差分方程xn+1 = xn ( p + xn

差分方程xn+1 = xn ( p + xn
差分方程xn+1 = xn ( p + xn

Advances in Applied Mathematics 应用数学进展, 2018, 7(11), 1402-1404

Published Online November 2018 in Hans. https://www.360docs.net/doc/cb2642868.html,/journal/aam https://https://www.360docs.net/doc/cb2642868.html,/10.12677/aam.2018.711163

Dynamics of the Difference Equation ()11n n n x =x p +x +?

Shaogao Deng 1, Lijun Zhu 2*

1School of Mathematics, Southwest Jiaotong University, Chengdu Sichuan

2

School of Mathematics and Information Science, North Minzu University, Yinchuan Ningxia

Received: Oct. 23rd , 2018; accepted: Nov. 13th , 2018; published: Nov. 20th

, 2018

Abstract

This paper considers the difference equation ()(),+1102n n n x =x p +x p n ?≥≥ with the initial values

,120>0x x >. The asymptotic stability of the positive solutions is proved under some assumptions.

Keywords

Difference Equation, Equilibrium Point, Asymptotic Stability

差分方程()11n+n

n x =x p +x ?的动力学性质

邓绍高1,朱立军2*

1西南交通大学数学学院,四川 成都

2

北方民族大学数学与信息科学学院,宁夏 银川

收稿日期:2018年10月23日;录用日期:2018年11月13日;发布日期:2018年11月20日

摘 要

本文讨论了差分方程)(),+1102n n n x =x p +x p n ?≥≥的动力学性质,其中参数p 是非负数,初始值

,120>0x x >。在一定的条件下,方程的正解的渐近稳定性得到了证明。

*

通讯作者。

邓绍高,朱立军

关键词

差分方程,平衡点,渐近稳定性

Copyright ? 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/cb2642868.html,/licenses/by/4.0/

1. 引言

差分方程来源于递推关系,在各种实际问题中有着广泛的应用。同时在微分方程的数值求解中,需要通过对微分方程的离散化得到差分方程(参见[1] [2])。因此,非线性差分方程成了近年来的研究热点之一,比如文献[3] [4] [5]。

本文将考虑具有非负参数的差分方程:

)11n n n x x p x +?=+ (1.1)

的正解在一定的条件下的收敛性和周期性。其中,()0,2p n ≥≥,初始值120,0x x >>。

设函数()()(),0,0,0f x y x p y p x y +>>>,则差分方程

()()11,2n n n x f x x n +?=≥ (1.2)

在平衡点β的线性化方程的特征方程为(相关的概念参见[1] [2]):

()()2,,0x y f f λββλββ??= (1.3)

引理1.1:若方程(1.3)的全部特征根的模都小于1,则方程(1.2)的平衡点β是(局部)渐近稳定的;若方程(1.3)至少有一个特征根的模大于1,则方程(1.2)的平衡点β是不稳定的(参见[1] [2])。

2. 主要结果

首先,我们考虑0p >为正数时的情形。

定理2.1:差分方程(1.1)在0p >时,其平衡点及其稳定性依赖于p 的值。即: 1) 当1p ≥时,有唯一的平衡点0β=,且是全局(渐近)稳定的;

2) 当01p <<时,有两个平衡点0β=和1p β=?,其中0β=是不稳定的,而1p β=?是(渐近)稳定的。

证明:因为120,0,0p x x >>>,由数学归纳法可得()01n x n >≥。 1) 当1,2p n ≥≥时,()11111n n n x x p x p +?+<≤=, 即方程(1.1)的解{}n x 单调递减。

从而存在0β≥,使得:()n x n β→→∞。 另一方面,对方程(1.1)两边取极限可求得:

()011p p ββ==?>当或时舍去

从而得唯一的平衡点0β=。

由于解的收敛性不依赖于对初值的选取。所以,该平衡点是全局(渐近)稳定的。 2) 当01p <<时,令n x β≡,可得:

Open Access

邓绍高,朱立军

010p ββ==?>或

此时,方程(1.1)有两个平衡点0β=和1p β=?。 令()),f x y x p y =+,则:

()(),1x f x y p y =+,())2

,y f x y x p y =

?+ 当0β=时,(),1x f p ββ=,(),0y f ββ=。

所以,方程(1.1)的线性化方程的特征方程20p λλ?=的特征根为:

120,11p λλ==>

故,平衡点0β=是不稳定的。

当1p β=?时,(),1x f ββ=,(),1y f p ββ=?。

同上,方程(1.1)的线性化方程的特征方程()210p λλ???=

的特征根满足: ()(()

12012121341p λλ<=≤=<≤<当时;

()22

12

1211034p p λλλλ===

?<<<当时。 由此可知,平衡点1p β=?是(渐近)稳定的。证毕。 其次,我们来考虑0p =时,其解是否收敛。 设初始值120,0x a x b =>=>,容易得到:

345678,1,1,,,x b a x a x x a b x a x b ======

定理2.2:差分方程(1.1)在0p =时,其解{}n x 在一般的情况下是六周期解(即6n n x x +=)。即解{}n x 是振荡的,也就是没有平衡点。

注释2.1:在差分方程(1.1)中,如果将参数p 推广成一般的序列{}n p 则结论就会有所不同.

基金项目

中央高校基本科研业务费专项资金(2682018ZT25)资助(Supported by the Fundamental Research Funds for the Central Universities (2682018ZT25));宁夏自然科学基金项目(NZ17015);国家自然科学基金项目(61362033);四川省科技厅基础研究计划项目(2011JYZ002);西南交通大学本科教育教学研究与改革项目(1804171)。

参考文献

[1] 周义仓, 曹慧, 肖燕妮. 差分方程及其应用[M]. 北京: 科学出版社, 2014.

[2] Elaydi, S. (2005) An Introduction to Difference Equations. 3rd Edition, Springer-Verlag, New York.

[3] Amleh, A.M., Grove, E.A., Ladas, G. and Georgiou, D.A. (1999) On the Recursive Sequence 11n n n x x x α+?=+.

Journal of Mathematical Analysis and Applications , 233, 790-798. https://https://www.360docs.net/doc/cb2642868.html,/10.1006/jmaa.1999.6346 [4] 徐胜荣, 王希超, 周营营. 一类差分方程的稳定性研究[J]. 山东农业大学学报(自然科学版), 2013, 44(4):624-629. [5] 韩彩虹, 李 略, 黄荣里. 差分方程1

1n n n n x p x x +?=+的动力学性质[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 44-47.

知网检索的两种方式:

1. 打开知网页面https://www.360docs.net/doc/cb2642868.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2324-7991,即可查询2. 打开知网首页https://www.360docs.net/doc/cb2642868.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.360docs.net/doc/cb2642868.html,/Submission.aspx

期刊邮箱:aam@https://www.360docs.net/doc/cb2642868.html,

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

实验3离散系统的差分方程、冲激响应和卷积分析

实验3离散系统的差分方程、冲激响应和卷积分析 一 一、实验目的 1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统 ] [n x ] [n y Discrete-time systme 其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0 ][][ 输入信号分解为冲激信号 ∑-=∞ -∞=m m n m x n x ][][][δ 记系统单位冲激响应 ] [][n h n →δ 则系统响应为如下的卷积计算式 ∑∞ -∞ =-= *=m m n h m x n h n x n y ][][][][][ 当 N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 二、实验内容 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。 ] 1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 程序1: A=[1,0.75,0.125];B=[1,-1]; x2n=ones(1,65); x1n=[1,zeros(1,30)]; y1n=filter(B,A,x1n); subplot(2,1,1);y='y1(n)'; stem(y1n,'g','.'); title('单位冲击响应') 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言 1.1问题背景 在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。诸如粒子扩散或神经细胞的动作电位。也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。热方程及其非线性的推广形式也被应用与影响分析。 在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。 科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。 解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。 1.2问题现状 近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。而且精度上更好。 目前,在欧美各国MATLAB的使用十分普及。在大学的数学、工程和科学系科,MATLAB

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

(完整版)差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

离散序列的卷积和系统差分方程的MATLAB实现

信息工程学院实验报告 课程名称:数字信号处理 实验项目名称:离散序列的卷积和系统差分方程的MATLAB 实现 实验时间: 班级:电信131 姓名: 学号:201311404113 一、 实 验 目 的: 熟悉序列的卷积运算及其MATLAB 实现;熟悉离散序列的傅里叶变换理论及其MATLAB 实现;加深对离散系统的差分方程和系统频率响应的理解。 二、实 验 原 理 1、MA TLAB 提供了一个内部函数conv(x,h)来计算两个有限长序列之间的卷积。 2、对于时域离散系统,可用差分方程描述或研究输入、输出之间的关系。对于线性时不变系统,经常用的是线性常系数差分方程。一个N 阶线性常系数差分方程用下式表示: ()() N M i i i i b y n i a x n i ==-=-∑∑ 当 0,1,2,,i b i N == 时,[]h n 是有限长度的,称系统为FIR 系统;反之,称系统为IIR 系统。 在MA TLAB 中,可以用函数filter(a,b,x)求解差分方程,其中参数a,b 分别系统函数的分子和分母多项式的系数。 三、实 验 内 容 与 步 骤 实验内容: 1、已知 1(){1,1,1,1,1}x n =,2(){1,1,1,1,1,1,1}x n =,计算12()()*()y n x n x n =。 2、在0到π区间画出矩形序列 10()R n (其定义见例1-3)的离散时间傅里叶变换(含幅度和相位)。 3、求系统:()0.5((1)(2)(3)(4))y n x n x n x n x n =-+-+-+-的单位冲激响应和阶跃响应。 实验步骤: 1、

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

第三章线性系统状态方程的解

第三章 系统的分析——状态方程的解 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为: )()(t Ax t x =& 线性定常连续系统: Ax x =& 初始条件:00x x t == 2、状态转移矩阵的定义 齐次状态方程Ax x =&有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为 )0()(x e t x At ?=。其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为: At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:) (0 0)(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法——直接求解 设Ax x =&的解是t 的向量幂级数 Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( 式中ΛΛ,,, ,,k b b b b 210都是n 维向量,是待定系数。则当0=t 时, 000b x x t === 为了求其余各系数,将)(t x 求导,并代入)()(t Ax t x =&,得: Λ ΛΛΛ&+++++=-1232132)(k k t kb t b t b b t x )(2210ΛΛΛΛ+++++=k k t b t b t b b A

上式对于所有的t 都成立,故而有: ????? ??????======00 3 230 21201!1!31312121b A k b b A Ab b b A Ab b Ab b K K M 且有:00x b = 故以上系数完全确定,所以有: Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( ΛΛ++++ +=k k t b A k t b A t Ab b 020200! 1 !21 )0()! 1!21(22x t A k t A At I k k ΛΛ+++++= 定义(矩阵指数或矩阵函数): ∑∞==+++++=022! 1!1!21K k k k k At t A k t A k t A At I e ΛΛ 则 )0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x =&两端取拉氏变换,有 )()0()(s AX X s sX =- )0()()(X s X A sI =- )0()()(1X A sI s X ?-=- 拉氏反变换,有 )0(])[()(1 1x A sI L t x ?-=--

一维导热方程 有限差分法 matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析 一、实验目的 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统可表示为 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M k m N k k m n x b k n y a 00][][ 输入信号分解为冲激信号, ∑∞ -∞=-= m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞ -∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k a k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统的冲激响应。 对于N 阶差分方程∑∑==-=-M k m N k k m n x b k n y a 00][][, 1) 当给定函数的系数和输入序列时,差分方程的递推过程在MA TLAB 中用函数y=filter(b,a,x)来实现,其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。求得的输出序列y 和输入序列x 的长度相等。若x 的长度太短,需要补零。用conv 函数计算能在输入序列后自动补零,而filter 函数不能。 2) MATLAB 中有一个求离散系统脉冲响应的专门函数y=impz(b,a,N),其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。N 为要求的点数。键入impz(b,a),程序将自动给出脉冲响应的曲线。 3) 当输入序列和脉冲响应序列都是以数值方式给出时,可以用MATLAB 中的卷积函数y=conv(x,h)来计算。

有限差分法求解偏微分方程复习进程

有限差分法求解偏微 分方程

有限差分法求解偏微分方程 摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的 理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。 关键词:计算力学,偏微分方程,有限差分法 Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method. Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言 机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。 求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。 2 有限差分法理论基础 2.1 有限差分法的基本思想 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析 一、 实验目的 1、 熟悉并掌握离散系统的差分方程表示法; 2、 加深对单位脉冲响应和卷积分析方法的理解。 二、 实验原理 (一), 1. 单位采样序列 ???=01 )(n δ 0 0≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01 )(k n δ 0≠=n k n 2.单位阶跃序列 1()=0 u n ??? 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3.正弦序列 )/2sin()(?π+=Fs fn A n x 在MATLAB 中 ) /***2sin(*1:0fai Fs n f pi A x N n +=-=

4.复指数序列 n j e n x ?=)( 在MATLAB 中 ) **exp(1:0n w j x N n =-= 5.实指数序列 n a n x =)( 在MATLAB 中 n a x N n .^1:0=-= (二) 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 00()()N M i i i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即: ()()()m x n x m n m δ∞ =-∞= -∑ 记系统单位脉冲响应 ()()n h n δ→ 则系统响应为如下的卷积计算式:

第九章 偏微分方程差分方法

170 第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

差分方程模型理论与方法

差分方程模型的理论和方法 引言 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易

五点差分法(matlab)解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

相关文档
最新文档