增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术
增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术

一、增材制造技术的简介

增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。

增材制造原理与不同的材料和工艺结合形成了许多增材制造设备,目前已有的设备种类达到20多种。该技术一出现就取得了快速发展,在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等多个领域都得到了广泛的应用。其特点是单件或小批量的快速制造,这一技术特点决定了快速成形在产品创新中具有显著的作用。

二、增材制造技术的优势

2.1设计上的自由度——在机加工、铸造或模塑生产当中,复杂设计的代价高昂,其每项细节都必须通过使用额外的刀具或其它步骤进行制造。相比而言,在增材制造当中,部件的复杂度极少需要或根本无需额外考虑。增材制造可以构建出其它制造工艺所不能实现或无法想像的形状,可以从纯粹考虑功能性的方面来设计部件,而无需考虑与制造相关的限制。

2.2小批量生产的经济性——增材制造过程无需生产或装配硬模具,且装夹过程用时较短,因此它不存在那些需要通过大批量生产才能抵消的典型的生产成本。增材工艺允许采用非常低的生产批量,包括单件生产,就能达到经济合理的打印生产目的。

2.3高材料效率——增材制造部件,特别是金属部件,仍然需要进行机加工。增材制造工序经常不能达到关键性部件所要求的最终细节、尺寸和表面光洁度的要

求。但是所有近净成形工艺当中,增材制造是净成形水平最高的工艺,其后续机加工所必须切削掉的材料数量是很微量的。

2.4生产可预测性好——增材制造的构建时间经常可以根据部件设计方案直接

预测出来,这意味着生产用时可以预测得很精确。随着增材制造业的拓展,制造商对于自己的制造时间表编制将拥有严密得多的控制力。

2.5减少装配——对于许多技术成熟的产品来说,这是一项由增材生产工艺所引进的根本性变革的要素。通过增材制造所构建的复杂形状可以一体成形,取代那些目前还需采用众多部件装配而成的产品。这意味着增材工艺所带来的节省效果包括了省去了之前需投入到装配工序的工作量、需涉及的坚固件、钎焊或焊接工序,还有单纯为了装配操作而添加的多余表面形状和材料。

三、关键技术

增材制造有广阔的发展前景,但也存在巨大的挑战。目前最大的难题是材料的物理与化学性能制约了其实现技术。如:在成形材料上,目前主要是有机高分子材料和金属材料。金属材料直接成形是近十多年的研究热点,正逐渐向工业应用,难点在于如何提高精度。新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生命体,经过体外培养和体内培养去制造复杂组织器官。关键技术的研发将有力地推动增材技术的发展。

3.1 精度控制技术

增材制造的精度取决于材料增加的层厚和增材单元的尺寸和精度控制。增材制造与切削制造的最大不同是材料需要一个逐层累加的系统,因此再涂层(recoating)是材料累加的必要工序,再涂层的厚度直接决定了零件在累加方向的精度和表面粗糙度,增材单元的控制直接决定了制件的最小特征制造能力和制件精度。现有的增材制造方法中,多采用激光束或电子束在材料上逐点形成增材单元进行材料累加制造,如:金属直接成形中,激光熔化的微小熔池的尺寸和外界气氛控制,直接影响制造精度和制件性能。激光光斑在0.1~0.2mm,激光作用于金属粉末,金属粉末熔化形成的熔池对成形精度有着重要影响。通过激光或电子束光斑直径、成形工艺(扫描速度、能量密度)、材料性能的协调,有效控制增材单元尺寸是提高制件精度的关键技术。

随着激光、电子束及光投影技术的发展,未来将发展两个关键技术:一是金属直接制造中控制激光光斑更细小,逐点扫描方式使增材单元能达到微纳米级,

提高制件精度;另一个方向是光固化成形技术的平面投影技术,投影控制单元随着液晶技术的发展,分辨率逐步提高,增材单元更小,可实现高精度和高效率制造。发展目标是实现增材层厚和增材单元尺寸减小10~100倍,从现有的0.1mm 级向0.01~0.001mm发展,制造精度达到微纳米级。

3.2 高效制造技术

增材制造在向大尺寸构件制造方向发展,如金属激光直接制造飞机上的钛合金框粱结构件,框粱结构件长度可达6m,目前制作时间过长,如何实现多激光束同步制造、提高制造效率、保证同步增材组织之间的一致性和制造结合区域质量是发展的关键技术。此外,为提高效率,增材制造与传统切削制造结合,发展增材制造与材料去除制造的复合制造技术是提高制造效率的关键技术。

为实现大尺寸零件的高效制造,发展增材制造多加工单元的集成技术。如:对于大尺寸金属零件,采用多激光束(4~6个激光源)同步加工,提高制造效率,成形效率提高10倍。对于大尺寸零件,研究增材制造与切削制造结合的复合关键技术,发挥各工艺方法的其优势,提高制造效率。发展目标是:增材制造零件尺寸达到20m,制件效率提高10倍。形成增材制造与传统切削加工结合,使复杂金属零件的高效高精度制造技术在工业生产上得到广泛应用。

3.3 复合材料零件增材制造技术

现阶段增材制造主要是制造单一材料的零件,如单一高分子材料和单一金属材料,目前正在向单一陶瓷材料发展。随着零件性能要求的提高,复合材料或梯度材料零件成为迫切需要发展的产品。如:人工关节未来需要Ti合金和CoCrMo 合金的复合,既要保证人工关节具有良好的耐磨界面(CoCrMo合金保证),又要与骨组织有良好的生物相容界面(Ti合金),这就需要制造的人工关节具有复合材料结构。由于增材制造具有微量单元的堆积过程,每个堆积单元可通过不断变化材料实现一个零件中不同材料的复合,实现控形和控性的制造。

未来将发展多材料的增材制造,多材料组织之间在成形过程中的同步性是关键技术。如:不同材料如何控制相近的温度范围进行物理或化学转变,如何控制增材单元的尺寸和增材层的厚度。这种材料的复合,包括金属与陶瓷的复合、多种金属的复合、细胞与生物材料的复合,为实现宏观结构与微观组织一体化制造提供新的技术。发展目标是:实现不同材料在微小制造单元的复合,达到陶瓷与金属成份的主动控制,实现生命体单元的受控成形与微结构制造,从结构自由成形向结构与性能可控成形方向发展。

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)技术国内外发展状况 --西安交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

激光增材制造技术及研究现状

在上个世纪,增材制造( Ad di ti ve M a nu fa ct ur in g,A M) 的 概念得到了显著的发展。依据美国试验材料学会(A me ric a n S o ci et y f or Te sti n g a nd Ma te ri als,A ST M) 的定义: 增材制造技术不同于传统的减法加工过程,是基于材料的增量制造,利用3D数据模型,将材料一层一层连接起来制造物体的过程。由于增材制造技术具有设计和制造一体化、加工精度高、制造周期短,产品物理化学性能优异等特点,美国《时代周刊》将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”。 金属材料增材制造技术作为整个增材制造体系中最具前沿和难 度的技术,是先进制造技术的重要发展方向。对于金属材料增材制造技术,按照热源类型的不同主要可分为激光增材制造、电子束增材制造、电弧增材制造等。其中激光增材制造(L ase r A d di ti ve M an uf act u ri ng,LA M) 技术是一种兼顾精确成形和高性能成形需求的一体化制造技术,也是目前金属增材制造最可靠和可行的方法。国内外增材制造的研究也主要集中在激光增材制造技术,本文在总结增材制造的发展历史基础上,重点介绍了激光增材制造的原理、激光选区熔化成形技术和直接沉积技术的发展现状,为激光增材制造在国内各个领域的应用提供支持。一、增材制造的发展历史 1983 年,美国科学家查尔斯·胡尔(Ch ar le s Hu ll) 发明光固化成形技术( st ere o l it ho gr ah y App e ar an ce,SL A) 并制造出全球首个增材制造部件。1986 年,查尔斯·胡尔获得了全球第一项增材制造专利,同年成立3D S ys t em s公司。1987 年,3D S y st em s 发布第一台商业化增材制造设备-快速成型机立体光刻机SL A-1,全球进入增材制造时代。1986年,美国的M i ch ae l F e yg in,首次提出了分层实体制造( L a mi na te d Ob je ct M a nu fa ct ur in g,LO M) 技术。1988年,美国S tr at asy s 公司首次提出熔融沉积成型技术( F us ed D epo s it io n M od el in g,F DM) 。1989 年,美国德克萨斯大学奥斯汀分校的De ck ar d 提出激光 选区烧结( Se le ct i ve L as er S in te r i ng,SL S) 。1995年, 德国Fr au-ho fe r 应用研究促进协会IL T 激光技术研究所的 D r.W il-he lm M ein e rs 等在金属粉末选择性烧结基础上提出激光选区熔化成形技术( S el ec ti ve L as e r M el ti ng,S LM) 。1998 年,美国Sa nd ia 国立实验室将选择性激光烧结工艺SL S 和激光溶覆工艺( La ser Cl ad di ng) 相结合提出激光工程化净成型(L a s e r E n g i n e e r e d N e t S h a p i n g,L E N S)。1990年至现在,增材制造技术实现了金属材料的成型,进入了直接增材制造阶段,相距出现了电子束选区熔化(E BSM)、电子束自由成形制造技术( El ec tr on B eam Fr ee- fo rm Fa br i ca ti on,EB F)、等离子增材制造技术(I on Fu s io n Fo r ma ti on,I F F) 电弧增材制造( Wi r e A r c A dd it iv e Ma nuf a ct ur e,WA AM)等一系列制造工艺。2013年,美国麻省理工大学研发了四维打印技术( Fo ur D i- m ens i on al

金属零件激光增材制造技术及其应用

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铣削等机械工艺方式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明显优于传统减材技术。 激光增材制造技术是一种基于离散/ 堆积成形思想的新型制造技术,是集成计算机、数控、激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿一定方向离散成一系列有序的二维层片;根据每层轮廓信息,进行工艺规划,选择加工参数,自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工,大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动,设计制造高度一体化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。 尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化金属粉末,直接制造出任意复杂形状的零件。其主要方法有: 1、激光直接沉积增材制造技 该技术可追溯到20 世纪70 年代末期的激光多层熔覆研究,但直到20世纪90年代,国内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件的几何形状和力学性能等基础性问题开展大量的研究工作。

增材制造试题答案

1.增材制造技术的优点 (1)自由成型制造; (2)制造过程快速; (3)添加式和数字化驱动成型方式; (4)突出的经济效益; (5)广泛的应用领域。 2.增材制造技术国内外发展现状 国外发展现状 1 欧美发达国家纷纷制定了发展和推动增材制造技术的国家战略和规划,增材制造 技术已受到政府、研究机构、企业和媒体的广泛关注。 2 德国建立了直接制造研究中心,法国增材制造的专项协会致力于增材制造技术标 准的研究。西班牙启动了一项发展增材制造技术的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容。 澳大利亚、日本等国已经开始将其运用到航空领域,制造精密零件。 对于公司而言:以快速成型技术为主的增材制造设备已发展20多年,大量的增材制造装备的知名企业快速发展,其中以3D Systems 公司为代表,发展的SLA、SLS及3DP装备都备受关注。 美国Stratasys公司率先推出FDM装备,推广Dssignjet 3D 和Dssignjet Color 3D 两款产品。 除了以上具有代表性的外,还有LENS装备生产商、SLM装备生产商英国MIT公司等等。 国内: 我国增材制造技术研究已经经历20多年,以华科、西安交大、清华等大学为代表的科研院所开展了多项技术研究,其中涉及航空、汽车、生物、电子等各个行业。 西安交大:从1993年开始发展SLA技术研究,到现在已经有了成套的技术设备 华科:开展LOM技术,以及SLS\SLM技术,并且已经开发出相应的成套设备,且已经投入到市场使用。 清华大学跟西北工大已经研究多系列低成本FDM装备,并投入使用。并已经广泛使用到了航空领域,制造精密的成型技术。经过多年研究,我国增材制造技术得到飞快发展,精度等到极大提高。 3.增材制造技术的发展趋势。 (1)从快速原型与翻模制造向零部件直接制造转变 (2)学科交叉融合,应用领域不断扩大 (3)装备向零部件直接制造和专业化方向发展 (4)增材制造装备从高端型走向普及型 (5)成型材料开发及其系列化、标准化 4.增材制造技术面临的挑战 (1)进度控制技术; (2)高效制造技术; (3)复合材料零件增材制造技术。 5.增材制造技术面临的伦理安全问题。 (1)增材制造技术制造枪支。通过互联网下载枪支设计数据,借助增材成型工艺制造出来; (2)增材成型技术克隆人体器官。

复合增材制造技术研究进展

复合增材制造技术研究进展 杨智帆1袁张永康1袁2 渊1.广东工业大学机电工程学院袁广东广州510006曰2.广东镭奔激光科技有限公司袁广东佛山528225冤 摘要院在阐述了复合增材制造技术的含义及关键技术特征的基础上袁对基于机加工的复合增材制造尧基于激光辅助的复合增材制造尧基于喷丸的复合增材制造尧基于轧制的复合增材制造四种复合增材制造技术的特点与优势进行了总结袁并介绍了一种全新的激光锻造复合增材制造技术袁其可与多种增材制造复合并能有效细化晶粒尧消除缺陷和重构应力分布袁最后指出了复合增材制造技术在耦合机理尧参数优化及装备研制方面的发展趋势遥 关键词院复合增材制造曰耦合工艺曰激光锻造中图分类号院TG669文献标志码院A 文章编号院1009原279X渊2019冤02原0001-07 Research and Development of Hybrid Additive Manufacturing Technology YANG Zhifan 1袁ZHANG Yongkang 1袁2 渊1.School of Electro-mechanical Engineering袁Guangdong University of Technology袁 Guangzhou 510006袁China曰 2.Guangdong Leiben Laser Technology Co.,Ltd.袁Foshan 528225袁China 冤 Abstract 院Based on expounding the technical meaning and key features of hybrid additive manufacturing (hybrid -AM)袁the features and advantages of hybrid -AM by machining袁by laser processing袁by shot-peering and by rolling are summarized and analyzed.Then袁a new technology named hybrid -AM by laser forging is introduced袁which can be coupled with other AM processes and effectively refine grains袁eliminate defects and reconstruct stress distribution.Finally袁the development trend of hybrid-AM technology in coupling mechanism袁optimization of multi-processes parameters and equipment manufacturing is discussed. Key words 院hybrid additive manufacturing曰coupled processes曰laser forging 收稿日期院2018-12-10 基金项目院国家重点研发计划渊2017YFB1103600冤曰国家自然科学 基金资助项目渊51775117冤 第一作者简介院杨智帆袁男袁1993年生袁硕士研究生遥 与传统去除成形方法相比袁增材制造是一种基于材料增量制造理念的技术[1]袁是一种利用CAD 模型以材料连接方式完成物体制作的过程[2]袁与减材制造相比袁增材制造通常是逐层累加进行的遥增材制造具备柔性尧快速和绿色制造等技术优势袁在航空航天尧国防工业和生物医疗方面具有重要应用前景[3-4]遥 然而袁增材制造技术存在零件成形精度低尧力学性能不足等问题[5]遥针对上述技术瓶颈袁现已出现 了若干种既保持增材制造技术优点又能吸收传统技术优势的复合增材制造新技术袁为解决瓶颈难题 提供了新路径遥 本文重点介绍复合增材制造技术的研究进展袁并根据辅助工艺的不同将复合增材制造技术分成五种不同类别袁分别进行了总结与分析袁并对复合增材制造技术的发展方向进行了展望遥 1复合增材制造技术含义 野复合冶一词广泛应用于制造领域袁国际生产工程科学院渊CIRP冤将野复合制造冶定义为野一种基于若干种工艺/工具/能量源同步工作尧相互作用可控且对工艺/零件性能有显著影响的技术冶[6]遥一般地袁复合增材制造以增材制造为主体工艺袁在零件制造过程中采用一种或多种辅助工艺与增材制造工艺耦合协同工作袁使工艺尧零件性能得以改进遥复合增材制造虽涉及多种工艺尧能量源袁但并不能严格达到 综述专稿 叶电加工与模具曳2019年第2期 1要要

增材制造(3D打印)国内外发展状况

增材制造(3D打印)技术国外发展状况 --交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的式,并改变世界的经济格局,进而改变人类的生活式。

3D打印技术应用趋势及发展前景

3D打印技术应用趋势及发展前景 1 3D打印的概述 3D打印是能够有效地将数字化二维模型实体化的一种快速成型技术,它在设计和制造物体方面表现十分高效,又称增材制造。3D打印的工作原理就是将一个三维的几何拆分为若干个二维的平面,依据拆分对象的三維数据对打印对象进行逐层加工,利用成形设备层层材料堆积而形成所需要的立体模型,制造出实体三维模型。通俗一点来说,就像是现今社会上普遍存在的普通打印机,可以打印出纸面(即二维空间)上的任意图画,3D打印就是将三维几何切分成一个个二维平面进行打印,然后将平面进行顺序叠加,最终制造出一个实体立体几何模型。3D打印采用的是增材制造的方式,和采用减材制造的传统工艺有所不同,它在实现原材料的高效利用上具有重要意义,节约能源,是一种更加符合现代化建设的制造方式。目前为止,发展的3D打印技术类型有熔融沉积式(FDM)、分层叠加式(GLOM)、光敏树脂固液化成式(SLA)、选择性粉末激光烧结式(SLS)、激光选区融化式(SLM)等。 自3D打印技术产生以来,就是作为人类社会文明的一次重大突破而存在的。仅仅几十年的时间,3D打印技术就已经广泛应用于各个不同的领域,产生显著影响。同时,随着社会的进步,3D打印技术快速且广泛的被大众所关注、讨论和接受,3D打印机的价格也不断下降,更为其普及程度作出贡献,使更多普通用户能够体验到制造三维立体模型的所带来的新奇感与愉悦感。现如今3D打印技术的普遍应用,不仅仅是因为它更为多样化的材料选择和加工方式更加符合现代化道路的发展,也是因为它是人类文明历史上前所未有的一种生产生活方式和理念。准确来讲,3D打印并非是一种全新的技术,与其称它为新,不如称它是综合性生产方式,毕竟它综合了现代计算机、激光、材料等多种先进技术。可以说3D打印是一种应运而生的综合

增材制造技术概述

3.1 增材制造技术概述 增材制造技术诞生于20世纪80年代后期的美国。一开始,增材制造技术的诞生源于模型快速制作的需求,所以经常被称为“快速成型”技术。历经三十年日新月异的技术发展,增材制造已从概念(沟通)模型快速成型发展到了覆盖产品设计、研发和制造的全部环节的一种先进制造技术,已远非当初的快速成型技术可比。 3.1.1概述 1.概念 增材制造(即Additive Manufacturing,简称AM):一种与传统的材料“去除型”加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 增材制造的概念有“广义”和“狭义”之说,如图3-1所示。 “广义”增材制造则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群。而“狭义”的增材制造是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系。 目前,出现了许多令人眼花缭乱的多种称谓:快速成型(Rapid Proto-typing)、直接数字制造(Direct Digital Manufacturing)、增材制造(AdditiveFabrication)、“三维打印(3D—Printing )”、“实体自由制造(Solid Free-form Fabrication) ”、增层制造(Additive Layer Manufacturing)等。2009年美国ASTM专门成立了F42委员会,将各种RP统称为“增量制造“技术,在国际上取得了广泛认可与采纳。 2.原理与分类 实际上在我们的日常生产、生活中类似“增材”的例子很多,例如:机械加工的堆焊、建筑物(楼房、桥梁、水利大坝等)施工中的混凝土浇筑、元宵制法滚汤圆、生日蛋糕与巧克力造型等。 图3-1 增材制造概念 基本原理:首先将三维CAD模型模拟切成一系列二维的薄片状平面层。然后利用相关设

(完整版)增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术 一、增材制造技术的简介 增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。 增材制造原理与不同的材料和工艺结合形成了许多增材制造设备,目前已有的设备种类达到20多种。该技术一出现就取得了快速发展,在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等多个领域都得到了广泛的应用。其特点是单件或小批量的快速制造,这一技术特点决定了快速成形在产品创新中具有显著的作用。 二、增材制造技术的优势 2.1设计上的自由度——在机加工、铸造或模塑生产当中,复杂设计的代价高昂,其每项细节都必须通过使用额外的刀具或其它步骤进行制造。相比而言,在增材制造当中,部件的复杂度极少需要或根本无需额外考虑。增材制造可以构建出其它制造工艺所不能实现或无法想像的形状,可以从纯粹考虑功能性的方面来设计部件,而无需考虑与制造相关的限制。 2.2小批量生产的经济性——增材制造过程无需生产或装配硬模具,且装夹过程用时较短,因此它不存在那些需要通过大批量生产才能抵消的典型的生产成本。增材工艺允许采用非常低的生产批量,包括单件生产,就能达到经济合理的打印生产目的。 2.3高材料效率——增材制造部件,特别是金属部件,仍然需要进行机加工。增材制造工序经常不能达到关键性部件所要求的最终细节、尺寸和表面光洁度的要求。但是所有近净成形工艺当中,增材制造是净成形水平最高的工艺,其后续机加工所必须切削掉的材料数量是很微量的。

增材制造技术发展前景

中国信息化周报/2013年/7月/22日/第005版 趋势 增材制造技术发展前景广阔 中国工程院院士李培根 增材制造技术将成为产业和社会变革的助推器,将为建设创新型社会,提供强有力的技术支撑。 发展增材制造技术,可以成为我们国家制造业基础创新的有效手段。增材制造大大增加了创新设计空间技术。另外符合绿色制造的发展方向,有利于制造业的可持续发展。它可以促进传统制造业技术水平的提升,尤其是我们把增材制造技术和传统工艺结合起来,可有望培育新兴产业,优化产业结构,促进产业升级。 我国正处于工业转型升级的关键时期,这既是重大的机遇,又有严峻的挑战。在此背景下召开增材制造技术工程国际研讨会及展览会,将为我们全面客观地掌握国内外增材制造技术的发展现状和趋势,研讨制定3D打印技术性发展带来的机遇和挑战,以及我国增材制造业技术创新与产业化发展战略对策部具有非常重要的意义。 用科普图书带动增材制造的激情 当前,全球迎来技术创新与产业变革的新高潮,其基本特征是制造业数字化、智能化,新能源、新材料技术取得突破,这必将引发新一轮的科技革命。增材制造技术是典型的数字技术,利用计算机数据,生产三维实体,将对制造业生重要的影响。 2012年,美国学者杰里米里夫金的《第三次工业革命》一书出版后,在中国引起了很大的反响,人们认为第三次工业革命有可能会改变未来的生产与生活模式。尽管这些观点现在还存在着一些争议,但是我们认为增材制造技术不管怎样都会有很大的发展前景。 我们希望科普图书能够以通俗的语言介绍增材制造技术的概念、现状、案例等等。大家可能会感到奇怪,我们的咨询报告为什么要去关注科普图书? 我认为科普图书对增材制造技术未来在中国的普及具有非常重要的意义。仔细对比一下美国和中国在增材制造技术方面的研究和研发情况,我们可以发现国内目前有好多家机构在做相关的研究,并且有一些已经做得非常好。但是,我们发现有一个很大的差别是,美国的民间对增材制造技术的热情要远远大于中国。如何去激发我们民间对增材制造技术及其运用的热情?我想科普图书可以发挥非常重要的作用。 我们希望通过科普图书吸引更多的人尤其是青少年,去关注增材制造技术,激发青少年的创意。这样,未来增材制造技术在中国才会有发展前景,否则,仅仅是依靠大学和一些科研院所进行研究是远远不够的。 增材制造技术的科普图书是面向所有对该技术感兴趣的人,因此当然要用简明生动的形式去做介绍。我觉得这本3D打印科普书最让人感兴趣的就是它的案例,该书大约搜集了一百多个案例,领域涉及到航空航天、汽车、现代制造业、医学、生物工业技术,以及个人消费品等多个方面。 提升增材制造技术的重大需求 从国外的总体技术情况来讲,3D打印已经从快速原型、工艺辅助等间接制造发展到直接制造,装备产业化、系列化向专业化方向发展,从科研到工业,高端型向办公和个人消费等大众化领域拓展,正在形成一个集装备材料、软件服务为一体的产业链。 3D打印需要标准,现在已经开始制订国际标准。其应用是多学科交叉的融合和发展,存在的问题包括:成形的材料种类仍然很有限,不是所有的材料都可以适用这种方法。此外,成形的精

国内电弧增材制造技术的研究现状与展望

国内电弧增材制造技术的研究现状与展望 摘要:本文简述了电弧(电熔)增材制造技术特点、优势和发展历史,详细分 析了国内在电弧增材制造工艺、质量控制、电弧增材制造材料性能三方面的研究 情况,并基于目前的研究现状,提出了电弧增材制造技术在制造工艺、质量控制 和材料性能三方面研究的建议。 关键词:电弧增材制造,研究现状,展望 1引言 增材制造,是一种新型的金属“降维”制造工艺,通过对三维数字模型进行分 层切片处理,再按照预先规划好的路径将材料逐层累加的制造方式,是一种自下 而上,化零为整的制造方法,在复杂结构零部件制造方面有很大优势。电弧增材 制造(Arc welding additive manufacturing,简称WAAM)技术,也称为电熔增材制造 技术(Electrical additive manufacturing,简称EAM )是采用电弧为热源的增材制 造技术,通过熔化金属丝材或粉末,逐层堆积出金属零部件的制造方法,具有丝 材利用率高、生产效率高,成本底,零件的尺寸不受成形缸或真空室的限制,易 于修复零件等优点。和传统的铸造、锻造技术相比,制造过程无需模具,整体制 造流程短,制造周期短,柔性化程度高,易于实现数字化、智能化,对设计的响 应快,可实现零部件的拓扑优化设计,在小批量、复杂构件的个性化定制方面具 有很大技术和成本优势。 20世纪70年代,德国学者提出了电弧增材制造的概念,并采用该技术制造 了一金属容器。20世纪80年代,美国使用等离子弧焊、熔化极气体保护焊技术 制造出了镍基合金金属构件,20世纪90年代,随着增材制造技术的发展,电弧 增材制造技术也得到了空前的发展,在装备、工艺及材料性能研究方面均取得了 很大突破。 2电弧增材制造技术研究现状 目前国内外用于WAAM制造的电弧种类主要为熔化极气体保护焊(GMAW),钨极惰性气体保护焊(GTAW)、等离子弧焊(PAW)等,尤其是配以冷金属过 度的熔化极气体保护焊,因其热输入小,电弧稳定性好等特点,得到了广泛发展 和应用。今年来,国内各大高校针对电弧增材制造的研究也在不断深入,主要集 中在成形控制、过程监控和成形件性能研究等方面。 2.1工艺与成形研究 电弧增材制造在制造过程中液态熔池较大,电弧的可控性难,故成形控制是 电弧增材制造的发展的主要瓶颈之一。电弧增材制造的在成形设备方面,主要有 两种方式,一种是焊接设备与多功能数控机床复合,另一种是焊接设备与多轴机 械手复合,实现柔性制造。成形控制方面的研究主要集中在工艺优化、过程监控 以及实时反馈等方面,在工艺优化环节主要是通过实验,针对不同的增材方法, 研究合适的工艺参数,例如打印速度,丝径,送丝速度,电流,电压等。沈泳华[[[]沈泳华.电弧增材制造成形系统设计和成形规律研究[D].南京:南京航空航天大学,2017]]研究了以KUKA焊接机器人和Fronius数字化焊机为主要设备的GMAW 冷金属过渡电弧增材制造系统和成形规律,采用“反切削法”实现了电弧增材制造 成形路径规划系统,并研究了不同工艺条件下的表面成形质量。熊俊[[[] 熊俊.多 层单道GMA增材制造成形特性及熔敷尺寸控制[D].哈尔滨:哈尔滨工业大学,2014]]研究了单道熔化极气体保护增材制造的工艺特性和成形质量,表明熔敷电 流是决定成形形貌的决定因素,良好的成形电流区间为100~180A。柳建等人[[[]

脉冲TIG增材制造技术研究进展

第46卷2018年12月 第12期 第10-17页 材料工程 Journal of Materials Engineering Vol.46 Dec.2018 No.12 pp.10-17 脉冲TIG增材制造技术研究进展 Progress in Additive M anufacturing Technique Based on Pulsed T IG 郭龙龙,贺雨田,鞠录岩,吴泽兵,张勇,吕澜涛,王文娟 (西安石油大学机械工程学院,西安710065) GUO Long-long,HE Yu-tian,JU Lu-y an,WU Ze-bing, ZHANG Yong,LYU Lan-tao,WANG Wen-j uan (Mechanical Engineering College,Xi’an Shiyou University,Xi’an710065,China) 摘要:脉冲TIG(p ulsed tungsten inert gas,PTIG)增材制造技术属于电弧增材制造技术的分支,其最显著的优势是成本低、沉积率和材料利用率高,适用于大尺寸结构件的制造。本工作从实验研究和数值模拟的角度,着重介绍了PTIG增材制造成形件成形质量控制、微观组织及性能控制方面的研究成果,总结了当前研究存在的不足。基于对成形件成形质量、微观组织及性能的准确预测和主动控制,提出了PTIG增材制造技术有待深入的研究方向,即:工艺因素对成形质量的影响机理研究、缺陷形成机制及其抑制措施研究、熔池微观组织演变数值模拟研究、成形件内应力和变形的调控机制研究、微观组织与力学性能关系模型的建立。 关键词:脉冲TIG;增材制造;成形质量;微观组织;力学性能 doi:10.11868/j.issn.1001-4381.2018.000267 中图分类号:TG142文献标识码:A文章编号:1001-4381(2018)12-0010-08 Abstract:Additive manufacturing based on PTIG(p ulsed tungsten inert gas,PTIG)is a branch of arc additive manufacturing technique.Its notable advantages are low cost,high deposition rate,high ma-terial utilization ratio,and suitable for manufacturing parts of large size.In this paper,the research results on the control of formation quality,microstructure and properties of the parts deposited by PTIG additive manufacturing were emphasized in view of experimental research and numerical simula-tion.Meanw hile,the shortcomings of current investigations were also summarized.Based on accurate p rediction and accurate control on the formation quality,microstructure and properties,the research directions for further study on PTIG additive manufacturing technique in the future were put forward,including the influence mechanism of process factors on the formation quality,defects forming mecha-nism and the suppression measures,numerical simulation on microstructure evolution in molten pool,formation and regulation mechanisms on internal stress and deformation,and the establishment on q uantitative relationship model between the microstructure and mechanical properties. Keywords:p ulsed TIG;additive manufacturing;formation quality;microstructure;mechanical property 增材制造技术基于“离散-堆积”原理,以粉末或丝材为填充材料,利用数字化技术控制高能束将填充材料熔化,依据三维CAD模型数据制造实体产品[1-3]。与传统的“减材制造”技术相比,增材制造技术能够实现高性能,复杂结构金属件的快速、无模具、致密、近净成形,而且材料利用率高[2]。因此自20世纪80年代以来,增材制造技术始终是国际材料加工工程与先进制造技术学科交叉领域的研究热点,我国政府和相关部门也对增材制造技术高度重视,在“中国制造2025”中将其列为未来大力扶持与重点发展的技术[4-5]。 脉冲TIG(p ulsed tungsten inert gas,PTIG)增材制造属于电弧增材制造技术的重要分支,其以周期性变化的电弧为热源,以氩气等惰性气体作保护,填充焊丝以熔滴的方式逐滴、逐层沉积,从而获得近净成形的制造件[6-7]。与激光增材制造、电子束增材制造等技术相比,PTIG增材制造技术最显著的优势是成本低、沉积率和材料利用率高,适用于大尺寸、复杂结构件的制造[8-9]。因此,PTIG增材制造技术在航空航天、飞机、 万方数据

增材制造技术在船舶制造领域的讨论

增材制造技术在船舶制造领域的讨论 发表时间:2018-05-15T09:58:17.437Z 来源:《建筑学研究前沿》2018年第3期作者:董真理1 张洪鸣2 [导读] 我国是一个造船大国,但并不是造船强国,目前的船舶制造业是一个劳动密集型产业,较适合我国人口红利时期的发展。 摘要:增材制造俗称3D打印,是融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。本文就从船舶制造领域中的增材制造技术展开分析。 关键词:增材制造技术;船舶制造领域;应用 1、增材制造技术的发展 增材制造技术如果从1986年美国科学家开发的第一台商业3D印刷机开始算起的话,到2016年为止整整30年了,在此期间,市场上首个高清晰彩色3D打印机于2005年问世,到2014年,世界上已有3D打印建筑投入使用、3D打印汽车横穿美国、3D打印火箭发动机通过测试……,增材制造技术(3D打印)的发展速度令人惊叹。在政策方面,许多国家将增材制造技术列为国家战略技术发展的重要方向,例如美国早在2012年就将增材制造技术列为国家制造业的首要战略任务,我国也在2015年8月由李克强总理组织召开国务院座谈会,专门讨论3D打印技术的发展与振兴中国制造业的关系,将发展增材制造技术推向了前所未有的高度。科学家们相信,在许许多多科研机构的努力下和相关政策的支持下,增材制造技术将会有广阔的发展空间。 2、增材制造技术在船舶制造业的应用现状 增材制造是一门新兴的科学技术,虽然近几年来在众多领域取得了突破性进展,但是在各个行业还未见商业化广泛推广,离走进寻常百姓家还有很长的路要走,在船舶领域也不例外,近期也有学者撰文说增材制造技术短期内在船舶制造业中很难广泛应用。尽管如此,增材制造的技术优势和经济性还是吸引了国内外不少公司和科学家都在尝试将该技术应用到船舶领域,并也取得了初步成果。 2.1船舶备件供应领域 对于船舶来说,尤其是远洋油轮和远海航行或作战的军船,设备故障的修理是很常见的事情,为了应付一些突发情况所需的零部件,要么随船带足事先预想的各种可能需要的零件;要么想办法靠岸修理,这两种选择无论哪种都会带来较高的修理成本和风险。将3D打印技术应用到船舶备件的供应链中,不失为一种很好的解决方法。 在民船方面,马士基油轮公司率先将这一设想在实践中进行尝试,虽然到现在为止未见成功案例的报道,但是可以预见的是一旦将3D 打印技术应用成功的话,将会取得莫大的经济效益和社会效益。据马士基公司称,由于油船是被禁止进入港口主要区域的,所以传统的修船方法是首先确定油轮上所需更换的零部件,然后通知公司将零件运往船舶经过的下一个港口,最后租一艘小艇将零件送到船上,还得加上仓储、包装及清关等运营成本,更换一个零件的总费用就高达5000美元。如果采用3D打印技术,只需在船上配备一台打印机和一些打印材料,用时将零件打印出来就可以了。采用3D打印技术不但可以缩短零件的交付周期、节约成本,还可以减少因能源的消耗而产生的环保问题。 除此之外,早在2014年美国海军就提出了“打印舰艇”的概念,将增材制造及3D打印技术应用到零部件的供应链中,美国海军人士称,掌握增材制造技术将是海军的优势之一,如果能在船的航行状态下使用3D打印技术,将是一件里程碑式的事件,必将大量减少备品备件的携带量,增加武器、燃料及补给的携带量,从而显著提高海军的远洋作战能力。 2.2 3D打印船模 美国卡德洛克海军水面作战中心采用3D打印技术成功打印出美军医疗船模型,用于测试船上风力气流的情况,该中心科学家称3D打印可以提供更快、更精准及更低成本的舰船模型。如果将该技术推广应用,在相同和相似领域必将产生深远的影响。 2.3 3D打印螺旋桨 2016年初,国外两位发烧友尝试采用3D打印技术制造螺旋桨,他们同时选用了4种材料进行对比,取得了丰富的试验数据。 2.4 3D打印无人机 英国早在五年前就应用3D打印技术打印了世界上第一台无人机SULSA,经过多次改进后,于2015年进行海上试飞试验,尽管它只能飞行40min,但其低廉的成本和完成任务的表现,足以使人们产生浓厚的兴趣和继续研究的决心。2016年SULSA正式服役,为英国皇家海军破冰船的南极之旅侦查路线。美国海军研究学院启动3D打印无人机项目,该项目将现代通信技术和装备技术完美结合,为海军执行不同任务时打印出相应的无人机,2015年12月打印出一架反恐无人机,可搭载反恐所需的通信设备。与英国不同的是,美国的3D打印无人机是在船上完成的,将3D打印技术又向前推进了一大步。 2.5其他方面 增材制造除以上应用外,还在发动机铸造模具、涡轮增压部件及小艇模型等得到应用,增材制造(3D打印)技术正在船舶领域的各个方面大显身手。2016年1月7日,劳氏船级社颁布3D打印全球认证标准,旨在指导规范增材制造技术的推广应用。 3、增材制造技术在船舶领域广泛应用的技术瓶颈 目前,增材制造3D打印技术在船舶行业的应用相对于整个造船领域来说只是冰山一角,远未达到广泛应用的程度,究其原因增材制造技术还是一门新兴的科学技术,还有很多技术瓶颈未能突破,比如以下几个方面: 3.1增材制造材料的相对匮乏 传统造船业所使用的材料主要为金属材料,金属材料的发展已有几千年的历史了,在这漫长的历史长河中金属材料的种类多种多样,性能各异,制造工艺也日益成熟,可以满足船舶制造的不同需求。而增材制造所使用的材料相比之下少之又少,制造的产品也远不能满足使用要求。因此,原材料的种类性能不能有大的进展,将直接影响增材制造技术的推广使用。 3.2测试与评价技术的相对滞后 传统工业在发展过程中,形成了一整套成熟的测试、评判、失效分析、安全评价和寿命评估技术,为产品的安全使用保驾护航,从而减少生命与经济的损失。增材制造技术的发展仅有30年的历史,科学家们所关注的重点大多集中在工艺与产品的研发上,而对测试与评价技术却鲜有报道。由于增材制造技术是一门相对于传统技术完全不同的加工制造方法,所以其测试与评价技术也必将不同。在世界各国造船系统中都有严格的检测与验收标准,增材制造技术在没有形成成熟的测试与评价标准之前,是很难让人接受的。

激光增材制造技术及现状研究

PETROLEUMTUBULARGOODS&INSTRUMENTS 初投稿收稿日期:2019-03-06?修改稿收稿日期:2019-08-30 第一作者简介:胡美娟?女?1981年生?高级工程师?2009年毕业于西北工业大学焊接专业?获博士学位?现从事石油管焊接的研究工作? E ̄mail:humeijuan@cnpc.com.cn 综一述 激光增材制造技术及现状研究 胡美娟?吉玲康?马秋荣?池一强 (中国石油集团石油管工程技术研究院?石油管材及装备材料服役行为与结构安全国家重点实验室一陕西一西安一710077) 摘一一要:基于增材制造技术的发展和分类?对目前金属增材制造最可靠和可行的方法 激光增材制造技术的原理二激光选区熔化成形技术和直接沉积技术的发展现状进行了介绍?分析了其未来的发展趋势?为激光增材制造在国内各个领域的应用提供技术支持?关键词:激光?增材制造?3D打印?金属材料 中图法分类号:V235.1一一一一文献标识码:A一一一一文章编号:2096-0077(2019)05-0001-06DOI:10.19459/j.cnki.61-1500/te.2019.05.001 OverviewofLaserAdditiveManufacturingTechnologyandStatus HUMeijuan?JILingkang?MAQiurong?CHIQiang (CNPCTubularGoodsResearchInstitute?StateKeyLaboratoryforPerformanceandStructureSafetyof PetroleumTubularGoodsandEquipmentMaterials?Xi?an?Shaanxi710077?China) Abstract:Basedonthedevelopmentandclassificationofadditivemanufacturingtechnology?theprincipleoflaseradditivemanufacturingtechnologywasintroduced?whichisthemostreliableandfeasiblemethodsformetaladditivemanufacturing.Thestatusofselectivelasermelting(SLM)anddirectlaserdeposition(DLD)wasintroducedandthedevelopmenttrendwasanalyzed.ThispaperprovidestechnicalsupportfortheapplicationoflaseradditivemanufacturinginvariousfieldsinChina.Keywords:laser?additivemanufacturing?3Dprint?metalmaterial 0一引一言 在上个世纪?增材制造(AdditiveManufacturing? AM)的概念得到了显著的发展?依据美国试验材料学会(AmericanSocietyforTestingandMaterials?ASTM)的定义:增材制造技术不同于传统的减法加工过程?是基于材料的增量制造?利用3D数据模型?将材料一层一层连接起来制造物体的过程[1]?由于增材制造技术具有设计和制造一体化二加工精度高二制造周期短?产品物理化学性能优异等特点?美国?时代周刊?将增材制造列为 美国十大增长最快的工业 ?英国?经济学人?杂志则认为它将 与其他数字化生产模式一起推动实现第三次工业革命 [2]? 金属材料增材制造技术作为整个增材制造体系中最具前沿和难度的技术?是先进制造技术的重要发展方向?对于金属材料增材制造技术?按照热源类型的不同 主要可分为激光增材制造二电子束增材制造二电弧增材制造等?其中激光增材制造(LaserAdditiveManufacturing?LAM)技术是一种兼顾精确成形和高性能成形需求的一体化制造技术?也是目前金属增材制造最可靠和可行的 方法?国内外增材制造的研究也主要集中在激光增材制造技术?本文在总结增材制造的发展历史基础上?重点介绍了激光增材制造的原理二激光选区熔化成形技术和直接沉积技术的发展现状?为激光增材制造在国内各个领域的应用提供支持? 1一增材制造的发展历史 1983年?美国科学家查尔斯 胡尔(CharlesHull)发 明光固化成形技术(stereolithograhyAppearance?SLA)并制造出全球首个增材制造部件?1986年?查尔斯 胡尔获得了全球第一项增材制造专利?同年成立3DSystems公司[3]?1987年?3DSystems发布第一台商业化增材制 1 2019年一第5卷一第5期

相关文档
最新文档