大气中二氧化硫、氮氧化物、TSP的测定

大气中二氧化硫、氮氧化物、TSP的测定
大气中二氧化硫、氮氧化物、TSP的测定

实验一大气中二氧化硫的测定

——四氯汞钾吸收—盐酸副玫瑰苯胺分光光度法

二氧化硫是典型的大气污染物。它来源于煤和石油等燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产废气的排放等。SO2能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一。特别是当它与烟尘等气溶胶共存时,可加重对呼吸道黏膜的损害。

大气中SO2的测定方法有分光光度法、紫外荧光法、电导法、库仑滴定法、火焰光度法等。其中,四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法(GB8970-80)和甲醛吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-92)是国标法。四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法的检出限为0.15μg/5mL,测定的浓度范围为0.015~0.500mg/m3。甲醛吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-92),当用10mL吸收液采样30L时,最低检出限为0.007mg/m3,当用50mL吸收液连续采样24h,采样300L,最低检出限为0.003mg/m3。

本实验采用四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫。

1 实验目的

(1)了解大气中二氧化硫的测定方法;

(2)掌握盐酸副玫瑰苯胺分光光度法测定二氧化硫的原理和操作步骤;

(3)了解便携式大气采样器的构造和工作原理,掌握其操作技术。

2 实验原理

四氯汞钾吸收—副玫瑰苯胺分光光度法测定二氧化硫的原理是:空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰在575nm处,方法灵敏度较前者低,但

试剂空白值低。我国广泛采用方法二。

3 仪器与试剂

3.1 仪器

3.1.1 多孔筛板吸收管(用于短时间采样)或多孔筛板吸收瓶(用于24h采样)3.1.2 便携式空气采样器:流量0~1L/min

3.1.3 可见分光光度计(或紫外/可见分光光度计)

3.2 试剂

3.2.10.04 mol/L四氯汞钾吸收液

称取10.9g氯化汞(HgCl2)、6.0g氯化钾和0.07g乙二胺四乙酸二钠盐(EDTA-Na2),溶解于水,稀释至1000mL。此溶液在密闭容器中贮存,可稳定6个月。如发现有沉淀,不能再用。

3.2.2 2.0 g/L甲醛溶液

量取36~38%甲醛溶液1.1mL,用水稀释至200 mL,临用现配。

3.2.3 6.0g/L氨基磺酸铵溶液

称取0.60 g氨基磺酸铵(H2NSO3NH4),溶解于100 mL水中。临用现配。3.2.4 碘储备液[C(1/2I2)=0.1mol/L]

称取12.7g碘于烧杯中,加入40g碘化钾和25mL水,搅拌至完全溶解后,用水稀释至1000mL,置于棕色瓶中。

3.2.5 碘使用液(C(1/2I2)=0.01mol/L)

量取50mL碘储备液,用水稀释至500mL,储于棕色试剂瓶中。

3.2.6 2g/L淀粉指示剂

称取0.2g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,继续煮沸,直至溶液澄清,冷却后储于试剂瓶中,于冰箱内保存。

3.2.7 碘酸钾标准溶液[C(1/6KIO3)=0.1000mol/L]

称取3.5668g碘酸钾(KIO3,优级纯,110℃烘干2h)溶于水,移入1000mL 容量瓶中,用水稀释至标线。

3.2.8 1.2mol/L盐酸溶液

量取100mL浓盐酸,用水稀释至1000mL。

3.2.9 0.1mol/L硫代硫酸钠储备液

称取25g 硫代硫酸钠(Na 2S 2O 3 ·5H 2O ),溶于1000mL 新煮沸并已冷却的水中,加0.2g 无水碳酸钠,储于棕色瓶中,放置一周后标定其浓度。若溶液出现浑浊,应过滤。

标定方法:吸取25.00mL 碘酸钾标准溶液置于250mL 碘量瓶中,加70mL 新煮沸但已冷却的水,加1g 碘化钾,振摇至完全溶解后,加1.2mol/L 盐酸溶液10mL ,立即盖好瓶塞,摇匀。于暗处放置5min 后,用硫代硫酸钠标准溶液滴定至浅黄色,加2mL 淀粉指示剂,继续滴定溶液至蓝色刚好褪去为终点。按下式计算硫代硫酸钠标准溶液的浓度:

25.000.100

C V

?=

式中,C —硫代硫酸钠标准溶液浓度,mol/L ;

V —滴定所耗硫代硫酸钠标准溶液的体积,mL 。 3.2.10 硫代硫酸钠标准溶液[C (Na 2S 2O 3)=0.01mol/L]

取50.00mL 硫代硫酸钠贮备液置于500mL 容量瓶中,用新煮沸但已冷却的水稀释至标线,摇匀,计算其准确浓度。 3.2.11 亚硫酸钠标准溶液

称取0.200g 亚硫酸钠(Na 2SO 3)及0.010g 乙二胺四乙酸二钠,将其溶于200mL 新煮沸并已冷却的水中,缓缓摇匀(以防充氧),使其溶解。放置2~3h 后标定。此溶液每毫升相当于320~400μg 二氧化硫。

标定方法吸取四个250mL 碘量瓶(A 1、A 2、B 1、B 2),分别加入0.010mol/L 碘溶液50mL 。在A 1、A 2瓶内各加25mL 水,在B 1瓶内加入25.00mL 亚硫酸钠标准溶液,盖好瓶塞。立即吸取2.0mL 亚硫酸钠标准溶液于已经加有40-50mL 四氯汞钾溶液的100mL 容量瓶内,使其生成稳定的二氯化亚硫酸盐络合物。再吸取25.00mL 亚硫酸钠标准溶液于B 2瓶中,盖好瓶塞。然后用四氯汞钾溶液将100mL 容量瓶中的溶液稀释至标线。

A 1、A 2、

B 1、B 2四瓶于暗处放置5min 后,用0.01mol/L 的 硫代硫酸钠标准溶液滴定至浅黄色,加入5mL 淀粉指示剂,继续滴定至溶液蓝色刚好褪去为终点。记录滴定所消耗的硫代硫酸钠标准溶液的体积。平行样滴定所耗硫代硫酸钠标准溶液体积之差应不大于0.05mL 。取其平均值。

所配100mL 容量瓶中的亚硫酸钠相当于二氧化硫的浓度按下式计算:

02()32.021000 2.00

(/)25.00100

V V C SO g mL μ-???=

?

式中,V 0 —滴定A 瓶所消耗硫代硫酸钠溶液体积的平均值,mL ;

V —滴定B 瓶时所消耗的硫代硫酸钠标准溶液体积的平均值,mL ; C —硫代硫酸钠标准溶液的浓度,mol/L ; 32.02 —二氧化硫(1/2SO 2)的摩尔质量。

根据以上方法计算的二氧化硫标准溶液的浓度,再用四氯汞钾吸收液稀释为每毫升含2.0μg 二氧化硫的标准溶液,此溶液用于绘制标准曲线。在冰箱内5℃下保存,可稳定6个月。 3.2.12 3mol/L 磷酸溶液

量取41 mL85%的浓磷酸,用水稀释至200 mL 。 3.2.13 0.2%盐酸副玫瑰苯胺(PRA ,即对品红贮备液)

称取0.20 g 经提纯的盐酸副玫瑰苯胺,溶解于100 mL 浓度为1.0 mol/L 的盐酸溶液中。

3.2.14 0.016%盐酸副玫瑰苯胺使用液

吸取0.2%盐酸副玫瑰苯胺贮备液20.00mL 于250mL 容量瓶中,加3mol/L 磷酸溶液200mL ,用水稀释至标线。至少放置24h 方可使用。存于暗处,可稳定9个月。

4 实验步骤

4.1标准曲线的绘制

取8支10mL 具塞比色管,按下列参数和方法配制标准色列。

在以上各比色管中加入6.0 g/L 氨基磺酸铵溶液0.50mL ,摇匀。再加2.0 g/L 甲醛溶液0.50 mL 及0.016%盐酸副玫瑰苯胺使用液1.50 mL ,摇匀。当室温为15~20℃时,显色30 min ;室温为20~25℃时,显色20 min ;室温为25~30℃时,

显色15 min 。用1cm 比色皿,于575 nm 波长处,以水为参比,测定吸光度(试剂空白值吸光度不应大于0.050)。以吸光度(扣除试剂空白值)对二氧化硫含量(μg )绘制标准曲线。 4.2采样

量取5mL 四氯汞钾吸收液于多孔玻璃吸收管内,通过塑料管连接在采样器上,在各采样点以0.5L/min 流量采气10~20L 。采样完毕,封闭进出口,带回实验室供测定。(此采样方法适用于短时间采样,若要测定24h 平均浓度,则用内装50mL 吸收液的多孔筛板吸收瓶,以0.2ml/L 的流量,10~16℃恒温采样) 4.3样品测定

样品若浑浊,则应离心分离。将采样后的吸收液放置20 min 以使臭氧分解。然后将样品移入10 mL 具塞比色管中,用少许水洗涤吸收管并转入比色管中,使其总体积为5 mL ,再加入0.50 mL 6g/L 的氨基磺酸铵溶液,摇匀,放置10 min ,以消除NOx 的干扰。以下步骤同标准曲线的绘制。

5 数据处理

按下式计算空气中SO 2浓度:

t

a

V V V 32n W 二氧化硫(SO ,mg/m )=

式中,W —测定时所取样品溶液中二氧化硫的含量,μg (由标准曲线查知); V t —样品溶液总体积;mL

V a —测定时所取样品溶液的体积;mL V n —换算成标准状况下的采样体积;L 。

6 注意事项

(1)温度对显色影响较大,温度越高,空白值越大。温度高时显色快,褪色也快,最好用恒温水浴控制显色温度。

(2)对品红试剂必须提纯后方可使用,否则,其中所含杂质会引起试剂空白值增高,使方法灵敏度降低。(已有经提纯合格的0.2%对品红溶液出售)

(3)六价铬能使紫红色络合物褪色,产生负干扰,故应避免用硫酸-铬酸洗液洗涤所用玻璃器皿,若已用此洗液洗过,则需用(1+1)盐酸溶液浸洗,再用水充分洗涤。

(4)用过的具塞比色管及比色皿应及时用酸洗涤,否则红色难于洗净。具塞比色管用(1+4)盐酸溶液洗涤,比色皿用(1+4)盐酸加1/3体积乙醇混合液洗涤。

(5)四氯汞钾溶液有毒,使用时应小心,如溅到皮肤上,立即用水冲洗。使用过的废液要集中回收处理,以免污染环境。

7 思考题

(1)配制标准色列溶液时应注意什么?实验成败的关键是什么?

(2)二氧化硫标准溶液的浓度如果偏高,会对实验结果产生什么偏差?

(3)测定二氧化硫时,主要的干扰物质是什么?如何消除?

8 附录:原始数据记录表参考格式

实验数据记录表

实验二大气中氮氧化物的测定

——盐酸萘乙二胺分光光度法

大气中的氮氧化物主要是指一氧化氮和二氧化氮,来自化石燃料的高温燃烧、硝酸与化肥等生产排放的废气及汽车尾气。氮氧化物的测定方法有盐酸萘乙二胺分光光度法、化学发光法、原电池库仑法和定电位电解法等,其中盐酸萘乙二胺分光光度法操作简便、灵敏度高,是国内外普遍采用的方法,本实验采用盐酸萘乙二胺分光光度法测定大气中的氮氧化物。

1 实验目的

(1)了解大气中氮氧化物的测定方法和测定氮氧化物的意义;

(2)掌握盐酸萘乙二胺分光光度法测定大氧化物的原理及操作步骤;

(3)掌握溶液吸收法的采样原理和操作步骤;

(4)掌握便携式采样器的构造及操作技术。

2 实验原理

在测定总氮氧化物浓度时,先用三氧化铬将一氧化氮氧化成二氧化氮。二氧化氮被吸收液吸收后生成亚硝酸和硝酸。在冰乙酸存在条件下,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,其颜色深浅与气样中二氧化氮浓度成正比,采用分光光度法测定。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。

3 主要仪器与试剂

3.1 主要仪器

(1)多孔筛板吸收管

(2)双球玻璃管(内装三氧化铬-砂子)

(3)便携式空气采样器:流量范围0~1L/min

(4)可见分光光度计(或紫外/可见分光光度计)

3.2 试剂

所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。

3.2.1吸收液

称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL 水的混合溶液,盖塞,振摇,使其完全溶解,再加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。

3.3.2 三氧化铬-砂子氧化管

筛取20~40目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。

3.2.3 亚硝酸钠标准贮备液

,预先在干燥器内放置24h以上),溶称取0.1500g粒状亚硝酸钠(NaNO

2

解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液每毫升含100.0μgNO

-,

2

贮于棕色瓶内,冰箱中保存,可稳定三个月。

3.2.4 亚硝酸钠标准溶液

吸取贮备液5.00mL于100mL容量瓶中,用水稀释至标线。此溶液每毫升含5.0μg NO

-。

2

4 实验步骤

4.1 标准曲线的绘制

取7支10mL具塞比色管,按表11-1所列数据配制标准色列。

表11-1亚硝酸钠标准色列

管号0 1 2 3 4 5 6 亚硝酸钠标准溶液(mL) 0 0.10 0.20 0.30 0.40 0.50 0.60 吸收原液(mL) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 水(mL) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 NO2-含量(μg) 0 0.5 1.0 1.5 2.0 2.5 3.0

以上溶液摇匀,避开阳光直射放置15min ,在540nm 波长处,用1cm 比色皿,以水为参比,测定吸光度。以吸光度为纵坐标,相应的标准溶液中NO 2-含量(μg )为横坐标,绘制标准曲线。 4.2 采样

将一支内装5.00mL 吸收液的多孔玻板吸收管进气口接三氧化铬-砂子氧化管,并使管口略微向下倾斜,以免当湿空气将三氧化铬弄湿时污染后面的吸收液。将吸收管的出气口与空气采样器相连接。以0.2~0.3L/min 的流量避光采样至吸收液呈微红色为止,记下采样时间,密封好采样管,带回实验室,当日测定。若吸收液不变色,应延长采样时间,采样量应不少于6L 。在采样的同时,应测定采样现场的温度和大气压力,并作好记录。 4.3样品的测定

采样后,放置15min ,将样品溶液移入1cm 比色皿中,按绘制标准曲线的方法和条件测定试剂空白溶液和样品溶液的吸光度。若样品溶液的吸光度超过标准曲线的测定上限,可用吸收液稀释后再测定吸光度。计算结果时应乘以稀释倍数。

5 数据处理

321

/0.76n

b NO mg m V

0(A-A )氮氧化物(,)=

式中,A —样品溶液的吸光度;

A 0—试剂空白溶液的吸光度;

1/b —标准曲线斜率的倒数,即单位吸光度对应的NO 2的毫克数; V n —标准状态下的采样体积(L );

0.76—NO 2(气)转换为NO 2-(液)的系数。

6 注意事项

(1)吸收液应避光,且不能长时间暴露在空气中,以防止光照使吸收液显色或吸收空气中的氮氧化物而使试剂空白值增高。

(2)氧化管适于在相对湿度为30~70%时使用。当空气相对湿度大于70%时,应勤换氧化管;小于30%时,则在使用前,用经过水面的潮湿空气通过氧化管,平衡1h 。在使用过程中,应经常注意氧化管是否吸湿引起板结,或者变成

绿色。若板结会使采样系统阻力增大,影响流量;若变成绿色,表示氧化管已失效。

(3)亚硝酸钠(固体)应密封保存,防止空气及湿气侵入。部分氧化成硝酸钠或呈粉末状的试剂都不能用直接法配制标准溶液。若无颗粒状亚硝酸钠试剂,可用高锰酸钾容量法标定出亚硝酸钠贮备溶液的准确浓度后,再稀释为含

5.0μg/mL亚硝酸根的标准溶液。

(4)溶液若呈黄棕色,表明吸收液已受三氧化铬污染,该样品应报废。

(5)绘制标准曲线,向各管中加亚硝酸钠标准使用溶液时,都应以均匀、缓慢的速度加入。

7 思考题

(1)臭氧会对二氧化氮的测定产生什么样的干扰?如何消除?

(2)如果吸收液长期放置已变色还继续使用,会使实验结果产生什么偏差?

8 附录:原始数据记录表参考格式

实验数据记录表

实验三大气中总悬浮颗粒的测定

1实验目的

(1)掌握大气中悬浮颗粒物的测定原理及测定方法。

(2)学会使用大流量或中流量采样器采集总悬浮颗粒物。

2 实验原理

目前国内外广泛采用滤膜捕集—重量法测定大气中的总悬浮颗粒物。原理是用抽气动力抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样前后滤膜重量之差及采气体积,即可计算总悬浮颗粒物的质量浓度。

根据采样器流量不同分为大流量(1.1~1.7m3/min)和中流量(0.05~0.15m3/min)采样法。本实验采用中流量采样法。

3 仪器和试剂

3.1 中流量采样器:流量50~150L/min,滤膜直径8~10cm。

3.2流量校准装置:经过罗茨流量计校准的孔口校准器。

3.3气压计

3.4滤膜:超细玻璃纤维滤膜或聚氯乙烯滤膜。

3.5 滤膜贮存袋及贮存盒。

3.6 分析天平:感量0.1mg。

4 测定步骤

4.1采样器的流量校准

采样器每月用孔口校准器进行流量校准。

4.2采样

(1)每张滤膜使用前均需用光照检查,不得使用有针孔或有任何缺陷的滤膜采样;

(2)迅速称重在平衡室内已平衡24h的滤膜,读数准确至0.1mg,记下滤膜的编号和重量,将其平展地放在光滑洁净的纸袋内,然后贮存于盒内备用。天平放置在平衡室内,平衡室温度在20~25℃之间,温度变化小于±3℃,相对湿度

小于50%,湿度变化小于5%;

(3)将已恒重的滤膜用小镊子取出,“毛”面向上,平放在采样夹的网托上,拧紧采样夹,按照规定的流量采样;

(4)采样5min 后和采样结束前5min ,各记录一次U 型压力计压差值,读数准至1mm 。若有流量记录器,则直接记录流量。测定日平均浓度一般从8:00开始采样至第二天8:00结束。若污染严重,可用几张滤膜分段采样,合并计算日平均浓度;

(5)采样后,用镊子小心取下滤膜,使采样“毛”面朝内,以采样有效面积的长边为中线对叠好,放回表面光滑的纸袋并贮于盒内。将有关参数及现场温度、大气压力等记录填写在表1中。

表1 总悬浮颗粒物采样记录

监测点:_________

4.3样品测定

将采样后的滤膜在平衡室内平衡24h ,迅速称重,结果及有关参数记录于表2中。

表 2 总浮颗粒物浓度测定记录

监测点:__________

5 数据处理

3n W

Q t

总悬浮颗粒物(TSP ,mg/m )=

式中,W ——采集在滤膜上的总悬浮颗粒物质量(mg );

t ——采样时间(min );

Q n——标准状态下的采样流量(m3/min),按下式计算:

式中,Q2——现场采样流量(m3/min);

P2——采样器现场校准时大气压力(kPa);

P3——采样时大气压力(kPa);

T2——采样器现场校准时空气温度(K);

T3——采样时的空气温度(K)。

若T3、P3与采样器校准时的T2、P2相近,可用T2、P2代之。

6 注意事项

(1)滤膜称重时的质量控制:取清洁滤膜若干张,在平衡室内平衡24h,称重。每张滤膜称10次以上,则每张滤膜的平均值为该张滤膜的原始质量,此为“标准滤膜”。每次称清洁或样品滤膜的同时,称量两张“标准滤膜”,若称出的重量在原始重量±5mg范围内,则认为该批样品滤膜称量合格,否则应检查称量环境是否符合要求,并重新称量该批样品滤膜。

(2)要经常检查采样头是否漏气。当滤膜上颗粒物与四周白边之间的界线逐渐模糊,则表明应更换面板密封垫。

(3)称量不带衬纸的聚氯乙烯滤膜时,在取放滤膜时,用金属镊子触一下天平盘,以消除静电的影响。

7思考题

(1)在滤料准备过程中应注意哪些事项?

(2)采集总悬浮颗粒物样品时应注意什么?

8 附录:大流量采样法测定大气中TSP

1 实验目的

(1)掌握大气中悬浮颗粒物的测定原理及测定方法。

(2)学会使用大流量或中流量采样器采集总悬浮颗粒物。

2 实验原理(略)

3 仪器

3.1大流量采样器

流量范围1.1~1.7m3/min,采集颗粒物粒径范围50~100μm以下。它由以下6个部件组装而成。

(1)铝制的采样器外壳:它能防雨,并保护整个采样器的各个部件。

(2)滤料夹:可安装面积为200×250mm的采样滤料(滤纸或滤膜)。

(3)采样动力:一个装在圆筒中的大容量涡流风机,可长时间(24h以上)稳定工作。

(4)工作计时器和程序控制器:计时误差小于1min。

(5)恒流量控制器:恒流控制误差小于0.01m3/min。

(6)流量记录器:空气流量测量误差小于0.01m3/min。

3.2 U型水柱压差计

如采样器不附带流量自动记录器,可用它测量流量,手工记录。其规格为40cm的U型玻璃管,内装着色的蒸馏水(冬季应灌注乙醇以防冻裂压差计)。3.3气压计

最小分度值为2hPa。

3.4 分析天平

装有能容纳200×250mm滤料的称量盘,感量为0.1mg。

3.5 X光看片器

用于检查滤料有无缺损或异物。

3.6打号机:用于在滤料上打印编号。

3.7 干燥器

容器能平展放置200×250mm滤料的玻璃干燥器,底层放变色硅胶,滤料在采样前和采样后均放在其中,平衡后再称量。

3.8 天平

天平室室温应在20~25℃之间,温差变化小于±3℃。相对湿度应小于50%,相对湿度变化小于5%。

3.9 竹制或骨制品的镊子:用于夹取滤料。

3.10 滤料贮存盒

盒内有能平置滤料用的塑料托板,使滤料在采样前一直处于平展无折状态。

3.11标准孔口流量校准器

又称二级标准卢茨流量计(Rootsmeter),流量范围0~2m3/min,流量校准偏差应小于±4%。校准器限流孔板的孔口内缘,在使用过程中应防止划毛或损伤,其精确度应每1~2年用一级流量标准器进行定期校准。

3.12 滤料

本法所用滤料有二种,规格均为200×250mm。其一为“49”型超细玻璃纤维滤纸(简称滤纸),对直径0.3μm的悬浮粒子的阻留率大于99.99%;其二为孔径0.4~0.65μm和0.8μm有机微孔滤膜(简称滤膜)。

3.13 变色硅胶:作干燥剂用。

4 操作步骤

4.1滤料的准备

(1)采样用的每张滤纸或滤膜均须用X光看片器对着光仔细检查。不可使用有针孔或有任何缺陷的滤料采样。然后,将滤料打印编号,号码打印在滤料两个对角上。

(2)清洁的玻璃纤维滤纸或滤膜在称重前应放在天平室的干燥器中平衡24h。滤纸或滤膜平衡和称量时,天平室温度在20~25℃之间,温差变化小于±3℃;相对湿度小于50%,相对湿度的变化小于5%。

(3)称量前,要用2~5g标准砝码检验分析天平的准确度,砝码的标准值与称量值的差不应大于±0.5mg。

(4)在规定的平衡条件下称量滤纸或滤膜,准确到0.1mg。称量要快,每张滤料从平衡的干燥器中取出,30s内称完,记下滤料的质量和编号,将称过的滤料每张平展地放在洁净的托板上,置于样品滤料保存盒内备用。在采样前不能弯曲和对折滤纸和滤膜。

4.2采样

(1)打开采样器外壳的顶盖,拧出采样器固定滤料夹的四个元宝螺丝,取出滤料夹及长方形密封垫。用清洁的布擦去外壳盖、内表面、滤料夹、密封垫、

滤料支持网周围和表面上的灰尘。

(2)将滤料平放在支持网上,若用玻璃纤维滤纸,应将滤纸的“绒毛”面向上。并放正,使滤料夹放上后,密封垫正好压在滤料四周的边沿上,起密封作用。如装得合适,滤料的边缘与后面支持网的边缘以及上面滤料夹密封垫都是平行的;如果装得不当,滤料四周边沿呈现不均匀的白边。

(3)放正滤料,并放上滤料夹,拧紧四个元宝螺丝,以不漏气为宜。太紧会造成滤料纤维粘在密封垫上,使滤料失重。

(4)用橡胶管将电机测压孔与40cm水柱压差计连接好,将采样器的供电电压调节在180~200V之间(一般在190V),开机采样。如采样器装有流量自动记录控制器,应将采样流量调节在1.13m3/min,即可直接记录流量。

(5)采样开始5min和采样结束前5min各记一次水柱压差计读数。如长时间采样,采样从8:00开始至第二天8:00结束,即连续采样24h于一张滤料上。中间每小时再记一次,压差读数准确到1mm。求其平均值。并将采样时间的气温、气压和水柱压差计读数等情况,记录在总悬浮颗粒物现场采样记录表(见表1)中。若现场污染严重,可用几张滤料分段采样,合并计算日平均浓度。

(6)采样后,取下滤料夹,用镊子轻轻夹住滤料的边,但不能夹角,将滤料取下。以长边中线对折滤料,使采样面向内。如果采集的样品在滤料上的位置不居中,即滤料四周的白边不一致。这时,只能以采到样品的痕迹为准。若样品折得不合适,沉积物的痕迹可能扩展到另侧的白边上,这样,若要将样品分成几等份分析时,会使测定值减少。

(7)将采过样的滤料放在与它编号相同的滤料盒内,并应注意检查滤料在采样过程中有无漏气迹象,漏气常因面板密封垫用旧或安装不当所致;另外还应检查橡胶密封垫表面,是否因滤料夹面板四个元宝螺丝拧得过紧,使滤料上纤维物粘附在表面上,以及滤料是否出现物理性损坏。检查时若发现样品有漏气现象或物理性损坏,则将此样品报废。

(8)采样完毕,将总悬浮颗粒物现场采样记录表中的数据转填入总悬浮颗粒物浓度分析记录表中,并与相应的采过样的滤料一起放入滤料盒内,送交实验室。见表4-17。

(9)所用采样器涡流风机中的电刷,一般工作30h以后应检查或更换。

4.3 测定

采样后的滤料放在天平室内的干燥器中,按采样前空白滤料控制的条件平衡24h ,对于很潮湿的滤料应延长平衡时间至48h ,称量要快,30s 内称完。将称量结果记在总悬浮颗粒物浓度分析记录表中。为了作总悬浮颗粒物中其他化学成分分析,可再将滤料很好地放回原袋盒中,低温保存备用。

表1总悬浮颗粒物浓度分析记录表

采样地点采样编号年月日

5 数据处理

总悬浮颗粒物的质量浓度按下列公式计算:

10

3013)/(?-=

V W W m s

mg TSP

式中,TSP —总悬浮颗粒物的质量浓度,mg/m 3;

W 1 —采样后滤料质量,mg ; W —采样前滤料质量,mg ;

V s —换算成标准状况下的采样体积,m 3。

6 注意事项

(1)采样进气口必须向下,空气气流垂直向上进入采样口,采样口抽气速度规定为0.30m/s 。

(2)滤料装入采样夹应平行于地面,气流自上而下通过滤料,单位面积滤料在24h 内滤过的气体量Q ,应满足下式要求:

2<Q 〔m 3/(cm 2·24h)〕<4.5

(3)烟尘、油状颗粒物及光化学烟雾等可使滤料阻塞,使采样流量下降。因此,采样时应随时调节并保持规定采样流量,或减少采样时间,使滤料增加的阻力能被采样器动力所克服。浓雾或高湿度环境中采样,可造成悬浮颗粒物样品

过分吸湿,样品在称量前应在干燥器中平衡48h以上。

(4)选用何种滤料采样,要根据目的来决定。通常使用超细玻璃纤维滤纸,适用于称量法测定TSP质量浓度,经有机溶剂提取可分析TSP中的有机成分(如多环芳烃中苯并(a)芘);有机微孔滤膜适用于观察TSP的形态,样品消解后用于分析TSP中某些金属;聚氯乙烯纤维滤膜除适用称量法测定TSP质量浓度外,样品消解后的溶液还可分析TSP中某些不受滤膜干扰的污染元素,如锰、铍等。

(5)正常使用的大流量采样器应每月定期用标准孔口流量校准器进行校准,校准的误差为±5%以内方可使用。

7 思考题

(1)在滤料准备过程中应注意哪些事项?

(2)采集总悬浮颗粒物样品时应注意什么?

空气中氮氧化物

_ 一、实验目的与要求 1、掌握氮氧化物测定的基本大气中氮氧化物的原理和方法。 2、绘制实验室空气中氮氧化物的日变化曲线。 3、了解并掌握大气中氮氧化物的有关知识。 二、实验方案 1、实验仪器 (1)大气取样器;(2)分光光度计;(3)棕色多孔玻板吸收管;(4)双球玻璃管;(5)比色管;(6)移液管。 2、实验药品 (1)吸收原液标准液;(2)吸收原液;(3)蒸馏水。 3、实验原理 主要反应方程式为: 4、实验步骤 1)氮氧化物的采集 用一个内装5mL采样液用吸收的多孔玻板吸收管,接上氧化管,并使管口微向下倾斜,朝上风向,避免潮湿空气将氧化管弄湿,而污染吸收液,如图1-1所示。分别以每分钟0.1L、0.3L的流量抽取空气30min。采样高度为1.5m,若

氮氧化物含量很低,可增加采样量,采样至吸收液呈浅玫瑰红色为止。记录采样时间和地点,根据采样时间和流量,算出采样体积。把一天分成几个时间段进行采样(7次),如10:300~11:00、11:30~12:00、12:30~13:00、13:30~14:00、14:30~15:00、15:30~16:00、16:30~17:00。 图1-1 氮氧化物采样装置的连接图示 2)氮氧化物的测定 ①标准曲线的绘制:取7支50mL 比色管,按表1-1配制标准系列。 将各管摇匀,避免阳光直射,放置15 min ,以蒸馏水为参比,用1cm 比色皿,在540nm 波长处测定吸光度。根据吸光度与浓度的对应关系,用最小二乘法计算标准曲线的回归方程式: y = bx + a 式中:y ——(A-A 0),标准溶液吸光度(A )与试剂空白吸光度(A 0)之差; x ——NO 2-浓度,μg/mL ; a 、 b ——回归方程式的截距和斜率。 ρNO x = 76 .0)(0??--V b a A A 式中:ρNO x ——氮氧化物浓度,mg/m 3; A ——样品溶液吸光度; A 0、a 、b 表示的意义同上; V ——标准状态下(25℃,760mmHg )的采样体积,L ;

空气中二氧化硫监测

空气中二氧化硫(SO2)监测 甲醛缓冲溶液吸收—盐酸副玫瑰苯胺分光光度法 一.监测目的 1、掌握大气采样器的使用方法。 2、用分光光度法测定SO2的方法。 3、通过对环境空气中二氧化硫的监测,判断空气质量是否符合标准,为空气质量状况评价提供标准。 4、根据校园SO2分布情况,追踪寻找污染源,并提出规划建议。 二.基础资料收集 改革开发以来,我国经济社会得到了全面发展,与此同时,由于污染物排放大量增加,大气环境面临着巨大的压力。而SO2作为环境空气污染的主要因子之一,每次都是环境空气质量监测中的必测项目。成都市位于四川省中部,四川盆地西缘,成都平原的腹心地。它东西长192km,南北宽166km,幅员总面积12,378km2。成都市是四川省省会,全省政治、经济、金融、科学文化和交通信息的支撑中心。本市属亚热带湿润季风气候。其特点:四季分明,冬无严寒,夏无酷暑;风速小、日照少、阴天多、湿度大;多年平均降水量900~1000mm,多年平均相对湿度82%,平均气压956hpa;常年主导风向为北北东风,平均风速在112m/s以下,多年静风频率46%。本市区范围内热岛效应明显,逆温频繁,城市区域大气气象条件对大气污染物的扩散存在明显的不利影响。成都主要污染物为二氧化硫,二氧化氮,可吸入颗粒物。实验室目前常用的测定环境空气中SO2主要方法为甲醛缓冲溶液吸-盐酸副玫瑰苯胺分光光度法。自从1990年此方法在全国推广应用以来,取代了我国监测领域只能用四氯汞钾法测定的历史。甲醛法与汞法相比具有试剂无剧毒、价廉易得、甲醛标准溶液和样品溶液稳定性好等优点。 三.监测内容 监测空气中的二氧化硫浓度。我们小组负责二氧化硫的监测。是利用甲醛吸收-副玫瑰苯胺分光光度法监测SO2。通过监测数据绘制标准曲线,并分析校区二氧化硫的含量及污染情况。最后汇总空气质量情况。 四.监测方案的制定 1.采样地点 根据布设采样点原则。要离污染源50m以外,同时附近要有适当的车辆通道。校园的污染源主要有锅炉房。考虑各方面的综合因素(仪器电源,污染源距离等)将不布点设在校门口的警务室附近10m远处。 2.采样频率及采样时间 根据天气预报的情况,确定采样时间。采样连续三天,每天采样三次,时间分别为8:30-9:30;10:30-11:30,13:30-14:30。每次采样1h 3.采样方法 采用内装10ml 吸收液的多孔玻板吸收管,以0.3L/min 的流量采气60min。吸收液温度保持在23℃~29℃范围。样品采集过程中应避免阳光照射。 现场空白:将装有吸收液的采样管带到采样现场,除不采气之外,其他环境条件与样品相同。

14.实验十四.大气中二氧化硫物质的采集与测试

实验十四.大气中二氧化硫物质的采集与测试 二氧化硫是主要大气污染物之一,为大气环境污染例行监测的必测项目。它来源于煤和石油等燃料的燃烧,含硫矿石的冶炼硫酸等化工产品生产排放的废气。二氧化硫是一种无色、易溶于水、有刺激性气味的气体,能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一,特别是当其它烟尘等气溶胶共存时,可加重对呼吸道粘膜的损害。废气与空气中二氧化硫都是必测内容之一。 表14-1.常用废气二氧化硫手工分析方法及性能比较 测定空气中SO2常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法等。 两种方法的对比见表14-2

表14-2.环境空气二氧化硫分析方法及性能比较 本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 一.实验目的: 掌握四氯汞钾溶液吸收,盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫浓度的分析原理和操作技术,掌握采样器的使用。 二.实验原理: 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸

量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm 处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰在575nm处,方法灵敏度较前者低,但试剂空白值低,是我国广泛采用的方法。本实验采用方法二测定。方法原理的反应式: HgCl2+2NaCL=Na2HgCl4(四氯汞钠) HgCl2+2KCL=K2HgCl4(四氯汞钾)〔HgCl4〕2-+SO2+H2O→〔HgCl2SO3〕2-+2Cl-+2H+(二氯亚硫酸汞的络离子)此结合物中加入盐酸付玫瑰苯胺和甲醛的溶液后,先与甲醛反应:〔HgCl2SO3〕2+HCHO十2H+→HgCl2+HOCH2SO3H(羟基甲基磺酸) 盐酸付玫瑰苯按在有盐酸存在时,首先褪色成PRA无色酸。 PRA无色酸与HO-CH2-SO3H进一步反应,形成PRA甲基磺酸,呈现玫瑰紫红色。 三.实验仪器与试剂:

环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定

实验报告 课程名称:环境监测实验 指导老师:王凤平 成绩:________ ___ 实验名称:环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解并掌握环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法的原理和操作。 2、了解并掌握空气中颗粒物的测定的原理及方法。 二、实验原理 1、环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法: 本标准适用于环境空气中二氧化硫的测定。当用10 ml 吸收液采样30 L 时,本法测定下限为0.007 mg /m 3;当用50 ml 吸收液连续24 h 采样300 L 时,空气中二氧化硫的测定下限为0.003 mg /m 3。 测定中主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA 可以消除或减少某些金属离子的干扰。在10 ml 样品中存在50μg 钙、镁、铁、镍、镉、铜等离子及5μg 二价锰离子时,不干扰测定。 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、

甲醛作用,生成紫红色化合物,用分光光度计在577 nm处进行测定。 结果表示 计算空气中二氧化硫的浓度按下式计算: 式中:A——样品溶液的吸光度; A0——试剂空白溶液的吸光度; Bs——校正因子,μg·SO2/12mL/A; Vt——样品溶液总体积,mL; Va——测定时所取样品溶液体积,mL; Vs——换算成标准状况下(0℃,101.325kPa)的采样体积,L。 二氧化硫浓度计算结果应准确到小数点后第三位。 2、空气中颗粒物的测定: 本方法适合于用大流量或中流量总悬浮颗粒物采样器进行空气中总悬浮颗粒物的测定。本方法的检测限为0.001mg/m3。总悬浮颗粒物含量过高或雾天采样使滤膜阻力大于10kPa时,本方法不适用。 通过具有一定切割特征的采样器,以恒速抽取定量体积的空气,空气中粒径小于100μm的悬浮颗粒物被阻留在已恒重的滤膜上。根据采样前后滤膜重量之差及采样体积,计算总悬浮颗粒物的浓度。滤膜经处理后,进行组分分析。 结果计算 总悬浮颗粒物含量

(环境管理)环境空气二氧化硫的测定

环境空气二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 GB/T 15262-94 Ambient air—Determination of sulfur dioxide— Formaldehyde absorbing-pararosaniline spectrophotometry 1 主题内容与适用范围 1.1 主题内容 本标准规定了甲醛副玫瑰苯胺分光光度法测定环境空气中的二氧化硫。 1.2 适用范围 1.2.1 本标准适用于环境空气中二氧化硫的测定。 1.2.2 测定下限: 当用10mL吸收液采样30L时,本法测定下限为0.007mg/m3;当用50mL吸收液连续24h采样300L时,空气中二氧化硫的测定下限为0.003mg/m3。 1.2.3 干扰与消除: 主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA可以消除或减少某些金属离子的干扰。在10mL样品中存在50μg钙、镁、铁、镍、镉、铜等离子及5μg二价锰离子时,不干扰测定。 2 原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 3 试剂 除非另有说明,分析日十均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。 3.1 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 3.2 环已二胺四乙酸二钠溶液,c(CDTA-2Na)=0.05mo1/L。

称取1.82g反式1,2-环已二胺四乙酸[(trans-l,2-cyclohexylen edinitilo) tetraacetic acid,简称CDTA,加入氢氧化钠溶液(3.4)6.5mL,用水稀释至100mL。 3.3 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液(3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3.4 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 3.5氨磺酸钠溶液,0.608/100mL。 称取0.60g氨磺酸(H2NS03H)置于100mL容量瓶中,加入4.0mL氢氧化钠溶液(3.1),用水稀释至标线,摇匀。此溶液密封保存可用10天。 3.6 碘贮备液,c=(1/2I2);0.1mol/L。 称取12.7g碘(I2)于烧杯中,加入40g碘化钾和25mL水,搅拌至完全溶解,用水稀释至1000mL,贮存于棕色细口瓶中。 3.7 碘溶液,c(1/2I2)=0.05mol/L。 量取碘贮备液(3.6)250mL,用水稀释至500mL,贮于棕色细口瓶中。 3.8 淀粉溶液,0.58/100mL。 称取0.5g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,继续煮沸至溶液澄清,冷却后贮于试剂瓶中。临用现配。 3.9 碘酸钾标准溶液,c(1/6KIO 3 )=0.1000mol/L。 称取3.5667g碘酸钾(KIO3优级纯,经110℃干燥2h)溶于水,移入1000m1容量瓶中,用水稀释至标线,摇匀。 3.10 盐酸溶液(1+9)。 3.11 硫代硫酸钠贮备液,c(Na 2S 2 O 3 )=0.10mol/L。 称取25.0g硫代硫酸钠(Na 2S 2 O 3 ·5H 2 O),溶于1000mL新煮沸但已冷却的水中,加 入0.2g无水碳酸钠,贮于棕色细口瓶中,放置一周后备用。如镕液呈现混浊,必须过滤。 3.12 硫代硫酸钠标准溶液,c(Na 2S 2 O 3 )=0.05mol/L。

光电技术在大气氮氧化物检测中的应用_艾锦云

?专论与综述? 光电技术在大气氮氧化物检测中的应用 艾锦云,何振江,杨冠玲 (华南师范大学,广东 广州 510631) 摘 要:介绍了大气中氮氧化物的组成,综述了激光诱导荧光法、光纤传感法、激光雷达探测法和化学发光法测定大气中氮氧化物的原理和特点,指出光电技术已在大气氮氧化物检测中得到了广泛的应用,并具有良好的发展前景。 关键词:光电技术;氮氧化物;检测;大气 中图分类号:X831 文献标识码:A 文章编号:10062009(2004)02000703 Application of Photoelectric T echnology in Detection of Nitrogen Oxides in Air AI Jin2yun,HE Zhen2jiang,YAN G Guan2ling (South Chi na N orm al U niversity,Guangz hou,Guangdong510631,Chi na) Abstract:The composition of nitrogen oxides in air was introduced.It discussed the application of photo2 electric technology in detection of nitrogen oxides in air,including laser induction fluorometry,optical fiber sensing,laser radar detection and chemical luminescent analysis.Photoelectric technology had wide applied in detection of nitrogen oxides in air. K ey w ords:Photoelectric technology;Nitrogen oxides;Detection;Air 氮氧化物对大气环境的影响已经越来越受到人们的关注,对大气中氮氧化物检测技术的要求也越来越高,不仅要求检测设备结构简单、易于维护、造价低廉,而且要能实现检测的自动化与在线监测。大气中氮氧化物的检测方法有盐酸萘乙二胺分光光度法、原电池库仑滴定法、压电石英传感器法等,应用光电技术的有激光诱导荧光法、光纤传感法、激光雷达探测法和化学发光法。上述检测方法各有优缺点及适用的领域,就实现检测的自动化与在线监测而言,光电技术有其特有的优势。 1 大气环境中的氮氧化物 氮氧化物常以NO x表示,其中污染大气的主要是NO和NO2,特别是NO2,一般以NO、NO2的总浓度评价环境的污染程度[1]。现在公认NO2与人体健康的关系较NO密切,其毒性为NO的四五倍,且NO进入大气后,在日光照射下,会缓慢生成NO2。2000年6月1日起,我国的环境监测系统已统一以NO2代替NO x作为监测指标。因此,以NO2取代NO x评价大气污染更为合适[2]。 2 应用光电技术检测大气中的NO x 2.1 激光诱导荧光法 激光诱导荧光法是用特定波长的激光束,激发NO2(或NO)分子到较高能级,处于高能级的NO23 (或NO3)跃迁回基态时会以光子发射的形式释放能量,其光子发射时间延迟很短(<1025s),称为荧光,荧光强度与其浓度成正比。光电转换器吸收荧光产生光电流,光电流的大小与NO2(或NO)的浓度成线性,可由光电强度判定其浓度。 收稿日期:20030331;修订日期:20040211 作者简介:艾锦云(1978—),男,江西新余人,在读硕士生,研究方向为光电技术及系统。 1852年Stokes指出,用波长较短的光可以激发出波长较长的光,也就是能量大的光子可以激发能低的光子,此为激光诱导荧光法的理论依据。实际上,该方法也适用于检测大气中的其他污染物, — 7 — 第16卷 第2期环境监测管理与技术2004年4月

空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 作者/收集者:张锦耀 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

环境监测实验 大气中二氧化硫的测定

实验五 大气中二氧化硫的测定 (盐酸副玫瑰苯胺分光光度法) 一、原 理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,其颜色深浅与SO 2含量成正比,用分光光度法在波长575 nm 处测吸光度。 HgCl 2 + 2KCl = K 2[HgCl 4] [HgCl 4]2- + SO 2 + H 2O = [HgCl 2SO 3]2- + 2H + + 2Cl - [HgCl 2SO 3]2- + HCHO + 2H + = HgCl 2 + HOCH 2SO 3H (羟基甲基磺酸) 二、仪器 (方法二测定) 1.多孔玻板收吸管(用于短时间采样),多孔玻板吸收瓶(用于24h 采样)。 2.空气采样器:流量0~1L/min 。 按照所用的盐酸副玫瑰苯胺使用液含磷酸多少分 方法一:(含H 3PO 4少):最终显色PH = 1.6±0.1,显色后溶液呈红紫色,最大吸收波长在548 nm 处,最低检 方法二:(含H 3PO 4多):最终显色PH = 1.2±0.1,显 色后容液呈蓝紫色,最大吸收波长575nm 处,最低检C Cl HCl ·H 2N NH 2HCl NH 2·HCl+HOCH 2SO 3H → H 2N C NH 2 H -N +-CH 2SO 3H (紫红色络合物) Cl+H 2O+3H ++3Cl - SO 2↑、颜色↑、吸光值↑ 0.75μg/25m L

3.分光光度计。 三、试剂 1.0.04 mol/L四氯汞钾(K2[HgCl4])吸收液:称取10.9gHgCl2、6.0gKCl和0.070g乙二胺四乙酸二钠盐(EDTA-Na,用于消除或减少某些金属离子的干扰)溶于水,稀释至1000mL,密闭贮存,可稳定6个月,如发现沉淀,不能再用。 2.2.0 g / L甲醛溶液:量取36 ~ 38 %甲醛溶液1.1mL,用水稀释至200mL,临用现配。 3.6.0 g / L氮基磺酸铵溶液:称取0.60 g氨基磺酸铵(H2NSO3NH4),溶于100mL水中,临用现配。 4.碘贮备液(C1/2I2= 0.10mol/L):称取12.7g碘于烧杯中,加入40g碘化钾和25mL 水,搅拌至全部溶解后,用水稀释至1000mL,贮于棕色试剂瓶中。 5.碘使用液(C1/2I2= 0.010mol/L):量取50mL碘贮备液,用水稀释至500mL,贮于棕色试剂瓶中。 6.2g/L淀粉指示剂:称取 0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL 沸水中,继续煮沸直至溶液澄清,冷却后贮于试剂瓶中。 7.碘酸钾标准溶液(C1/6KIO3= 0.1000mol/L): 称取3.5668g碘酸钾(KIO3,优级纯,110℃烘干2h),溶解于水,移入1000mL容量瓶中,用水稀释至标线。 8.盐酸溶液(HCl = 1.2mol/L):量取100mL浓盐酸,用水稀释至1000mL。 9.硫代硫酸钠贮备液(Na2S2O3 ≈0.1 mol / L),称取25g硫代硫酸钠(Na2S2O3、5H2O),溶于1000mL新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色瓶中,放置一周后标定其浓度。若溶液呈现浑浊时,应该过滤。 *标定方法:吸取碘酸钾标准溶液25.00mL,置于250mL碘量瓶中,加70mL新煮沸并已冷却的水,加1.0 g碘化钾,振荡至完全溶解后,再加1.2mol/L盐酸溶液10.0mL,立即盖好瓶塞,混匀。在暗处放置5min后,用硫化硫酸钠溶液滴定至淡黄色,加淀粉指标剂5mL,继续滴定至蓝色刚好消失。

空气中二氧化硫的测定

空气中二氧化硫的测定 一、实验原理 将空气中的二氧化硫被四氯汞钾溶液吸收,生成稳定的络合物,再与甲醛和盐酸副玫瑰苯胺(PRA)反应生成紫红色化合物,比色定量。 二、器材 多孔玻板吸收管;气体采样器;具塞比色管25ml;分光光度计。 三、试剂 1、吸收液称取10.86g二氯化汞,5.96g氯化钾,0.066g乙二胺四乙酸二钠盐溶于水中,并稀释至1L。 2、6g/L氨基磺酸溶液称取0.6g氨基磺酸,溶于100ml水中,临用现配。 3、0.2%甲醛溶液量取1mL含量为36%~38%的甲醛,用水稀释到200ml。临用新配。 4、盐酸副玫瑰苯胺溶液储备溶液(2g/L)准确称取0.200g盐酸副玫瑰苯胺盐酸盐(PRA),其纯度不得少于95%,溶于100ml 1mol/L盐酸溶液中。 5、盐酸副玫瑰苯胺溶液使用液(0.16g/L)精确量取储备液20ml于250ml容量瓶中,加25ml 3mol/L磷酸溶液,并用水稀释到刻度。暗处保存,可保存6个月。 6、二氧化硫标准溶液称取0.20g亚硫酸钠(Na2SO3),溶解于250ml吸收液中,放置过夜,用滤纸过滤。此液1ml约含有相当于320~400μg二氧化硫,用下述碘量法标定浓度。标定后,立即用吸收液稀释成1.00ml含5μg的二氧化硫标准溶液。由于标准溶液不稳定,所以标定后当天使用。 四、采样 用一支内装10.0ml吸收液的U型多孔玻板吸收管,在采样点以0.5L/min流速,采气30L(大气)或10L(车间空气)。记录采样时的气温和气压。 五、分析步骤 1、样品处理将采样后的吸收液全部转入25ml比色管中,用吸收液洗涤吸收管3次,合并洗液于比色管中,定容至25ml,此为样品液。 2、取7支10ml具塞比色管,按下表配制二氧化硫标准系列: 管号0 1 2 3 4 5 6 标准应用液(ml)0 0.40 0.80 1.20 1.60 2.00 样品液1.00ml 吸收液(ml) 4.0 3.60 3.20 2.80 2.40 2.00 3.00 3、向样品管、标准管中各加入6.0g/L氨基磺酸溶液0.40mL,混匀,放置5min。 4、各加0.2%甲醛溶液0.50ml,0.16g/L盐酸副玫瑰苯胺应用液2.00ml,加蒸馏水至10ml,混匀,室温显色15min。 5、在波长548nm下,用1cm比色杯,以蒸馏水调零,测定吸光度值。 6、以标准系列管吸光度值对二氧化硫含量(μg)绘制标准曲线。 7、将测得样品管吸光度值,查标准曲线,即得二氧化硫含量(μg)。 六、计算 空气中二氧化硫的浓度(mg/m3)= (a/V0)×25 式中:a为样品管中二氧化硫含量,μg;V0为换算成标准状况下的采气体积,L。 七、注意事项 1、亚硫酸氢钠在存放过程中易氧化变质,若使用存放已久的亚硫酸氢钠,则应适当增加称取量。 2、盐酸副玫瑰苯胺不易溶于水,应先研细后,再用盐酸溶解。配制的溶液应放置3d后作用,才达到稳定状态。

实验一大气中二氧化硫的测定盐酸副玫瑰苯胺分光光度法

实验一大气中二氧化硫的测定(盐酸副玫瑰苯胺分光光度法)一、实验目的 1.掌握二氧化硫测定的基本方法; 2.熟练大气采样器和分光光度计的使用。 二、实验原理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1;方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,是我国暂选为环境监测系统的标准方法。本实验采用方法二测定。 三、仪器 1.多孔玻板吸收管(用于短时间采样);多孔玻板吸收瓶(用于24h采样)。 2.空气采样器:流量0—1L/min。 3.分光光度计。 四。、试剂 1.蒸馏水 25℃时电导率小于1.0μΩ/cm。pH值为6.0—7.2。检验方法为在具塞锥形瓶中加500mL蒸馏水,加1mL浓硫酸和0.2mL高锰酸钾溶液(0.316g/L),室温下放置1h,若高锰酸钾不褪色,则蒸馏水符合要求,否则应重新蒸馏(1000mL蒸馏水中加1gKMnO7及1gBa(OH)2,在全玻璃蒸馏器中蒸馏)。 2.甲醛吸收液(甲醛缓冲溶液) (1)环已二胺四乙酸二钠溶液C(CDTA-2Na)=0.050mol/L:称取1.82g反应-1,2-环已二胺四乙酸[(trans-1,2-Cyclohexylenedinitrilo)tetracetic acid简称CDTA],溶解于1.50mol/LNaOH 溶液6.5mL,用水稀释至100ml。 (2)吸收储备液:量取36%--38%甲醛溶液 5.5mL,加入 2.0g邻苯二甲酸氢钾及0.050mol/LCDTA-2Na20.0mL溶液,用水稀释至100mL,贮于冰箱中,可保存一年。 (3)甲醛吸收液:使用时,将吸收贮备液用水稀释100倍。此溶液每毫升含0.2mg甲醛。 3.0.60%(m/v)氨磺酸钠溶液 称取0.60g氨磺酸(H2NSO3H),加入1.50mol/L氢氧化钠溶液4.0mL,用水稀释至100mL密

空气中氮氧化物日变化曲线

空气中氮氧化物的日变化曲线 XXX(XX大学环境与化学工程学院环境科学专业091班,辽宁大连 116622) 1概述 1.1研究背景 1.1.1氮氧化物的来源 大气中氮氧化物(NO x )包括多种化合物,如一氧化氮、二氧化氮、三氧化二氮、四氧化二氮和五氧化二氮,除二氧化氮以外,其他氮氧化物极不稳定,遇光、湿或热变成二氧化氮或一氧化氮,一氧化氮不稳定又变成二氧化氮。因此大气污染化学中的氮氧化物主要指的是一氧化氮和二氧化氮。其主要来自天 然过程,如生物源、闪电均可产生NO x 。NO x 的人为源绝大部分来自化石燃料的 燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气,其中以工业窑炉、氮肥生 产和汽车排放的NO x 量最多。城市大气中2/3的NO x 来自汽车尾气等的排放,交 通干线空气中NO x 的浓度与汽车流量密切相关,而汽车流量往往随时间而变 化,因此,交通干线空气中NO x 的浓度也随时间而变化。 1.1.2氮氧化物的危害 NO的生物化学活性和毒性都不如NO 2,同NO 2 一样,NO也能与血红蛋白结 合,并减弱血液的输氧能力。如果NO 2 的体积分数为(50—100)×10-6时,吸 入时间为几分钟到一小时,就会引起6—8周肺炎; 如果NO 2 的体积分数为(150—200)×10-6时,就会造成纤维组织变性性细支气管炎,及时治疗,将于3—5不周后死亡。 在实验室,NO 2 体积分数达到10-6级,植物叶片上就会产生斑点,显示植 物组织遭到破坏。体积分数为10-5级的NO 2 会引起植物光合作用的可逆衰减。 此外,NO x 还是导致大气光化学污染的重要物质。

高中化学实验实操空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此

溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

大气中氮氧化物的测定

大气中氮氧化物的测定 一些环评报告中需要的检测方案,几乎所有的大气污染物都需要检测氮氧化物了,由于十二五计划将氮氧化物纳入总量控制指标,这里今天给大家解释一下大气中氮氧化物的测定方法,盐酸萘乙二胺分光光度法。 大气中的氮氧化物注意是二氧化氮和一氧化氮,在测定氮氧化物浓度时,应先用二氧化铬将一氧化氮升成二氧化氮,在进行检测,不然直接检测的话只能检测出二氧化氮的数值,漏掉了一氧化氮。 检测原理:二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。 检测仪器: 1.多孔玻板吸收管。 2.双球玻璃管(内装三氧化铬-砂子)。 3.空气采样器:流量范围0—1L/ min。 4. 分光光度计。 检测试剂: 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm 光的吸光度不超过0.005。 1.吸收液:称取5.0g 对氨基苯磺酸,置于1000mL 容量瓶中,加入50mL 冰乙酸和900mL 水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g 盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。采样时,按4 份吸收原液与1 份水的比例混合配成采样用吸收液。 2.三氧化铬-砂子氧化管:筛取20—40 目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g 三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。

浅谈空气中的氮氧化物的污染及其治理

浅谈空气中的氮氧化物的污染及其治理 摘 要 氮氧化物是只由氮、氧两种元素组成的化合物,包括氧化二氮,一氧化氮,三氧化二氮,二氧化氮,四氧化二氮,五氧化二氮。氮氧化物是大气的主要污染物之一, 是治理大气污染的一大难题。本文介绍了氮氧化物的来源以及治理氮氧 化物的主要方法,分析了这些方法处理氮氧化物的优点或缺点,并预测未来处理氮氧化物方法的发展趋势。 关键词 氮氧化物 产生 危害 治理 天然排放的氮氧化物,主要来自土壤和海洋中有机物的分解,属于自然界的氮循环过程。人为活动排放的氮氧化物,大部分来自化石燃料的燃烧过程,如汽车、飞机、内燃机及工业窑炉的燃烧过程;也来自生产、使用硝酸的过程,如氮肥厂、有机中间体厂、有色及黑色金属冶炼厂等。据80年代初估计,全世界每年由于人类活动向大气排放的氮氧化物,约5300万吨。 氮氧化物对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的重要物质和消耗臭氧的一个重要因子。其危害主要包括: 1.NOx 对人体及动物的致毒作用。NO 对血红蛋白的亲和力非常强,是氧的数十万倍。一旦NO 进入血液中,就从氧化血红蛋白中将氧驱赶出来,与血红蛋白牢固地结合在一起。长时间暴露在NO 环境中较易引起支气管炎和肺气肿等病变。这些毒害作用还会促使早衰、支气管上皮细胞发生淋巴组织增生,甚至是肺癌等症状的产生。 2.对植物的损害作用,氮氧化物对植物的毒性较其它大气污染物要弱,一般不会产生急性伤害,而慢性伤害能抑制植物的生长。危害症状表现为在叶脉间或叶缘出现形状不规则的水渍斑,逐渐坏死,而后干燥变成白色、黄色或黄褐色斑点,逐步扩展到整个叶片。 3.NOx 是形成酸雨、酸雾的主要原因之一。高温燃烧生成的NO 排人大气后大部分转化成NO ,遇水生成HNO 3、HNO 2,并随雨水到达地面,形成酸雨或者酸雾。

空气中二氧化硫的测定实验报告

空气中二氧化硫的测定实验报告

实验十三空气中二氧化硫含量的测定 (甲醛溶液吸收-盐酸副玫瑰苯胺分光光度法) 一、概述 )又名亚硫酸酐,分子量为二氧化硫(SO 2 64.06,为无色有很强刺激性气体,沸点-10℃;熔点-76.1℃;对空气的相对密度 2.26。极易溶于水,在0℃时,1L水可溶解79.8L,20℃溶解39.4L。也溶于乙醇和乙醚。二氧化硫是一种还原剂,与氧化剂作用生成三氧化硫或硫酸。 二氧化硫对结膜和上呼吸道粘膜具有强烈辛辣刺激性,其浓度在0.9mg/m3或大于此浓度就能被大多数人嗅觉到。吸入后主要对呼吸器官的损伤,可致支气管炎、肺炎,严重者可致肺水肿和呼吸麻痹。 二氧化硫是大气中分布较广,影响较大的主要污染物之一,常常以它作为大气污染的主要指标。它主要来源于以煤或石油为燃料的工厂企

业,如火力发电厂、钢铁厂、有色金属冶炼厂和石油化工厂等.此外,硫酸制备过程及一些使用硫化物的工厂也可能排放出二氧化硫。 测定二氧化硫最常用的化学方法是盐酸副玫瑰苯胺比色法,吸收液是四氯汞钠(钾)溶液,与二氧化硫形成稳定的络合物。为避免汞的污染,近年用甲醛溶液代替汞盐作吸收液。 二、实验目的 1. 通过对空气中二氧化硫含量的监测,初步掌握甲醛溶液吸收-盐酸副玫瑰苯酚风光光度法测定空气中的二氧化硫含量的原理和方法。 2.在总结监测数据的基础上,对校区环境空气质量现状(二氧化硫指标)进行分析评价。 三、实验原理 1.二氧化硫的基本性质 二氧化硫(SO2)又名亚硫酸酐,分子量为64.06,为无色有很强刺激性的气体,沸点为

-10℃,熔点为-76.6℃,对空气的相对密度为2.26。极易溶于水,在0℃时,1L水可溶解79.8L SO2,20℃溶解39.4L SO2,也溶于乙醇和乙醚。SO2是一种还原剂,与氧化剂作用生成SO3或H2SO3。 2.盐酸副玫瑰苯酚分光光度法 测定SO2最常用的化学方法是盐酸副玫瑰苯酚分光光度法,吸收液是Na2HgCl4或K2HgCl4溶液,与SO2形成稳定的络合物。为避免汞的污染,近年来用甲醛溶液代替汞盐作吸收液。 SO2被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物,与盐酸副玫瑰苯胺作用,生成紫红色化合物,用风光光度计在570mm处进行测定。 测定范围为10mL样本溶液中含0.3—20μg SO2。若采样体积为20L,则可测浓度范围为0.015—1.000mg/m3。 3.方法特点

空气中氮氧化物

空气中氮氧化物(NOx)的测定 (盐酸萘乙二胺分光光度法) 1、实验目的 (一)熟悉、掌握小流量大气采样器的工作原理和使用方法; (二)熟悉、掌握分光光度分析方法和分析仪器的使用; (三)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。 2、实验原理 大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2),测定氮氧化物浓度时,先用三氧化铬(CrO3)氧化管将一氧化氮成二氧化氮。二氧化氮被吸收在溶液中形成亚硝酸(HNO2),与对氨基苯磺酸起重氧化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。于波长540~545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。本法检出限为0.05μg/5mL,当采样体积为6L时,最低检出浓度为0.01μg /m3。 3、实验仪器和试剂 (一)实验用仪器 除一般通用化学分析仪器外,还应具备:多孔玻板吸收管、空气采样器(KC—6型)、双球玻璃氧化管(内装涂有三氧化铬催化剂的石英砂)、分光光度计(7220型)、KC—6D型大气采样器 (二)实验用试剂 所有试剂均用不含硝酸盐的重蒸蒸馏水配制。检验方法是要求用该蒸馏水配制的吸收液的吸光度不超过0.005(540~545nm,10mm比色皿,水为参比)。 1. 显色液:称取5.0克对氨基苯磺酸,置于200毫升烧杯中,将50毫升冰醋酸与900毫升水的混合液分数次加入烧杯中,搅拌使其溶解,并迅速转入1000毫升棕色容量瓶中,待对氨基苯磺酸溶解后,加入0.03克盐酸萘乙二胺,用水稀释至标线,摇匀,贮于棕色瓶中。此为显色液,25℃以下暗处可保存一月。 采样时,按四份显色液与一份水的比例混合成采样用的吸收液。 2. 三氯化铬—砂子氧化管:将河砂洗净,晒干,筛取20~40目的部分,用

大气中氮氧化物的测定

实验十四大气中氮氧化物的测 实验目的:通过本实验,掌握测定大气中氮氧化物的方法及其原理 一、原理 大气中的氮氧化物主要是一氧化氮和二氧化氮。在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合, (气)转生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO 2—(液)的转换系数为0.76,故在计算结果时应除以0.76。 变为NO 2 二、仪器 1.多孔玻板吸收管; 2.双球玻璃管; 3.大气采样器:流量范围0-1L/min; 4.分光光度计; 5.10ml比色管; 6.气压计。 三、试剂 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005 。 1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0. 50g盐酸萘乙二

胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。 采样时,按4分吸收原液与1份水的比例混合配成采样用的吸收液。 2.三氧化铬-砂子氧化管:筛取20-40目海砂(或河沙),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。 ,预先在干燥器内3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO 2 放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液 —,贮存于棕色瓶内,冰箱中保存,可稳定三个月。 每毫升含100.0μgNO 2 4.亚硝酸钠标准溶液:吸取贮备液5mL于100mL容量瓶中,用水稀释至标线。 —。 此溶液每毫升含5.0μgNO 2 四、测定步骤 1.标准曲线的绘制:取7支10mL具塞比色管,按下表所列数据配制标准色列。 以上溶液摇匀,避开阳光直射放置15min,在540nm波长处,用1㎝比色皿,以 —含量(ug)水为参比,测定吸光度。以吸光度为纵坐标,相应的标准溶液中NO 2 为横坐标,绘制标准曲线。

相关文档
最新文档