初中数学阿氏圆最值模型归纳

初中数学阿氏圆最值模型归纳
初中数学阿氏圆最值模型归纳

几何模型:阿氏圆最值模型

【模型来源】

“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.

A B

P

O

【模型建立】

如图 1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=

2

5

OB,

连接PA、PB,则当“PA+

2

5

PB”的值最小时,P 点的位置如何确定

解决办法:如图2,在线段OB 上截取OC使OC=

2

5

R,则可说明△BPO与△PCO相似,则有

2

5

PB=PC。故本题求“PA+

2

5

PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】

计算PA k PB

+g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形

问题:在圆上找一点P使得PA k PB

+g的值最小,解决步骤具体如下:

1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2.计算出这两条线段的长度比OP

k OB

=

3.在OB

上取一点C,使得

OC

k

OP

=,即构造△POM∽△BOP,则

PC

k

PB

=,PC

k PB

=g

4.则=

PA k PB PA PC AC

++≥

g,当A、P、C三点共线时可得最小值

典题探究启迪思维探究重点

例题1. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则

1

2

PA PB

+的最小值为__________.

E

A

B

C

D

P

M

P

D

C B

A

【分析】这个问题最大的难点在于转化

1

2

PA,此处P点轨迹是圆,注意到圆C半径为2,CA=4,

连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,

连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=

1

2

PA.

问题转化为PM+PB≥BM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得13.

变式练习>>>

1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求①BP

AP

2

1

+,②BP

AP+

2,③BP

AP+

3

1

,④BP

AP3

+的最小值.

[答案]:①=37,②=237,③=

3

37

2,④=237.

例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,

AB OB 5

5

的最小值为________.

[答案]:5.

变式练习>>>

2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.

[答案]:10.

例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.

【解答】解:如图当A、P、D共线时,PC+PD最小.理由:

连接PB、CO,AD与CO交于点M,

∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,

∵AB是直径,∴∠APB=90°,

∴∠PAB=∠PBA=45°,∴PA=PB,PO⊥AB,

∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,

∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,

∴PM=PC,∴PC+PD=PM+PD=DM,

∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.

变式练习>>>

3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.

【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.

∵PB2=4,BE?BC=4,∴PB2=BE?BC,∴=,∵∠PBE=∠CBE,

∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,

∵PE+PD≤DE,在Rt△DCE中,DE==5,

∴PD+PC的最小值为5.

②连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF ⊥BC 于F .

∵PB 2=4,BE ?BD =×4

=4,∴BP 2=BE ?BD ,

∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴=

,∴PE =

PD ,

PD +4PC =4(PD +PC )=4(PE +PC ),

∵PE +PC ≥EC ,在Rt △EFC 中,EF =,FC =,∴EC =,

PD +4PC 的最小值为10

.故答案为5,10

例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则1

2PD PC 的最

大值为_______.

A

B C

D

P

【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造1

2PC ,在BC 上取M 使得此时PM=32

则在点P 运动的任意时刻,均有PM=1

2

PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,

PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值

152

. A

B

C

D

P M

M

P

D

C

B

A

A

B

C

D

P

M

M

P

D

C

B

A

变式练习>>>

4.(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +

的最小值为,PD﹣的最大值为.

(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.

图1 图2

【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.

∵==,==,

∴=,∵∠PBG=∠PBC,

∴△PBG∽△CBP,

∴==,∴PG=PC,

∴PD+PC=DP+PG,

∵DP+PG≥DG,

∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.

∵PD﹣PC=PD﹣PG≤DG,

当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.

故答案为,

(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.

∵==2,==2,

∴=,∵∠PBG=∠PBC,

∴△PBG∽△CBP,

∴==,

∴PG=PC,

∴PD+PC=DP+PG,

∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,

在Rt△CDF中,∠DCF=60°,CD=4,

∴DF=CD?sin60°=2,CF=2,

在Rt△GDF中,DG==

∵PD﹣PC=PD﹣PG≤DG,

当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.

例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣1

2

x﹣6

交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.

(1)求抛物线y=﹣x2+bx+c的表达式;

(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;

(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,

求1

2

AM+CM它的最小值.

【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;

(2)设直线AB的解析式为y=kx+n过点A,B,

∴,∴,∴直线AB的解析式为y=2x+4,

设E(m,2m+4),∴G(m,﹣m2﹣2m+4),

∵四边形GEOB是平行四边形,∴EG=OB=4,

∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);

(3)①如图1,

由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),

∵直线AC:y=﹣1

2x﹣6,∴F(a,﹣

1

2

a﹣6),设H(0,p),

∵以点A,E,F,H为顶点的四边形是矩形,

∵直线AB的解析式为y=2x+4,直线AC:y=﹣1

2x﹣6,

∴AB⊥AC,∴EF为对角线,

∴1

2(﹣4+0)=

1

2

(a+a),

1

2

(﹣4+p)=

1

2

(2a+4﹣

1

2

a﹣6),

∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);

②如图2,

由①知,E (﹣2,0),H (0,﹣1),A (﹣4,﹣4), ∴EH=5,AE=25,设AE 交⊙E 于G ,取EG 的中点P ,∴PE=52

, 连接PC 交⊙E 于M ,连接EM ,∴EM=EH=

∴5

25PE ME ==12

,∵525ME AE ==12,∴PE ME ME AE =

=1

2, ∵∠PEM=∠MEA ,∴△PEM ∽△MEA ,∴PE ME ME AE =

=1

2

, ∴PM=12AM ,∴1

2

AM+CM 的最小值=PC ,设点P (p ,2p+4),

∵E (﹣2,0),∴PE 2=(p+2)2+(2p+4)2=5(p+2)2, ∵PE=

52,∴5(p+2)2=54, ∴p=52-或p=﹣32(由于E (﹣2,0),所以舍去),∴P (5

2

-,﹣1),

∵C (0,﹣6),∴PC==

552,即:1

2

AM+CM=552.

变式练习>>>

5.如图1,抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .

(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若

=,求m 的值;

(3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A +E ′B 的最小值.

【解答】解:(1)令y =0,则ax 2+(a +3)x +3=0, ∴(x +1)(ax +3)=0,∴x =﹣1或﹣,

∵抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),

∴﹣=4,∴a =﹣.∵A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得

∴直线AB 解析式为y =﹣x +3.

(2)如图1中,∵PM ⊥AB ,PE ⊥OA ,

∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∴=,

∵NE ∥OB ,∴

,∴AN =(4﹣m ),

∵抛物线解析式为y =﹣x 2+x +3,

∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,

∴=,解得m =2.

(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . ∵OE ′=2,OM ′?OB =×3=4, ∴OE ′2=OM ′?OB , ∴=,∵∠BOE ′=∠M ′OE ′, ∴△M ′OE ′∽△E ′OB ,

=,

∴M ′E ′=BE ′,

∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′=

达标检测

领悟提升 强

化落实

1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 2

2

的最小值.

[答案]:5.

2. 如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.

[答案]:25.

3. 如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.

[答案]:

37

. 4. 如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C e 的半径为2,点P 是C e 上的一动点,则1

2

AP PB 的最小值为

5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少

[答案]42

6. 如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C 为顶点的正方形CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD =,连接AF ,BD

(1)求证:△BDC ≌△AFC ;

(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD +AD 的值;

(3)直接写出正方形CDEF 旋转过程中,BD +

AD 的最小值.

【解答】(1)证明:如图1中, ∵四边形CDEF 是正方形,

∴CF =CD ,∠DCF =∠ACB =90°, ∴∠ACF =∠DCB , ∵AC =CB ,

∴△FCA ≌△DCB (SAS ).

(2)解:①如图2中,当点D ,E 在AB 边上时, ∵AC =BC =2,∠ACB =90°,

∴AB=2,

∵CD⊥AB,

∴AD=BD=,

∴BD+AD=+1.

②如图3中,当点E,F在边AB上时.

BD=CF=,AD==,

∴BD+AD=+.

(3)如图4中.取AC的中点M.连接DM,BM.

∵CD=,CM=1,CA=2,

∴CD2=CM?CA,

∴=,∵∠DCM=∠ACD,

∴△DCM∽△ACD,

∴==,

∴DM=AD,

∴BD+AD=BD+DM,

∴当B,D,M共线时,BD+AD的值最小,

最小值==.

7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证

明BD=CE:

(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;

(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.

【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,

∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),

∴BD=CE.

(2)如图2中,在AD上截取AE,使得AE=.

∵PA2=9,AE?AD=×6=9,∴PA2=AE?AD,

∴=,∵∠PAE=∠DAP,

∴△PAE∽△DAP,∴==,∴PE=PD,

∴PC+PD=PC+PE,

∵PC+PE≥EC,∴PC+PD的最小值为EC的长,

在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,

∴EC==,∴PC+PD的最小值为.

(3)如图3中,如图2中,在AD上截取AE,使得AE=9.

∵MA2=225,AE?AD=9×25=225,∴MA2=AE?AE,

∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,

∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,

在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,

∴EC==2,∴MC+MD的最小值为2.

分享初中数学公式归纳汇总

初中数学定理、公式汇编 代数部分 一、数与代数 1.数与式 (1)实数 实数的性质: ①实数a的相反数是—a,实数a的倒数是(a≠0); ②实数a的绝对值: ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。 (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 (m、n为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n为正整数,m>n); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数); ④零指数:(a≠0); ⑤负整数指数:(a≠0,n为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即 ; ⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即; 分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,

分式的值不变,即;,其中m是不等于零的代数式; ②分式的乘法法则:; ③分式的除法法则:; ④分式的乘方法则:(n为正整数); ⑤同分母分式加减法则:; ⑥异分母分式加减法则:; 2.方程与不等式 ①一元二次方程(a≠0)的求根公式: ②一元二次方程根的判别式: 叫做一元二次方程(a≠0)的根的判别式: 方程有两个不相等的实数根; 方程有两个相等的实数根; 方程没有实数根; ③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=; 不等式的基本性质: ①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变; 3.函数 一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线; 一次函数的性质:设y=kx+b(k≠0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小; 正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

初中数学公式及单位换算汇总

初中数学公式及单位换算汇总2018-08-16 10:36 来源:三好学者专栏 ▲乘法定律: 乘法交换律:a×b = b×a 乘法结合律:a×b×c = a×(b×c) 乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b) ▲除法性质:a÷b÷c = a÷(b×c) ▲减法性质:a –b - c = a - (b + c) ▲解方程定律: ◇加数+加数= 和; 加数= 和–另一个加数。 ◇被减数–减数= 差; 被减数=差+减数; 减数=被减数–差。

◇因数×因数= 积; 因数= 积÷另一个因数。 ◇被除数÷除数= 商; 被除数=商×除数; 除数=被除数÷商。 ◆行程问题: 路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 ◆相遇问题: 相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度);甲速度=相遇路程÷相遇时间–乙速度; 乙速度=相遇路程÷相遇时间–甲速度。 ◆工程问题:

工作总量=工作效率×工作时间; 工作时间=工作总量÷工作效率; 工作效率=工作总量÷工作时间; 工作总量=计划工作效率×计划工作时间;工作总量=实际工作效率×实际工作时间;实际工作时间=工作总量÷实际工作效率;实际工作效率=工作总量÷实际工作时间; ◆买卖问题: 总金额=单价×数量; 数量=总金额÷单价; 单价=总金额÷数量。 6年级 (1)S=nR2-nr2或S=n(R2-r2) (2)(a-b)除以b*100%或(b-a)除以b*100% (3)出勤人数除以总人数

(4)b*(1+C%)或b*(1-C%) (5)利息=本金*利率*时间,利息税=本金*利率*时间*(1-5%) (6)a除以(1+C%)或a除以(1-C%) 7年级 常用数学公式表:公式表达式 平方差a2-b2=(a+b)(a-b) 和差的平方(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab 和差的立方a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳 三角形的概念 三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0 360);③三角形的外角等于不相邻的两内角和。 三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心) 如);DE 之到?S 如图,已知AB ,AC 的长,求AF 的取值范围时。我们可以通过倍长 中线。利用三角形边的关系在三角形ABD 中构建不等关系。(AC AB AF AC AB +- 2). (2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)

如等 OE ; r = 2

(3)垂线(三角形顶点到对边的垂线);三角形三条边上的高交于一点(垂心) 如图,O为三角形ABC的垂心,我们可以得到比较多的锐角相等如 COD ABC ACO ABO∠ = ∠ ∠ = ∠;等。因此垂线(或高)这样的条件在题目中出现,我们往往可以得出比较多的锐角相等。(等角或同角的余角相等),此外,如果要求垂线段的长度或与垂线段有关的长度问题,我们通常用面积法求解。在上图中,若已知CE AC AB, ,的长度,求BE的长。 特别注意:在等腰三角形中,我们通常所指的三线合一就是指中线、角平分线、高线。三线合一:已知三角形三线中的任意两个条件是重合的,那么就可以得出第三条线也是重合的。在具体运用时,我们往往时把三线合一的等腰三角形补充完整再加以运用。 三角形全等 三角形全等我们要牢记住它的五个判定方法。(SSS,SAS,ASA,AAS,HL) 在具体运用时,我们需要找出判定三角形全等的各种条件,不外乎是关于边相等或相等的问题。 对于寻找角相等:常有四种方法:①两条平行线被第三条直线所截得出的“三线八角”的结论;②对顶角相等;③锐角互余;④三角形的外角等于不相邻的两内角和。 对于寻找边相等:常有三种方法:①特殊图形中隐含的条件(如等腰三角形、等边三角形、菱形、正方形。。。。。);②利用三线合一的正逆定理;③通过已有的全等三角形性质得出。对于证明角相等,证明边相等,我们都要优先考虑边或角所在的三角形全等。(一定要注意对应)如果不能直接通过全等证明,我们就要转化角或转化边(用上面的几种方法)然后再考虑全等。 全等三角形的基本图形: 平移类全等;对称类全等;旋转类全等;

初中数学知识点总结及公式大全(最新最全)

知识点1:一元二次方程的基本概念 1.一元二次方程3x 2 +5x-2=0的常数项是-2. 2.一元二次方程3x 2 +4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2 -5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2 -x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y= 3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2 -5的开口向下. 5.抛物线y=4(x-3)2 -10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 2 60°+ cos 2 60°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1. 5.cos60°+ sin30°= 1.

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

初中数学函数公式汇总

初中数学函数公式汇总 各位热爱数学的初中同学们,的XX通过认真分析和详细整合,为大家带来了丰富营养的数学知识大餐,请同学们 认真记忆,做好笔记啦。更多更全的初中知识资讯尽在。 关于正方形定理公式的内容精讲知识,希望同学们很好 的掌握下面的内容。 ①正方形的四边相等; ②正方形的四个角都是直角; ③正方形的两条对角线相等,且互相垂直平分,每一条 对角线平分一组对角; ①有一个角是直角的菱形是正方形; ②有一组邻边相等的矩形是正方形。 希望上面对正方形定理公式知识的讲解学习,同学们都 能很好的掌握,相信同学们会取得很好的成绩的哦。 初中数学平行四边形定理公式 同学们认真学习,下面是老师对数学中平行四边形定理 公式的内容讲解。 ①平行四边形的对边相等; ②平行四边形的对角相等; ③平行四边形的对角线互相平分; ①两组对角分别相等的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形; ④一组对边平行且相等的四边形是平行四边形。 上面对数学中平行四边形定理公式知识的讲解学习,同 学们都能很好的掌握了吧,相信同学们会从中学习的更好的 哦。 初中数学直角三角形定理公式 下面是对直角三角形定理公式的内容讲解,希望给同学 们的学习很好的帮助。 ①直角三角形的两个锐角互为余角; ②直角三角形斜边上的中线等于斜边的一半; ③直角三角形的两直角边的平方和等于斜边的平方; ④直角三角形中30度 角所对的直角边等于斜边的一半; ①有两个角互余的三角形是直角三角形; ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2 ,那么这个三角形是直角三角形。 以上对数学直角三角形定理公式的内容讲解学习,同学 们都能很好的掌握了吧,希望同学们都能考试成功。 初中数学等腰三角形的性质定理公式 下面是对等腰三角形的性质定理公式的内容学习,希望 同学们认真看看。 ①等腰三角形的两个底角相等;

初中数学圆专题训练

初中数学圆专题训练 This model paper was revised by LINDA on December 15, 2012.

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()(A)4个(B)3个(C)2个 (D)1个 2.下列判断中正确的是() (A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()(A)=(B)> (C)的度数=的度数 (D)的长度=的长度 4.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()

(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是 ( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那 么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A )21(a +b +c )r (B )2(a +b +c ) (C )3 1(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =2 3,则tan ∠BCG 的值为……( ) (A )33 (B )2 3 (C )1 (D )3

初中数学知识点总结公式总结(精华版)

初中数学知识点总结 一、基本知识 一、数与代数 A、数与式: 1、有理数:①整数→正整数,0,负整数; ②分数→正分数,负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点 的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于 0,正数大于负数。 0,负数小于绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、 是0。两个负数比较大小,绝对值大的反而小。 有理数的运算:带上符号进行正常运算。 0 的绝对值 加法:①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的 数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0 相加不变。减法:减去一个数, 等于加上这个数的相反数。乘法:①两数相乘,同号得 正,异号得负,绝对值相乘。 ②任何数与0 相乘得0。 ③乘积为 1 的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。 ②0 不能作除数。 乘方:求N 个相同因数 A 的积的运算叫做乘方,乘方的结果叫幂, N 叫次数或指数。 A 叫底数,混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数无理数 无理数:无限不循环小数叫无理数,例如:π=3.1415926 平方根:①如果一个正数X 的平方等于A,那么这个正数 方根。 X 就叫做A 的算术平 ②如果一个数 ③一个正数有 ④求一个数 A 立方根:①如果一个数X 的平方等于A,那么这个数X 就叫做A 的平方根。 2 个平方根;0 的平方根为0;负数没有平方根。 的平方根运算,叫做开平方,其中 A 叫做被开方数。X 的立方等于A,那么这个数X 就叫做A 的立方根。 ②正数的立方根是正数、0 的立方根是0、负数的立方根是负数。 ③求一个数 A 的立方根的运算叫开立方,其中 实数:①实数分有理数和无理数。 A 叫做被开方数。

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O A B C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O B C O A C D E O B C D E O A C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

2017中考数学专题复习圆(最新整理)

【基础知识回顾】 第六章圆 第二十三讲圆的有关概念及性质 一、圆的定义及性质: 1、圆的定义: ⑴形成性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫线段OA 叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 2、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的 对称轴 ⑵中心对称性:圆是中心对称图形,对称中心是 【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径; 3、圆不仅是中心对称图形,而且具有旋 转性,即绕圆心旋转任意角度都被与原来的图形重合】 二、垂径定理及推论: 1、垂径定理:垂直于弦的直径,并且平分弦所对的。 2、推论:平分弦()的直径,并且平分弦所对的。 【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分 弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注 意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。3、垂径定理常用作计算,在半径r、弦a、弦心d 和弓高h 中已知其中两个量可求另外两个量。】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对 应的其余各组量也分别 【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】 四、圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的 圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是,900 的圆周角所对的弦是 【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角 有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的 辅助线】 五、圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。

人教版初中数学知识点、公式 总结(最新最全)

七年级数学(上)知识点 第一章有理数 一.知识框架 二.知识概念 1.有理数: (1)凡能写成)0 p q,p( p q ≠ 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;pai不是有理数; (2)有理数的分类: ① ? ? ? ? ? ? ? ? ? ? ? ? ? 负分数 负整数 负有理数 零 正分数 正整数 正有理数 有理数② ? ? ? ? ? ? ? ? ? ? ?? ? ? ? 负分数 正分数 分数 负整数 零 正整数 整数 有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: ?? ? ? ? < - = > = )0 a( a )0 a( )0 a( a a或 ? ? ? < - ≥ = )0 a( a )0 a( a a;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是 a 1 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.

初中数学九大几何模型

初中数学九大几何模型 Prepared on 24 November 2020

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A B C D E 图 2 O A B C D E O C D E 图 1图 2O C O C D E O B C D E O C D

③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43 S S S =+= 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。 (3)全等型-任意角ɑ 【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE ; 【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③α cos αsin OC S S S 2△OCE △OCD △DCE ??=+= ※当∠DCE 的一边交AO 的延长线于D 时(如右下图): 原结论变成:①; ②; ③。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4 A

初中数学圆专题训练一)

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( ) (A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( ) (A )= (B ) > (C )的度数=的度数 (D ) 的长度= 的长度 4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°, 的度数为100°,则∠AEC 等于 ( ) (A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A ) 21(a +b +c )r (B )2(a +b +c ) (C )3 1 (a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM = 2 3 ,则tan ∠BCG 的值为……( ) (A ) 33 (B )2 3 (C )1 (D ) 3 9.在⊙O 中,弦AB 和CD 相交于点P ,若PA =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2 +9 x +12=0 (B )x 2 -9 x +12=0 (C )x 2 +7 x +9=0 (D )x 2 -7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( ) (A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( ) (A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( ) (A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 14. ∠PAD= ( ) A.10° B.15° C.30° D.25°

初中数学圆的专题训练

圆的专题训练初中数学组卷 一.选择题(共15小题) 1.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为() A.3B.4C.5D.6 2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为() A.cm B.3cm C.3cm D.6cm 3.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()

A.B.π C.2πD.4π 4.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为() A.20°B.40°C.50°D.70° 5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧 ⊙A优弧上一点,则tan∠OBC为() A.B.2C.D. 6.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S () 阴影=

A.2πB.πC.πD.π 7.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是() A.15°B.25°C.30°D.75° 8.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=() A.100° B.72°C.64°D.36° 9.如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A (0,2),B(0,8),则圆心P的坐标是()

A.(5,3)B.(5,4)C.(3,5)D.(4,5) 10.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是() A. B.1﹣C.﹣1 D.1﹣ 11.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于() A.B.C.D.

初中数学公式归纳汇总

初中数学公式归纳汇总 -------------------------------------------------------------------------------- 07-06-23 00:11:05 浩然考试网 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于 180° 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理 (SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 ( ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论 (AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 (SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理 (HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 ( 即等边对等角) 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半

相关文档
最新文档