C51(8051)汇编指令集_图文.

C51(8051)汇编指令集_图文.
C51(8051)汇编指令集_图文.

1

符号 Rn 2

Direct 3

@Ri4

#data5

#data166

Addr167

Addr118

Rel 9bit 算数运算指令

指令字节周期动作说明

1ADD A,Rn11将累加器与寄存器的内容相加,结果存回累加器

2ADD A,direct21将累加器与直接地址的内容相加,结果存回累加器

3ADD A,@Ri11将累加器与间接地址的内容相加,结果存回累加器

4ADD A,#data21将累加器与常数相加,结果存回累加器

5ADDC A,Rn11将累加器与寄存器的内容及进位C相加,结果存回累加器

6ADDC A,direct21将累加器与直接地址的内容及进位C相加,结果存回累加器7ADDC A,@Ri11将累加器与间接地址的内容及进位C相加,结果存回累加器8ADDC A,#data21将累加器与常数及进位C相加,结果存回累加器

9SUBB A,Rn11将累加器的值减去寄存器的值减借位C,结果存回累加器

10SUBB A,direct21将累加器的值减直接地址的值减借位C,结果存回累加器

11SUBB A,@Ri11将累加器的值减间接地址的值减借位C,结果存回累加器

12SUBB A,0data 21将累加器的值减常数值减借位C,结果存回累加器

13INC A11将累加器的值加1

141INC Rn11将寄存器的值加l

15INC direct21将直接地址的内容加1

16INC @Ri11将间接地址的内容加1

17INC DPTR11数据指针寄存器值加1

18DEC A11将累加器的值减1

19DEC Rn11将寄存器的值减1

20DEC direct21将直接地址的内容减1

21DEC @Ri11将间接地址的内容减1

22MUL AB14将累加器的值与B寄存器的值相乘,乘积的低位字节存回累加器,高位字节存回B寄存器

23DIV AB14将累加器的值除以B寄存器的值,结果的商存回累加器,余数存回B寄存器

24DA A11将累加器A作十进制调整,若(A 3-0>9或(AC=1,则(A 3-0←(A3-0+6,若(A 7-4>9或 (C=1,则(A 7-4←

(A7-4+625

ANL A,Rn11将累加器的值与寄存器的值做AND的逻辑判断,结果存回累加器26

ANL A,direct21将累加器的值与直接地址的内容做AND的逻辑判断,结果存回累加器 27

ANL A,@Ri11将累加器的值与间接地址的内容做AND的逻辑判断,结果存回累加器 28

ANL A,#data21将累加器的值与常数做AND的逻辑判断,结果存回累加器 29

ANL direct,A21将直接地址的内容与累加器的值做AND的逻辑判断,结果存回该直接地址 30

ANL direct,#data32将直接地址的内容与常数值做AND的逻辑判断,结果存回该直接地址 31

ORL A,Rn11将累加器的值与寄存器的值做OR的逻辑判断,结果存回累加器 32

ORL A,direct21将累加器的值与直接地址的内容做OR的逻辑判断,结果存回累加器 33

ORL A,@Ri11将累加器的值与间接地址的内容做OR的逻辑判断,结果存回累加器 34ORL A,#data21将累加器的值与常数做OR的逻辑判断,结果存回累加器

51汇编语言指令集

直接地址,内部数据区的地址RAM(00H~7FH SFR(80H~FFH

B,ACC,PSW,IP,P3,IE,P2,SCON,P1,TCON,P0R0~R7寄存器n=0~716位的目标地址16位常数 8位常数间接地址Ri=R0或R1 8051/31RAM地址(00H~7FH

8052/32RAM地址(00H~FFH含义相关地址 11位的目标地址说明:将累加器A和寄存器B内的无符号整数相乘,产生16位的积,低位字节存入A,高位字节存入B寄存器。如果积大于FFH,则溢出标志位(OV被设定为1, 而进位标志位为0

说明:无符号的除法运算,将累加器A除以B寄存器的值,商存入A,余数存入B。执行本指令后,进位位(C及溢出位(OV被清除为0

内部数据RAM(20H~2FH,特殊功能寄存器的直接地址的位

符号定义表

指令介绍

逻辑运算指令

说明:将16位的DPTR加1,当DPTR的低字节(DPL从FFH溢出至00H时,会使高字节(DPH加1,不影响任何标志位

35ORL direct,A21将直接地址的内容与累加器的值做OR的逻辑判断,结果存回该直接地址

36ORL direct,#data32将直接地址的内容与常数值做OR的逻辑判断,结果存回该直接地址

37XRL A,Rn11将累加器的值与寄存器的值做XOR的逻辑判断,结果存回累加器

38XRL A,direct21将累加器的值与直接地址的内容做XOR的逻辑判断,结果存回累加器

39XRL A,@Ri11将累加器的值与间接地扯的内容做XOR的逻辑判断,结果存回累加器

40XRL A,#data21将累加器的值与常数作XOR的逻辑判断,结果存回累加器

41XRL direct,A21将直接地址的内容与累加器的值做XOR的逻辑判断,结果存回该直接地址

42XRL direct,#data32将直接地址的内容与常数的值做XOR的逻辑判断,结果存回该直接地址

43CLR A11清除累加器的值为0

44CPL A11将累加器的值反相

45RL A11将累加器的值左移一位

46RLC A11将累加器含进位C左移一位

47RR A11将累加器的值右移一位

48RRC A11将累加器含进位C右移一位

49SWAP A11将累加器的高4位与低4位的内容交换。(A3-0←(A7-4

数据转移指令

50MOV A,Rn11将寄存器的内容载入累加器

51MOV A,direct21将直接地址的内容载入累加器

52MOV A,@Ri11将间接地址的内容载入累加器

53MOV A,#data21将常数载入累加器

54MOV Rn,A 11将累加器的内容载入寄存器

55MOV Rn,direct22将直接地址的内容载入寄存器

56MOV Rn,gdata21将常数载入寄存器

57MOV direct,A21将累加器的内容存入直接地址

58MOV direct,Rn22将寄存器的内容存入直接地址

59MOV direct1, direct232将直接地址2的内容存入直接地址1

60MOV direct,@Ri22将间接地址的内容存入直接地址

61MOV direct,#data32将常数存入直接地址

62MOV @Ri,A11将累加器的内容存入某间接地址

63MOV @Ri,direct22将直接地址的内容存入某间接地址

64MOV @Ri,#data21将常数存入某间接地址

65MOV DPTR,#data1632将16位的常数存入数据指针寄存器

66MOVC A,@A+DPTR12(A ←((A+(DPTR 累加器的值再加数据指针寄存器的值为其所指定地址,将该地址的内容读入累加器 67MOVC

A,@A+PC12(PC←(PC+1;(A←((A+(PC累加器的值加程序计数器的值作为其所指定地址,将该地址的内容读入累加器 68MOVX A,@Ri12将间接地址所指定外部存储器的内容读入累加器(8位地址

69MOVX A,@DPTR12将数据指针所指定外部存储器的内容读入累加器(16位地址

70MOVX @Ri,A12将累加器的内容写入间接地址所指定的外部存储器(8位地址

71MOVX @DPTR,A12将累加器的内容写入数据指针所指定的外部存储器(16位地址

72PUSH direct22将直接地址的内容压入堆栈区

73POP direct22从堆栈弹出该直接地址的内容

74XCH A,Rn11将累加器的内容与寄存器的内容互换

75XCH A,direct21将累加器的值与直接地址的内容互换

76XCH A,@Ri11将累加器的值与间接地址的内容互换

77XCHD A,@Ri11将累加器的低4位与间接地址的低4位互换

布尔代数运算

78CLR C11清除进位C为0

79CLR bit21清除直接地址的某位为0

80SETB C11设定进位C为1

81SETB bit21设定直接地址的某位为1

82CPL C11将进位C的值反相

83CPL bit21将直接地址的某位值反相

84ANL C,bit22将进位C与直接地址的某位做AND的逻辑判断,结果存回进位C

85ANL C,/bit22将进位C与直接地址的某位的反相值做AND的逻辑判断,结果存回进位C

86ORL C,bit22将进位C与直接地址的某位做OR的逻辑判断,结果存回进位C

87ORL C,/bit22将进位C与直接地址的某位的反相值做OR的逻辑判断,结果存回进位C

88MOV C,bit21将直接地址的某位值存入进位C

89MOV bit,C22将进位C的值存入直接地址的某位

90JC rel22若进位C=1则跳至rel的相关地址

91JNC rel22若进位C=0则跳至rel的相关地址

92JB bit,rel

32若直接地址的某位为1,则跳至rel的相关地址 93JNB bit,rel

32若直接地址的某位为0,则跳至rel的相关地址 94JBC bit,rel32若直接地址的某位为1,则跳至rel的相关地址,并将该位值清除为095

ACALL addr1122调用2K程序存储器范围内的子程序 96

LCALL addr1632调用64K程序存储器范围内的子程序 97

RET 12从子程序返回 98

RETI 12从中断子程序返回 99

AJMP addr1122绝对跳跃(2K内 100

LJMP addr1632长跳跃(64K内 101

SJMP rel22短跳跃(2K内-128~+127字节 102

JMP @A+DPTR12跳至累加器的内容加数据指针所指的相关地址 103

JZ rel22累加器的内容为0,则跳至rel所指相关地址 104

JNZ rel22累加器的内容不为0,则跳至rel所指相关地址 105

CJNE A,direct,rel32将累加器的内容与直接地址的内容比较,不相等则跳至rel 所指的相关地址 106

CJNE A,#data,rel32将累加器的内容与常数比较,若不相等则跳至rel所指的相关地址 107

CJNE @Rn,#data,rel32将寄存器的内容与常数比较,若不相等则跳至rel所指的相关地址 108

CJNE @Ri,#data,rel32将间接地址的内容与常数比较,若不相等则跳至rel所指的相关地址 109

DJNZ Rn,rel22将寄存器的内容减1,不等于0则跳至rel所指的相关地址 110

DJNZ direct,rel32将直接地址的内容减1,不等于0则跳至rel所指的相关地址111

NOP 11无动作 1

符号功能介绍 B B 寄存器 2

ACC 累加器 3

PSW 程序状态字 4

IP 中断优先级控制寄存器 5

P3P3口锁存器 6

IE 中断允许控制寄存器 7

P2P2口锁存器 8

SBUF 串行口锁存器 9

SCON 串行口控制寄存器 10

P1P1口锁存器 11

TH1定时器 /计数器1(高8位 12

TH0定时器 /计数器1(低8位 13

TL1定时器 /计数器0(高8位 14

TL0定时器 /计数器0(低8位 15

TMOD 定时器 /计数器方式控制寄存器 16

TCON 定时器 /计数器控制寄存器 17

DPH 数据地址指针(高 8位 18

DPL 数据地址指针(低 8位 19

SP 堆栈指针 20

P0P0口锁存器 21PCON 电源控制寄存器

1

P3口线信号名称 P3.0串行口输入端 2

P3.1串行口输出端 3

P3.2外部中断0请求输入端,低电平有效 4

P3.3外部中断1请求输入端,低电平有效 5

P3.4定时器/计数器0计数脉冲输入端 6

P3.5定时器/计数器1计数脉冲输入端 7

P3.6外部数据存储器写选通信号输出端,低电平有效 8P3.7外部数据存储器读选通信号输出端,低电平有效 8AH 90H 8DH 8CH 8BH 程序跳跃

87H 第二功能 89A 88H 83H 82H 81H 80H RD 特殊功能寄存器 P3口第二功能列表

B0H B8H D0H E0H F0H 地址 INT1A8H A0H 99H WR T0T1RXD TXD INT098H

汇编语言 快速入门

“哎哟,哥们儿,还捣鼓汇编呢?那东西没用,兄弟用VB"钓"一个API就够你忙活个十天半月的,还不一定搞出来。”此君之言倒也不虚,那吾等还有无必要研他一究呢?(废话,当然有啦!要不然你写这篇文章干嘛。)别急,别急,让我把这个中原委慢慢道来:一、所有电脑语言写出的程序运行时在内存中都以机器码方式存储,机器码可以被比较准确的翻译成汇编语言,这是因为汇编语言兼容性最好,故几乎所有跟踪、调试工具(包括WIN95/98下)都是以汇编示人的,如果阁下对CRACK颇感兴趣……;二、汇编直接与硬件打交道,如果你想搞通程序在执行时在电脑中的来龙去脉,也就是搞清电脑每个组成部分究竟在干什么、究竟怎么干?一个真正的硬件发烧友,不懂这些可不行。三、如今玩DOS的多是“高手”,如能像吾一样混入(我不是高手)“高手”内部,不仅可以从“高手”朋友那儿套些黑客级“机密”,还可以自诩“高手”尽情享受强烈的虚荣感--#$%&“醒醒!” 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指

PowerPC总汇编指令集

PowerPC汇编指令集 标签:汇编指令PowerPC PPC 2008-05-04 21:25 PowerPC 体系结构规范(PowerPC Architecture Specification)发布 于 1993 年,它是一个 64 位规范 ( 也包含 32 位子集 )。几乎所有常规可用 的 PowerPC(除了新型号 IBM RS/6000 和所有 IBM pSeries 高端服务器)都 是 32 位的。 PowerPC 处理器有 32 个(32 位或 64 位)GPR(通用寄存器)以及诸如 PC (程序计数器,也称为IAR/指令地址寄存器或 NIP/下一指令指针)、LR(链接寄存器)、CR(条件寄存器)等各种其它寄存器。有些 PowerPC CPU 还 有 32 个 64 位 FPR(浮点寄存器)。MPC555使用的PowerPC CPU是带有FPR 的。一些常用寄存器介绍如下: 通用寄存器的用途: r0在函数开始(function prologs)时使用。 r1堆栈指针,相当于ia32架构中的esp寄存器,idapro把这个寄存器反汇编标识为sp。 r2内容表(toc)指针,idapro把这个寄存器反汇编标识为rtoc。系统调用时,它包含系统调用号(这个好像跟系统有关吧)。 r3作为第一个参数和返回值。 r4-r10函数或系统调用开始的参数。 r11用在指针的调用和当作一些语言的环境指针。 r12它用在异常处理和glink(动态连接器)代码。 r13保留作为系统线程ID。 r14-r31 作为本地变量,非易失性。 专用寄存器的用途: lr链接寄存器,它用来存放函数调用结束处的返回地址。 ctr计数寄存器,它用来当作循环计数器,会随特定转移操作而递减。 xer定点异常寄存器,存放整数运算操作的进位以及溢出信息。 msr机器状态寄存器,用来配置微处理器的设定。 cr条件寄存器,它分成8个4位字段,cr0-cr7,它反映了某个算法操作的结果并且提供条件分支的机制。 寄存器r1、r14-r31是非易失性的,这意味着它们的值在函数调用过程保持不变。寄存器r2也算非易失性,但是只有在调用函数在调用后必须恢复它的值时才被处理。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

6、汇编学习从入门到精通(荐书)

汇编学习从入门到精通Step By Step 2007年12月15日星期六00:34 信息来源:https://www.360docs.net/doc/cb3169666.html,/hkbyest/archive/2007/07/22/1702065.aspx Cracker,一个充满诱惑的词。别误会,我这里说的是软件破解,想做骇客的一边去,这年头没人说骇客,都是“黑客”了,嘎嘎~ 公元1999年的炎热夏季,我捧起我哥留在家的清华黄皮本《IBM-PC汇编语言程序设计》,苦读。一个星期后我那脆弱的小心灵如玻璃般碎裂了,为了弥补伤痛我哭爹求妈弄了8k大洋配了台当时算是主流的PC,要知道那是64M内存!8.4G硬盘啊!还有传说中的Celeon 300A CPU。不过很可惜的是在当时那32k小猫当道的时代,没有宽带网络,没有软件,没有资料,没有论坛,理所当然我对伟大的计算机科学体系的第一步探索就此夭折,此时陪伴我的是那些盗版光盘中的游戏,把CRACK_XXX文件从光盘复制到硬盘成了时常的工作,偶尔看到光盘中的nfo 文件,心里也闪过一丝对破解的憧憬。 上了大学后有网可用了,慢慢地接触到了一些黑客入侵的知识,想当黑客是每一个充满好奇的小青年的神圣愿望,整天看这看那,偷偷改了下别人的网页就欢喜得好像第一次偷到鸡的黄鼠狼。 大一开设的汇编教材就是那不知版了多少次的《IBM-PC汇编语言程序设计》,凭着之前的那星期苦读,考试混了个80分。可惜当时头脑发热,大学60分万岁思想无疑更为主流,现在想想真是可惜了宝贵的学习时间。 不知不觉快毕业了,这时手头上的《黑客防线》,《黑客X档案》积了一大摞,整天注来注去的也厌烦了,校园网上的肉鸡一打一打更不知道拿来干什么。这时兴趣自然转向了crack,看着杂志上天书般的汇编代码,望望手头还算崭新的汇编课本,叹了口气,重新学那已经忘光了的汇编语言吧。咬牙再咬牙,看完寻址方式那章后我还是认输,不认不行啊,头快裂了,第三次努力终告失败。虽然此时也可以爆破一些简单的软件,虽然也知道搞破解不需要很多的汇编知识,但我还是固执地希望能学好这门基础中的基础课程。 毕业了,进入社会了,找工作,上班,换工作成了主流旋律,每天精疲力尽的哪有时间呢?在最初的中国移动到考公务员再到深圳再到家里希望的金融机构,一系列的曲折失败等待耗光了我的热情,我失业了,赋闲在家无所事事,唯一陪伴我的是那些杂志,课本,以及过时的第二台电脑。我不想工作,我对找工作有一种恐惧,我靠酒精麻醉自己,颓废一段日子后也觉得生活太过无聊了,努力看书考了个CCNA想出去,结果还是被现实的就业环境所打败。三年时间,一无所获。 再之后来到女朋友处陪伴她度过刚毕业踏入社会工作的适应时期,这段时间随便找了个电脑技术工作,每月赚那么个几百块做生活费。不过这半年让我收获比较大的就是时间充裕,接触到了不少新东西,我下定决心要把汇编学好,这时我在网上看到了别人推荐的王爽《汇编语言》,没抱什么希望在当当网购了人生中的第一次物,19块6毛,我记得很清楚,呵呵。 废话终于完了,感谢各位能看到这里,下面进入正题吧。

x86汇编指令集

x86汇编指令集 数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据. 1. 通用数据传送指令. MOV 传送字或字节. MOVSX 先符号扩展,再传送. MOVZX 先零扩展,再传送. MOVSX reg16,r/m8 ; o16 0F BE /r [386] MOVSX reg32,r/m8 ; o32 0F BE /r [386] MOVSX reg32,r/m16 ; o32 0F BF /r [386] MOVZX reg16,r/m8 ; o16 0F B6 /r [386] MOVZX reg32,r/m8 ; o32 0F B6 /r [386] MOVZX reg32,r/m16 ; o32 0F B7 /r [386] PUSH 把字压入堆栈. POP 把字弹出堆栈. PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.

PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里) XLAT 字节查表转换. ── BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即 0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时, 其范围是0-65535. 3. 目的地址传送指令. LEA 装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS 传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES 传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI. LFS 传送目标指针,把指针内容装入FS.

Windows X86-64位汇编语言入门

Windows X86-64位汇编语言入门 Windows X64汇编入门(1) 最近断断续续接触了些64位汇编的知识,这里小结一下,一是阶段学习的回顾,二是希望对64位汇编新手有所帮助。我也是刚接触这方面知识,文中肯定有错误之处,大家多指正。 文章的标题包含了本文的四方面主要内容: (1)Windows:本文是在windows环境下的汇编程序设计,调试环境为Windows Vista 64位版,调用的均为windows API。 (2)X64:本文讨论的是x64汇编,这里的x64表示AMD64和Intel的EM64T,而不包括IA64。至于三者间的区别,可自行搜索。 (3)汇编:顾名思义,本文讨论的编程语言是汇编,其它高级语言的64位编程均不属于讨论范畴。 (4)入门:既是入门,便不会很全。其一,文中有很多知识仅仅点到为止,更深入的学习留待日后努力。其二,便于类似我这样刚接触x64汇编的新手入门。 本文所有代码的调试环境:Windows Vista x64,Intel Core 2 Duo。 1. 建立开发环境 1.1 编译器的选择 对应于不同的x64汇编工具,开发环境也有所不同。最普遍的要算微软的MASM,在x64环境中,相应的编译器已经更名为ml64.exe,随Visual Studio 2005一起发布。因此,如果你是微软的忠实fans,直接安装VS2005既可。运行时,只需打开相应的64位命令行窗口(图1),便可以用ml64进行编译了。

第二个推荐的编译器是GoASM,共包含三个文件:GoASM编译器、GoLINK链接器和GoRC 资源编译器,且自带了Include目录。它的最大好外是小,不用为了学习64位汇编安装几个G 的VS。因此,本文的代码就在GoASM下编译。 第三个Yasm,因为不熟,所以不再赘述,感兴趣的朋友自行测试吧。 不同的编译器,语法会有一定差别,这在下面再说。 1.2 IDE的选择 搜遍了Internet也没有找到支持asm64的IDE,甚至连个Editor都没有。因此,最简单的方法是自行修改EditPlus的masm语法文件,这也是我采用的方法,至少可以得到语法高亮。当然,如果你懒得动手,那就用notepad吧。 没有IDE,每次编译时都要手动输入不少参数和选项,做个批处理就行了。 1.3 硬件与操作系统 硬件要求就是64位的CPU。操作系统也必须是64位的,如果在64位的CPU上安装了

汇编语言入门

汇编语言入门教程 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS 的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。 内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放

ARM汇编指令集

ARM汇编指令集 1 跳转指令 1.1 跳转指令B: B LABLE ;跳转到标号LABEL处 B 0X1111 ;跳转到绝对地址0X1111处 1.2 带连接的跳转指令BL: START … BL NEXT ;跳转到标号NEXT处,同时保存当前PC到R14中 …;返回地址 … NEXT…;子程序入口 MOV PC,R14 ;返回 1.3 带状态切换的跳转指令BX: MOV R0, #0X0201 BX R0 ;程序跳转到0x0200处,微处理器切换到Thumb 状态(地址必须是4的倍数,否则产生不可预知的后果) 2算术运算指令 2.1不带进位加法指令ADD

ADD R0, R1, R2 ;R0←(R1)+(R2) ADD R0, R1, #112 ;R0←(R1)+ 112 ADD R0, R1, R2, LSL #1 ;R0←(R1)+(R2<<1) ;将R2中的值左移1位,再与R1值相加,结果送R0 2.2带进位加法指令ADC ADDS R0, R3, R6 ;加最低位字节,不带进位 ADCS R1, R4, R7 ;加第二个字,带进位 ADCS R2, R5,R8 ;加第三个字,带进位 ;三句话实现了96bit加法运算,由于ARM寄存器宽度只有32bit所以分三次相加 2.3 不带进位减法指令SUB ;S—进位标志 SUB R0, R1, R2 ;R0←(R1)- (R2) SUB R0, R1, #112 ;R0←(R1)- 112 SUB R0, R1 ,R2 LSL#1 ;R0←(R1)- (R2<<1) 2.4 带进位减法指令SBC SUBS R0, R3, R6 ;减最低位字节,不带进位 SBCS R1, R4, R7 ;减第二个字,带进位 SBCS R2, R5, R8 ;减第三个字,带进位 ;三句话实现了96bit减法运算,由于ARM寄存器宽度只有32bit所以分三次相减

汇编语言-王爽-完美高清版视频教程

汇编语言》-王爽-完美高清版-零基础汇编语言入门书籍PDF格式 同时按ctrl+要下载的地址既可下载对应的视频 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f61cb107c8 001第一章- 基础知识01 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6806f45b8 002第一章- 基础知识02 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6ec42d4d3 003第一章- 基础知识03 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6deb05ec4 004第一章-基础知识04 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6e51f6838 005第一章- 基础知识05 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f66edaf8d3 006第二章- 寄存器(CPU工作原理)01 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6d07e07b9 007第二章- 寄存器(CPU工作原理)02 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6d7f585a8 008第二章- 寄存器(CPU工作原理)03 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f639d8b3cf 009第二章- 寄存器(CPU工作原理)04 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6dcadbde6 010第二章- 寄存器(CPU工作原理)05 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6ea3f01c1 011第二章- 寄存器(CPU工作原理)06 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f65b96a06f 012第二章- 寄存器(CPU工作原理)07 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f682da085a 013第三章- 寄存器(内存访问)01 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6486e698 014第三章- 寄存器(内存访问)02 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6b7491d9f 015第三章- 寄存器(内存访问)03 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f622b7f9a7 016第三章- 寄存器(内存访问)04 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f64e2424b9 017第三章- 寄存器(内存访问)05 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6e5132d4d 018第三章- 寄存器(内存访问)06 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f655c10e86 019第三章- 寄存器(内存访问)07 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6b22e64e6 020第四章- 第一个程序01 下载地址:https://www.360docs.net/doc/cb3169666.html,/file/f6812126a4

STM 常用汇编指令

在嵌入式开发中,汇编程序常常用于非常关键的地方,比如系统启动时初始化,进出中断时的环境保护,恢复等对性能有要求的地方。 ARM指令集可以分为六大类,分别为数据处理指令、Load/Store指令、跳转指令、程序状态寄存器处理指令、协处理器指令和异常产生指令。 ARM指令使用的基本格式如下: 〈opcode〉{〈cond〉}{S}〈Rd〉,〈Rn〉{,〈operand2〉} opcode操作码;指令助记符,如LDR、STR等。 cond可选的条件码;执行条件,如EQ、NE等。 S可选后缀;若指定“S”,则根据指令执行结果更新CPSR中的条件码。 Rd目标寄存器。 Rn存放第1操作数的寄存器。 operand2第2个操作数 arm的寻址方式如下: 立即寻址 寄存器寻址 寄存器间接寻址 基址加偏址寻址 堆栈寻址 块拷贝寻址 相对寻址 这里不作详细描述,可以查阅相关文档。 数据处理指令 Load/Store指令 程序状态寄存器与通用寄存器之间的传送指令 转移指令 异常中断指令 协处理器指令 在S3C2410、S3C2440的数据手册中对各种汇编指令有详细的描述;这里只对较常见的作写介绍。 1、相对跳转指令:b、bl 这两条指令的不同之处在于bl指令除了跳转之外,还将返回地址(bl的下一条指令的地址)保存在lr寄存器中。 这两条指令的可跳转范围是当前指令前后32M。 b funa .... funa: b funb ....

funb: .... 2、数据传送指令mov,地址读取伪指令ldr mov指令可以把一个寄存器的值赋给另外一个寄存器,或者把一个常数赋给寄存器。 mov r1,r2 mov r1,#1024 mov传送的常数必须能用立即数来表示。当不能用立即数表示时,可以用ldr命令来赋值。ldr是伪命令,不是真实存在的指令,编译器会把它扩展成真正的指令;如果该常数能用“立即数”来表示,则使用mov指令,否则编译时将该常数保存在某个位置,使用内存读取指令把它读出来。 ldr r1,=1024 3、内存访问指令ldr、str、ldm、stm ldr既可以指低至读取伪指令,也可以是内存访问指令。当他的第二个参数前面有'='时标伪指令,否则表内存访问指令。 ldr指令从内存中读取数据到寄存器,str指令把寄存器的指存储到内存中,他们的操作数都是32位的。 ldr r1,[r2,#4] ldr r1,[r2] ldr r1,[r2],#4 str r1,[r2,#4] str r1,[r2] str r1,[r2],#4 寄存器传送指令可以用一条指令将16个可见寄存器(R0~R15)的任意子集合(或全部)存储到存储器或从存储器中读取数据到该寄存器集合中。与单寄存器存取指令相比,多寄存器数据存取可用的寻址模式更加有限。多寄存器存取指令的汇编格式如下: LDM/STM{}Rn{!}, 4、加减指令add、sub add r1,r2,#1 sub r1,r2,#1 5、程序状态寄存器的访问指令msr,mrs ARM指令中有两条指令,用于在状态寄存器和通用寄存器之间传送数据。修改状态寄存器一般是通过“读取-修改-写回”三个步骤的操作来实现的。这两条指令分别是: 状态寄存器到通用寄存器的传送指令(MRS) 通用寄存器到状态寄存器的传送指令(MSR) 其汇编格式如下: MRS{}Rd,CPSR|SPSR 其汇编格式如下:

快速入门单片机汇编语言

快速入门单片机汇编语 言 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

快速入门单片机汇编语言 简要: 单片机有通用型和专用型之分。专用型是厂家为固定程序的执行专门开发研制的一种单片机,其程序不可更改。通用型单片机是常用的一种供学习或自主编制程序的单片机,其程序需要自己写入,可更改。单片机根据其基本操作处理位数不同可以分为:1位、4位、8位、16、32位单片机。 正文: 在此我们主要讲解美国ATMEL公司的89C51单片机。 一、89C51单片机PDIP(双列直插式)封装引脚图: 其引脚功能如下: P0口(—):为双向三态口,可以作为输入/输出口。但在实际应用中通常作为地址/数据总线口,即为低8位地址/数据总线分时复用。低8位地址在ALE信号的负跳变锁存到外部地址锁存器中,而高8位地址由P2口输出。 P1口(—):其每一位都能作为可编程的输入或输出线。 P2口(—):每一位也都可作为输入或输出线用,当扩展系统外设时,可作为扩展系统的地址总线高8位,与P0口一起组成16位地址总线。对89c51单片机来说,P2口一般只作为地址总线使用,而不作为I/O线直接与外设相连。 P3口(—):其为双功能口,作为第一功能使用时,其功能与P1口相同。当作为第二功能使用时,每一位功能如下表所示。 P3口第二功能

Rst\Vpd:上电复位端和掉电保护端。 XTAL1(xtal2):外接晶振一脚,分别接晶振的一端。 Gnd:电源地。 Vcc:电源正级,接+5V。 PROG\ALE:地址锁存控制端 PSEN:片外程序存储器读选通信号输出端,低电平有效。 EA\vpp:访问外部程序储存器控制信号,低电平有效。当EA为高电平时访问片内存储器,若超出范围则自动访问外部程序存储器。当EA为低电平时只访问外部程序存储器。 二、常用指令及其格式介绍: 1、指令格式: [标号:]操作码 [ 目的操作数][,操作源][;注释] 例如:LOOP:ADD A,#0FFH ;(A)←(A)+FFH 2、常用符号: Ri和Rn:R表示工作寄存器,i表示1和0,n表示0~7。 rel:相对地址、地址偏移量,主要用于无条件相对短转移指令和条件转移指令。 #data:包含于指令中的8位立即数。 #data16:包含于指令中的16位立即数。

汇编语言指令集

汇编语言指令集 一、数据传输指令 1. 通用数据传送指令. MOV(MOVe) 传送字或字节. MOVS(MOVe String) 串传送指令 MOVSX先符号扩展,再传送. MOVZX先零扩展,再传送. PUSH把字压入堆栈. POP把字弹出堆栈. PUSHA把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈. PUSHAD把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG (eXCHanG)交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD先交换再累加.( 结果在第一个操作数里) XLAT(TRANSLATE) 字节查表转换. ── BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时,其范围是0-65535. 3. 目的地址传送指令. LEA (Load Effective Address)装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS (Load DS with pointer)传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES (Load ES with pointer)传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI. LFS 传送目标指针,把指针内容装入FS. 例: LFS DI,string ;把段地址:偏移地址存到FS:DI. LGS 传送目标指针,把指针内容装入GS. 例: LGS DI,string ;把段地址:偏移地址存到GS:DI. LSS 传送目标指针,把指针内容装入SS. 例: LSS DI,string ;把段地址:偏移地址存到SS:DI. 4. 标志传送指令. LAHF (Load AH with Flags)标志寄存器传送,把标志装入AH. SAHF (Store AH into Flgs)标志寄存器传送,把AH内容装入标志寄存器. PUSHF (PUSH the Flags)标志入栈. POPF (POP the Flags)标志出栈.

汇编语言入门教程

汇编语言入门教程 2007-04-29 22:04对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK 出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS 段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。

MCS-51汇编语言指令集

MCS-51汇编语言指令集 符号定义表 符号 含义 Rn R0~R7寄存器n=0~7 Direct 直接地址,内部数据区的地址RAM(00H~7FH) SFR(80H~FFH) B,ACC,PSW,IP,P3,IE,P2,SCON,P1,TCON,P0 @Ri 间接地址Ri=R0或R1 8051/31RAM地址(00H~7FH) 8052/32RAM地址(00H~FFH) #data 8位常数 #data16 16位常数 Addr16 16位的目标地址 Addr11 11位的目标地址 Rel 相关地址 bit 内部数据RAM(20H~2FH),特殊功能寄存器的直接地址的位 2指令介绍 指令 字节 周期 动作说明 算数运算指令 1.ADD A,Rn 1 1 将累加器与寄存器的内容相加,结果存回累加器 2.ADD A,direct 2 1 将累加器与直接地址的内容相加,结果存回累加器 3.ADD A,@Ri 1

将累加器与间接地址的内容相加,结果存回累加器4.ADD A,#data 2 1 将累加器与常数相加,结果存回累加器 5.ADDC A,Rn 1 1 将累加器与寄存器的内容及进位C相加,结果存回累加器6.ADDC A,direct 2 1 将累加器与直接地址的内容及进位C相加,结果存回累加器7.ADDC A,@Ri 1 1 将累加器与间接地址的内容及进位C相加,结果存回累加器8.ADDC A,#data 2 1 将累加器与常数及进位C相加,结果存回累加器 9.SUBB A,Rn 1 1 将累加器的值减去寄存器的值减借位C,结果存回累加器10.SUBB A,direct 2 1 将累加器的值减直接地址的值减借位C,结果存回累加器11.SUBB A,@Ri 1 1 将累加器的值减间接地址的值减借位C,结果存回累加器12.SUBB A,0data 2 1 将累加器的值减常数值减借位C,结果存回累加器 13.INC A 1 1 将累加器的值加1 14.INC Rn 1

汇编通用指令集(含分析)

指令格式(16进制)机器码(2进制)机器码 ADD r/m8,r8 00 /r 00 000 0 0 0 oorrrmmm ADD r/m32,r32 01 /r 00 000 0 0 1 oorrrmmm ADD r/m16,r16 01 /r 00 000 0 0 1 oorrrmmm ADD r8,r/m8 02 /r 00 000 0 1 0 oorrrmmm ADD r16,r/m16 03 /r 00 000 0 1 1 oorrrmmm ADD r32,r/m32 03 /r 00 000 0 1 1 oorrrmmm 前6位全为0 ADD AL, imm8 04 ib 00 000 1 0 0 ib ADD EAX, imm32 05 id 00 000 1 0 1 id ADD AX, imm16 05 iw 00 000 1 0 1 iw 前5位为0,第6,7位为10???第6位为0有MOD域 PUSH ES 06 00 000 1 1 0 POP ES 07 00 000 1 1 1 前5位为0,第6,7位为11 OR r/m8,r8 08 /r 00 001 000 oorrrmmm OR r/m16,r16 09 /r 00 001 001 oorrrmmm OR r/m32,r32 09 /r 00 001 001 oorrrmmm OR r8,r/m8 0A /r 00 001 010 oorrrmmm OR r16,r/m16 0B /r 00 001 011 oorrrmmm

OR r32,r/m32 0B /r 00 001 011 oorrrmmm 前4位为0,第5,6位为10 OR AL, imm8 0C ib 00 001 1 0 0 ib OR EAX, imm32 0D id 00 001 1 0 1 id OR AX, imm16 0D iw 00 001 1 0 1 iw 前4位为0,第5,6位为11 PUSH CS 0E 00 001 1 1 0 这里没有0F 0F是以后用于扩展00 001 1 1 1 ADC r/m8,r8 10 /r 00 010 0 0 0 oorrrmmm ADC r/m32,r32 11 / r 00 010 0 0 1 oorrrmmm ADC r/m16,r16 11 /r 00 010 0 0 1 oorrrmmm ADC r8,r/m8 12 /r 00 010 0 1 0 oorrrmmm ADC r16,r/m16 13 /r 00 010 0 1 1 oorrrmmm ADC r32,r/m32 13 /r 00 010 0 1 1 oorrrmmm 前5位为00010,6、7位为01 ADC AL, imm8 14 ib 00 010 100 ib ADC EAX, imm32 15 id 00 010 101 id ADC AX, imm16 15 iw 00 010 101 iw 前5位为00010,6、7位为10 PUSH SS 16 00 010 1 1 0

相关文档
最新文档