三角形不等式的应用

三角形不等式的应用

根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用,并探究命题者是如何编拟这些题目的.

类型一:证明形如a b c +>型的不等式

例1、已知x y z 、、

证明:作角∠120AOB =,∠120BOC =,则∠120AOC =,

设x y z OA OB OC ===、、,由余弦定理:

==

又OA OB OC,+>所以原不等式成立.

例2、已知x y z 、、

证明:在空间直角坐标系中,取A(,0,0)B

0,0)C 00)x y z 、(,、(,,,

则C A ==

又AB BC C,A +>所以原不等式成立.

类型二:证明形如a b c d ++>型的不等式

例3、已知x y z 、、为正数,求证:

y z).>++

证明:如右图,以x y z ++为边作正方形,

则2

).B C C D A x y z =++++

D

A z

x y z

类型三:证明形如a b c d e +++>型的不等式

例4、设01,01x y <<<<求证:

证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部.

由()()OP BP CP AP OB AC +++≥+=知原不等式成立.

应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等.

例5、已知正数x y 、满足1x y +=, 2.

分析:用代数法可以使用分析法,并随时利用1x y +=这个条件进行化简.

证明:2,≥

只要证22224,x y y ++++x

即证22224,x y y ++++≥x

即证22224,x y y ++++x

即证22[()2]x y xy x y +-+++

注意到1x y +=,即证2[12]14,xy -++≥

即证14,xy ≥+

即证224(4()52)1816(),xy xy xy xy -+≥++

即证287,xy -≥-1,4xy ≤

而21(),24x y xy +≤=故14

xy ≤成立.所以原不等式成立.

如果用几何法,开始要用消元法,中间利用两点间距离公式配凑,最后也用到了三角形不等式:

证明:

左边==

=

设(,0)

P x

1

(,

44

A

3

(,

44

B,则

|||)

PA PB

=+

左边

1

(

4

A关于x

轴的对称点为

1

1

(,

4

A,

由对称及三角形不等式知

1

||||||

PA PB A B

+≥,当P为

1

A B与x轴交点时取等号

.

1

A B==

2.

左边即原不等式成立

比较两种解法,可以看出利用三角形不等式证明运算量较小,但是思考的难度是很大的. 但是,我们仔细思考可以发现,编拟这些题目时,命题者大都是从几何的角度入手.因此,我们在这里研究一下几何的证明方法,对于走近命题人的思维是很有好处的,希望同学们在解题过程中多进行一些数形结合方面的思考.

下面结合图形编一个与例1类似的题目:

如右图,在ABC

?内取一点O,使90

AOB

∠=?,

120

AOC

∠=?,150

BOC

∠=?,

则AB=

AC=

BC==由图可

知AB AC BC

+>,于是可以改编如下题目:

已知x y z

、、

>.

O

C

B

A

z

y

x

基本不等式与余弦定理综合求解三角形面积的最值探究

基本不等式与余弦定理综合求解三角形面积的最值探究 建水县第二中学: 贾雪光 从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三角形、实际应用问题, 这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理,大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是C B A sin )sin(=+、 C B A sin 2 cos =+的联系是关键。 于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,如: 1、在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求△ABC 的面 积的最大值;2、已知向量)2 1,(sin A M =与)cos 3sin ,3(A A N +=共线,其中A 是△ABC 的内角,(1)求角A 的大小;(2)若BC=2,求△ABC 的面积S 的最大值。3、△ABC 中,a, b, c 分别为内角A, B, C 的对边,向量)2cos ,2 (cos ),1,4(2 A A N M =-=,2 7= ?N M ,(1)求角A 的大小;(2)若3=a 是判 断当c b ?取得最大值时△ABC 的形状。面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢? 实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的收获哦。 我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式: A bc c b a cos 222 2 ?-+=, B ac c a b cos 2222?-+=, C ab b a c cos 2222?-+= 同时在基本不等式中我们总有这样一组公式:bc c b 222≥+,ac c a 222≥+ ,ab a b 222≥+在三角形中各边都是正数,所以上面三个式子在a 、 b 是三角形的三边时总是成立的,如果我们将两组公式综合后会发现这样的一组公式即:)cos 1(22A bc a -?≥,)cos 1(22C ac b -?≥ )c o s 1(22c ab c -?≥于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们常用的处理方法是,一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。 于是我没有: 例1:在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求

三角形三边关系(带答案)

【考点训练】三角形三边关系-2 一、选择题(共10小题) 1.(2011?青海)某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形, 4.(2012?长沙)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可 二、填空题(共10小题)(除非特别说明,请填准确值) 11.(2007?安顺)如果等腰三角形的两边长分别为4和7,则三角形的周长为_________.12.(2004?云南)已知三角形其中两边a=3,b=5,则第三边c的取值范围为_________.

13.(2007?柳州)如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为_________cm. 14.(2006?连云港)如图,∠BAC=30°,AB=10.现请你给定线段BC的长,使构成△ABC能惟一确定.你认为BC的长可以是_________. 15.(2005?泸州)一个等腰三角形的两边分别为8cm和6cm,则它的周长为_________cm. 16.(2007?贵阳)在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是_________. 17.(2006?梧州)△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有_________个. 18.(2004?芜湖)已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________. 19.(2004?玉溪)已知一个梯形的两底长分别是4和8,一腰长为5,若另一腰长为x,则x的取值范围是_________. 20.(2004?嘉兴)小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_________,_________,_________(单位:cm). 三、解答题(共10小题)(选答题,不自动判卷) 21.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数. (1)请写出一个三角形符合上述条件的第三边长. (2)若符合上述条件的三角形共有n个,求n的值. (3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例. 22.如果一个三角形的各边长均为整数,周长大于4且不大于10,请写出所有满足条件的三角形的三边长. 23.一个三角形的边长分别为x,x,24﹣2x, (1)求x可能的取值范围; (2)如果x是整数,那么x可取哪些值? 24.已知三角形的三边长分别为2,x﹣3,4,求x的取值范围. 25.三角形的三边长分别为(11﹣2x)m、(2x2﹣3x)cm、(﹣x2+6x﹣2)cm

向量解三角形数列不等式测试卷

向量、解三角形、数列、不等式测试卷 一、选择题(本大题共12小题,每小题5分,共60分) 1.由11a =,3d =确定的等差数列{}n a , 当298n a =时,n 等于 ( ) A.99 B.100 C.96 D.101 2.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 2 1 B .23 C.1 D.3 3.如图,在△ABC 中,1 ,3,,,2 BD DC AE ED AB a AC b BE = ===若则= ( ) A .1133a b + B .11 24a b -+ C .1124a b + D .11 33 a b -+ 4.已知3≥x ,函数1 1 -+=x x y 的最小值是 ( ) A .2 7 B .4 C .8 D .6 5.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -?-的最小值为 ( ) A 、2- ( B )22- ( C )1- (D)12- 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=,则 3132log log b b ++……314log b +等于 ( ) (A) 5 (B) 6 (C)7 (D)8 7.设,x y 满足约束条件1 2x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 8.在ABC ?中,80,100,45a b A ?===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解 9.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( ) A .3 B .5 C .3 D 10 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )

三角形三边关系

第九章:多边形 9.1.3三角形三边关系 学习目标: 1.了解构成三角形的条件 2.知道三角形三边关系 3.了解三角形的稳定性 过程与方法: 1.经历探索构成三角形的条件的过程。 2.通过操作演示,让学生体验三角形的稳定性。 教学重点:三角形三边关系及其简单应用 教学难点:探究构成三角形的条件 教学关键:让学生用不同长度的三根棍子进行演示,从中体验三角形三边的关系及构成三角形的条件。 教学过程: 一复习引入 1.什么样的图形是三角形? 2.是不是任意三条线段都能组成三角形? 二探索新知 小组活动:让学生拿出预先准备好的四根小棒(6cm、5cm、3cm、2cm),让学生任意的取其中的三根,首尾连接,摆成三角形。 1、有哪几种取法? 2、是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? 3、用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? (1)6cm、5cm、2cm(2)6cm、5cm、3cm (3)2cm、3cm、5cm(4)2cm、3cm、6cm 经过实践可知: (1)、(2)可以摆出三角形 (3)、(4)不可以摆出三角形 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形的任意两边的和大于第三边 a.b.c分别是三角形ABC的三边:则有 a+ b﹥c

a+ c﹥b b+ c﹥a 根据不等式的性质得出 c - b ﹤a b - a ﹤c a – c ﹤b 这就是说:三角形的任意两边的差小于第三边 练习: 下列长度的三条线段能否组成三角形?为什么? (1)3,4,8 () (2)2,5,6 () (3)5,6,10 () (4)3,5,8 () 思考 判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法? 技巧:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形. 考考你:有人说他一步能走3米,你相信吗?能否用今天学过的知识去解答呢? 姚明腿长1.28米 答:不能。如果此人一步能走3米,由三角形三边的关系得,此人两腿长要大于3米,这与实际情况相矛盾,所以它一步不能走3米。 练习: 木工师傅小李要做一个三角形的木架,已有两根长分别为1m和1.5m的木条,需要再找一根木条,把它们首尾相接钉在一起。这根木条长0.4m合适吗?2.3米呢?这根木条长度为多少米才合适呢? 已知三角形两边的长度,第三边长度范围是: 第三边长度的范围你能确定吗? 两边之差<第三边<两边之和 牛刀小试: 1、四根小木棒的长度分别为2cm、5cm、9cm、10cm,任取3根可以搭出()个三角形。 A、1 B、2 C、3 D、4 2、三角形的两边分别为5和11,第三边a的取值范围是()

(完整版)绝对值三角不等式

1.4 绝对值三角不等式 教案1 (新人教选修4-5) 教学目标: 1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。 2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数 学 思想,并能运用绝对值三角不等式公式进行推理和证明。 教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。 教学难点:绝对值三角不等式的发现和推导、取等条件。 教学过程: 一、复习引入: 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。 1.请同学们回忆一下绝对值的意义。 ?? ? ??<-=>=0000x x x x x x ,如果,如果,如果。 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。 2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。 (2)2 a a =, (3) b a b a ?=?, (4) )0(≠= b b a b a 那么? b a b a +=+?b a b a +=- 二、讲解新课: 结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10 .当ab ≥0时, 20. 当ab <0时, 探究: ,,a b a b +, 之间的什么关系? b a -

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

三角形三边关系不等式的证明题

三角形边角不等式关系练习题 一、边的不等关系证明 1、如图1,在△ABC的边AB上截取AD=AC,连结CD, (1)说明2AD>CD的理由(填空); 解:∵AD+AC>CD() 又∵AD=AC() ∴AD+AD>CD() ∴2AD>CD (2)说明BD<BC的理由。 解:∵_______<BC() 又∵AD=AC() ∴AB–AD<BC() 而AB–AD=BD ∴BD<BC() 2、如图2,△ABC中,AB=BC,D是AB延长线上的点,说明AD>DC的理由。 2、如图3,已知P是△ABC内任意一点,则有AB+AC>PB+PC. 3. 如图所示,在△ABC中,D是BA上一点,则AB+2CD>AC+BC成立吗?说明你的理由. A B C D A B C D 图3 图2 图1

4.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB. 5.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC. 6.在右图中,已知AD是△ABC的BC边上的高,AE是BC边上的中线,求证:AB+AE+1 2 BC>AD+AC 证明:∵AD⊥BC( ) ∴AB>AD( ) 在△AEC中, AE+EC>AC( )又∵AE为中线( ) ∴EC=1 2 BC( )即AE+ 1 2 BC>AC( ) ∴AB+AE+1 2 BC>AD+AC 7.已知如图:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.

参考答案 2.解:延长BP 交AC 于E ,在△PEC 中,PE+EC >PC ∴BP+EP+EC >BP+PC 即BE+EC >BP+PC. 在△ABE 中,AE+AB >BE ∴AE+EC+AB >BE+EC , 即AC+AB >BE+EC ,∴AB+AC >PB+PC -AB =AC +CD -AB =CD ,∵ BD -BC <CD ,∴ BD -BC <AD -AB . 5.(1)AC +AD >CD ,BC +BD >CD ,两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC ,两式相加:AB +2CD >AC +BC . 7.(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得: AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC A C E P B A B C D E N M 11-图A B C D E F G 21-图

高中数学复习指导:三角形不等式的应用

三角形不等式的应用 根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用,并探究命题者是如何编拟这些题目的. 类型一类型一::证明形如a b c +>型的不等式 例1、已知x y z 、、 +> 证明:作角∠120AOB = ,∠120BOC = ,则∠120AOC = , 设x y z OA OB OC ===、、,由余弦定理: == 又OA OB OC,+>所以原不等式成立. 例2、已知x y z 、、 > 证明:在空间直角坐标系中,取A(,0,0)B 0,0)C 00)x y z 、(,、(,,, 则C A == 又AB BC C,A +>所以原不等式成立. 类型二类型二::证明形如a b c d ++>型的不等式 例3、已知x y z 、、为正数,求证: y z).+>++ 证明:如右图,以x y z ++为边作正方形, 则 ).BC CD AB x y z =++≥++ D x y z x y z

类型三类型三::证明形如a b c d e +++>型的不等式 例4、设01,01x y <<<<求证: ++≥ 证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部. 由()()OP BP CP AP OB AC +++≥+=知原不等式成立. 应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等. 例5、已知正数x y 、满足1x y += , 2.+≥ 分析分析::用代数法可以使用分析法,并随时利用1x y += 这个条件进行化简. 证明证明::2,+≥ 只要证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22[()2]x y xy x y +?+++ 注意到1x y +=,即证2[12]14,xy ?++≥ 即证14,xy ≥+ 即证224(4()52)1816(),xy xy xy xy ?+≥++ 即证287,xy ?≥?1,4xy ≤ 而21(,24x y xy +≤=故14 xy ≤成立.所以原不等式成立.

(完整版)三角不等式

第23讲 三角不等式 竞赛热点 含有未知数的三角函数的不等式叫做三角不等式。 在高中数学竞赛内容中,涉及三角不等式的问题有三类:一是三角不等式的证明,二是解三角不等式,三是应用三角不等式求最值。 处理三角不等式的问题一方面要有扎实的三角变形能力,另一方面还需要有三角函数的图象和性质的认识。同时,对不等式的有关性质和证明方法要能灵活运用。 解题示范 例1:已知N n ∈,2≥n ,求证: .3 21cos 31cos 21cos >n Λ 思路分析:本题从三角变形入手不易,不可考虑利用x x -= 所以 ) 11()3432)(2321()1cos 31cos 21(cos 2n n n n n +?-??>ΛΛ .)3 2(2121)1453423)(1433221(2>>+=+??-??=n n n n n n ΛΛ 即 . 3 21cos 31cos 21cos >n Λ 点评:此题应用三角函数中重要的不等式:若 ) 2 ,0(π ∈x ,则 .tan sin x x x <<此结论的应用,将三角不等式转化为代数不等式,叠乘即证得。 例2:当],0[,,321 n ∈ααα 时,求证:.3 sin 3sin sin sin 3213 21αααααα++≤++ 思路分析;利用和差化积公式和变为乘积的形式,再放缩证明。 证明:因为 3 sin sin sin sin 3 21321αααααα+++++ 6 2cos 6 4sin 22 cos 2 sin 23 213 212 12 1αααααααααα-++++-+= 3 sin 46 2cos 3 sin 46 4sin 22sin 23 213 213213212 1αααααααααααααα++≤-+++=++++≤ 所以 . 3 sin 3sin sin sin 3 21321αααααα++≤++ 引申:此证明中利用1cos ≤α进行放缩,从证明过程中可以看出,等号当且仅当321ααα==时成立。

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题 (考试时间120分钟,总分150分) 一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上) 1.已知a ,b 为非零实数,且a 1 b 2.sin15°cos45°+cos15°sin45°等于( ) A .0 B . 2 1 C . 2 3 D .1 3.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A .21 B .2 3 C.1 D.3 4.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 101 5.已知0x >,函数4 y x x = +的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132 n a =,则项数n 为 ( ) A. 3 B. 4 C. 5 D. 6 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么( ) A. 0,0a ?≥ D. 0,0a >?> 8.设,x y 满足约束条件12x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 9.若)4 π tan( α-=3,则tan α 等于( ) A .-2 B .2 1- C . 2 1 D .2 10.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( ) A .1 B .-1 C .2 D .-2 11.下列各式中,值为 2 3 的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1 D .sin 215°+cos 215° 12.关于x 的方程2 210ax x +-=至少有一个正的实根,则a 的取值范围是( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC = 14. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 15.不等式 21 131 x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤, 并把正确解答过程写在答题卡上) 17. (10分)(1) 解不等式0542<++-x x ,(2) 求函数的定义域:5y =

三角形与不等式

1、如图(1),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则D E D F += . 2、阅读下列内容后,解答下列各题: 几个不等于0的数相乘,积的符号由负因数的个数决定. 例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴--> 当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x --> 满足 时,(3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<. 3、.已知Rt ABC △的周长是4+2,则ABC S =△ . 4、如图,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________. 5、 有两个分数A=4444333,B=555554444 ,问:A 与B 哪个大? 6、|2a -24|+(3a -b -k )2 =0,那么k 取什么值时,b 为负数. 7、一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个? 8、是否存在整数m ,使关于x 的不等式 m x 31+ >m m x 9+ 与1+x >32m x +-是同解不等 式?若存在,求出整数m 9、如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交 于A(3,2),则不等式(k 2-k 1)x +b 2-b 1>0的解集为 10、如果x ,y 满足不等式组3050 x x y x y ≤?? +≥??-+≥?,那么你能画出 点(x ,y)所在的平面区域吗? 11、如图,已知函数y =3x +b 和y =ax -3的图象交于点 P(-2,-5),则根据图象可得不等式3x +b >ax -3的解 集是_______________. 图(1) ax -3 11题

八年级数学上册-三角形三边关系练习

八年级数学上册三角形三边关系练习 班级姓名 一.选择题(共10小题) 1.(2017?舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.9 2.(2017?淮安)若一个三角形的两边长分别为5和8,则第三边长可能是() A.14B.10C.3D.2 3.(2017?扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12 4.(2017?金华)下列各组数中,不可能成为一个三角形三边长的是() A.2,3,4B.5,7,7C.5,6,12D.6,8,10 5.(2017?柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形() A.1个B.3个C.5个D.无数个 6.(2017?白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0

7.(2017?崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为() A.24B.26C.32D.36 8.(2017春?薛城区期末)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是() A.4米B.9米C.15米D.18米 9.(2017春?秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值范围是() A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 10.(2017春?宜兴市期中)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是() A.0B.2a+2b+2c C.4a D.2b﹣2c

解三角形、数列、基本不等式、简单逻辑、圆锥曲线综合训练

数列、简单逻辑、解三角形、基本不等式、圆锥 曲线综合练习 (后附详细答案与解析) 1.“x=-1“是“x2+x=0“() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 2.已知椭圆上一点P到椭圆一个焦点的距离为4,则它到 另一个焦点的距离() A. 6 B. 5 C. 4 D. 2 3.命题“若△ABC不是等腰三角形,则它的任何两个内角不相 等”的逆否命题是() A. 若△ABC有两个内角相等,则它是等腰三角形 B. 若△ABC任何两个内角不相等,则它不是等腰三角形 C. 若△ABC是等腰三角形,则它的任何两个内角相等 D. 若△ABC任何两个角相等,则它不是等腰三角形 4.设S n为等比数列{a n}的前n项和,a2-8a5=0,则=() A. B. C. 2 D. 17 5.在△ABC中,角A,B,C的对边分别为a,b,c,且B=,b2=ac, 则△ABC一定是() A. 直角三角形 B. 钝角三角形 C. 等边三角形 D. 等腰直角三角形 6.在△ABC中,内角A,B,C的对边分别是a,b,c,若=2, b2-a2=ac,则cos B等于()

A. B. C. D. 7.设F1,F2分别是双曲线的左右焦点,点M (a,b).若∠MF1F2=30°,则双曲线C的离心率为() A. B. C. 2 D. 8.设F1,F2为曲线C1:的焦点,P是曲线C2:-y2=1与 C1的一个交点,则cos∠F1PF2的值是() A. B. C. D. 9.若函数f(x)在R上可导,且f(x)=x2+2f'(2)x-3,则() A. f(0)<f(4) B. f(0)=f(4) C. f(0)>f(4) D. 以上都不对 10.已知双曲线C:=1(a>0,b>0),以C的右焦点F(c, 0)为圆心,以a为半径的圆与C的一条渐近线交于A,B两点, 若|AB|=c,则双曲线C的离心率为() A. B. C. D. 11.已知关于x的不等式x2-ax-b<0的解集是(2,3),则a+b的 值是() A. -11 B. 11 C. -1 D. 1 12.已知抛物线y2=4x,过焦点且倾斜角为60°的直线与抛物线交于 A、B两点,则△AOB的面积为() A. B. C. D. 13.公差不为0的等差数列{a n}的前n项和为S n,若a2,a5,a14成 等比数列,,则a10=______. 14.命题“?x∈R,x2+1<0”的否定是______.

不等式与解三角形大题

2013-2014学年度第二学期解三角形和不等式的大题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 一、选择题(题型注释)

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) (1,求)(x f 的取值范围; (2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知A 为锐角,2=b ,3=c ,求)cos(B A -的值. 【答案】21m n =?-. (1(2,求b 的大小. 【答案】(1)()f x 递减区间是2 3.已知函数f(x)x ∈[1,+∞). (1)当a =4时,求函数f(x)的最小值; (2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围. 【答案】(1)6(2)()3,-+∞ 4.(1)已知y =4x -2 (2)已知x>0,y>01,求x +y 的最小值. 【答案】(1)y max =1.(2)最小值为16 5.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.

如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 【答案】4个单位的午餐和3个单位的晚餐, 6.设z =2x +y ,式中变量满足下列条件:4335251x y x y x ≤?? ≤??≥? --,+,,求z 的最大值和最小值. 【答案】12 3 7.在△ABC 中,a =3,b = B =2∠A. (1)求cosA 的值; (2)求c 的值. 【答案】(1 2)5. 8.在△ABC 中,内角C B A 、、的对边分别为c b a 、、,已知cos sin a b C c B =+.(Ⅰ) 求B ; (Ⅱ)若2= b ,求△ABC 面积的最大值. 【答案】 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且 (1 的值; ( 2)若 求bc 的最大值. 【答案】(1(2 10.△ABC 中,BC =7,AB =3 (1)求AC ; (2)求∠A . 【答案】(1)5 (2) 120-=∠A 三个内角,他们的对边分别为a 、b 、c ,且 (1)求 A; (2 的值,并求ABC ?的面积。 【答案】(1212.在ABC ?中,(1)求sin A 的值;

初中数学竞赛—三角形三边关系(教师版)

初中数学竞赛专题选讲 三角形的边角性质 一、内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反 过来要使三条线段能组成一个三角形,必须任意两条线段的和都大于第 三条线段,即最长边必须小于其他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和 它不相邻的两个内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠222c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 二、例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组

?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5-+-->-+->-+x y z x y x y y z x y z x y x 即?????>>+>x z y z x z y 2222∴???? ?????<+<>222z x z x y z y 答y

必修5 解三角形、数列、不等式

第一章 解三角形 例1 某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据: BC=2.57cm,CE=3.57cm,BD=4.38cm,B=450,C=1200.为了复原,请计算原玉佩两边的长(结果精确到0.01cm ) 例2台风中心位于某市正东方向300km 处,正以40km/h 的 速度向西北方向移动,距离台风中心250km 范围内将会受到其影响。如果台风速度不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到0.1h )? 例3如图 在△ABC 中,=(x,y ),AC =(u,v),求证:△ABC 的面积S= 2 1︱xv-yu ︱. 例4 如图所示,有两条直线AB 和CD 相交成800角,交点是O,甲、乙两人同时从点O 分别沿OA,OC 方向出发,速度分别是4km/h,4.5km/h,3时后两人相距多远(结 例5 如图 是公元前约400年古希腊数学家泰特托斯用来构造无理数2,3,5,、、、的图形,试计算图中线段BD 的长度及∠DA B 的大小(长度精确到0.1,角度精确到10)。 例6如图,在梯形ABCD 中,A D ∥BC,AB=5,AC=9, ∠BCA=300,∠ADB=450 ,求BD 的长。 例7 一次机器人足球比赛中,甲队1号机器人由点A 开始作匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 作匀速直线滚动。如图,已知AB=42dm,AD=17dm, ∠BAC=450 .若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球? 例8 如图所示,已知⊙O 的半径是1,点C 在直径AB

解三角形和不等式

解三角形与不等式 一、选择题 1.锐角三角形ABC 中,sin A 和cos B 的大小关系是( ) A . sin A =cos B B . sin A <cos B C . sin A >cos B D . 不能确定 2.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B 、C 之间的关系是( ) A .B >C B .B =C C .B b B .a 1,y >1且lg x +lg y =4,则lg x lg y 的最大值是( ) A . 4 B . 2 C . 1 D . 8.已知,则的最小值是( ) A . B . 4 C . D . 5 9.若函数 在x =a 处取最小值,则a =( ) A . B . C . 3 D . 4

三角形不等式的应用举例(含练习题)

三角形不等式的应用举例 根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用. 类型一:证明形如a b c +>型的不等式 例1、已知x y z 、、 > 证明:作角∠120AOB = ,∠120BOC = ,则∠120AOC = , 设x y z OA OB OC ===、、,由余弦定理: == 又OA OB OC,+>所以原不等式成立. 例2、已知x y z 、、 > 证明:在空间直角坐标系中,取A(,0,0)B 0,0)C 00)x y z 、(,、(,,, 则BC C A == 又AB BC C,A +>所以原不等式成立. 类型二:证明形如a b c d ++>型的不等式 例3、已知x y z 、、 y z).>++ 证明:以x y z ++为边作正方形, ).BC CD AB x y z =++≥++ D A x y z x y z

类型三:证明形如a b c d e +++>型的不等式 例4、设01,01x y <<<<求证: ≥ 证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部. 由()()OP BP CP AP OB AC +++≥+=知原不等式成立. 应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等. 例5、已知正数x y 、满足1x y +=, 2.≥ 分析:用代数法可以使用分析法,并随时利用1x y += 这个条件进行化简. 证明:2, 只要证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22224,x y y ++++x 即证22[()2]x y xy x y +-+++ 注意到1x y +=,即证2[12]14,xy -++ 即证14,xy ≥+ 即证224(4()52)1816(),xy xy xy xy -+≥++ 即证287,xy -≥-1,4 xy ≤ 而21(),24x y xy +≤=故14 xy ≤成立. 所以原不等式成立. 如果用几何法,开始要用消元法,中间利用两点间距离公式配凑,最后也用到了三角形不等式: 证明:左边==

相关文档
最新文档