectangular form.Its unobstructed arrangement, clear of bracing members and structural walls, allows freedom internally for the layout and externally for the fenestration. Rig id frames are considered economical for buildings of up to' about 25 stories, above which their drift resistance is costly to control. If, however, a rigid frame is combined with shear walls or cores, the resulting structure is very much stiffer so that its height potential may extend up to 50 stories or more. A flat plate structure is very similar to a rigid frame, but with slabs replacing the girders As with a rigid frame, horizontal and vertical loadings are resisted in a flat plate structure by the flexural continuity between the vertical and horizontal components. As highly redundant structures, rigid frames are designed initially on the basis of approximate analyses, after which more rigorous analyses and checks can be made. The procedure may typically inc lude the following stages: 1. Estimation of gravity load forces in girders and columns by approximate method. 2. Preliminary estimate of member sizes based on gravity load forces with arbitrary increase in sizes to allow for horizontal loading. 3. Approximate allocation of horizontal loading to bents and preliminary analysis of member forces in bents. 4. Check on drift and adjustment of member sizes if necessary. 5. Check on strength of members for worst combination of gravity and horizontal loading, and adjustment of member sizes if necessary. 6. Computer analysis of total structure for more accurate check on member strengths and drift, with further adjustment of sizes where required. This stage may include the second-order P-Delta effects of gravity loading on the member forces and drift.. 7. Detailed design of members and connections.

土木工程外文翻译5

PROJECTCOSTCONTROL INTRODUCTION project a corporate image window and effectiveness of the source. With increasingly fierce market competition, the quality of work and the construction of civilizations rising material prices fluctuations. uncertainties and other factors, make the project operational in a relatively tough environment. So the cost of control is through the building of the project since the bidding phase of acceptance until the completion of the entire process, It is a comprehensive enterprise cost management an important part, we must organize and control measures in height to the attention with a view to improving the economic efficiency of enterprises to achieve the purpose. 2, outlining the construction project cost control, the cost of the project refers to the cost and process of formation occurred, on the production and operation of the amount of human resources, material resources and expenses, guidance, supervision, regulation and restrictions, in a timely manner to prevent, detect and correct errors in order to control costs in all project costs within the intended target. to guarantee the production and operation of enterprises benefits. 4, the construction cost control measures cost control measures. Reduce the cost of construction projects means, we should not only increase revenue is also reducing expenditure, or both also increase savings. Cutting expenditure is not only revenue, or revenue not only to cut expenditure, it is impossible to achieve the aim of reducing costs, at least there is no ideal lower cost effective.

土木工程毕业设计中英文翻译

附录:中英文翻译 英文部分: LOADS Loads that act on structures are usually classified as dead loads or live loads are fixed in location and constant in magnitude throughout the life of the the self-weight of a structure is the most important part of the structure and the unit weight of the density varies from about 90 to 120 pcf (14 to 19 KN/m)for lightweight concrete,and is about 145 pcf (23 KN/m)for normal calculating the dead load of structural concrete,usually a 5 pcf (1 KN/m)increment is included with the weight of the concrete to account for the presence of the reinforcement. Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic may be either fully or partially in place,or not present at may also change in location. Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces. Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be is oftern important to distinguish between the

土木工程岩土类毕业设计外文翻译

学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目 Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处 Tunnelling and Underground Space Technology 31 (2012) 107–116 学生 XXX 学院 XXXX 专业班级 XXXXX 校内指导教师 XXX 专业技术职务 XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的几个非对称加强桩的施工过程中观察到混凝土桩沿与测得的变形的结果在常规和描述优化桩。实验证据表明,非对称地增强桩变形比观察到在常规增强那些小。两桩类型(对称和非对称)具有相同的直径,并设计为抵抗基于极限强度设计相同的弯曲力矩;离散杆的尺寸和使用的条全数字的,导致类似的名义抗弯强度。

相关文档
最新文档