化学 化工 毕业 英文 外文 文献翻译 砷在环境中的生化特性

化学 化工 毕业 英文 外文 文献翻译 砷在环境中的生化特性
化学 化工 毕业 英文 外文 文献翻译 砷在环境中的生化特性

化学化工毕业英文外文文献翻译砷在环境中的生化

特性

外文文献及译文

文献、资料题目:Arsenic in the environment:

Biology and Chemistry

文献、资料发表(出版)日期:

外文文献:

Arsenic in the environment: Biology and Chemistry

Abstract:

Arsenic (As) distribution and toxicology in the environment is a serious issue, with millions of individuals worldwide being affected by As toxicosis. Sources of As contamination are both natural and anthropogenic and the scale of contamination ranges from local to regional.There are many areas of research that are being actively pursued to address the As contamination problem. These include new methods of screening for As in the field, determining the epidemiology of As in humans, and identifying the risk of As uptake in

agriculture.Remediation of As-affected water supplies is important and research includes assessing natural remediation potential as well as phytoremediation. Another area of active research is on the microbially mediated biogeochemical interactions of As in the environment.

In 2005, a conference was convened to bring together scientists involved in many of the different areas of As research. In this paper,

we present a synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference. This contribution provides a backdrop to the issues raised

at the conference together with an overview of contemporary and

historical issues of As contamination and health impacts.Crown

Copyright . 2007 Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. Location and scale of problem

Arsenic (As) has been detected in groundwater in several countries

of the world, with concentration levels exceeding the WHO drinking water guideline value of 10 μg/L (WHO, 2001)

as well as the national regulatory st andards (e.g. 50 μg/L in India and Bangladesh, Ahmedet al., 2004; Mukherjee et al., 2006). Arsenic in groundwater is often associated with geologic sources, but in some locations anthropogenic inputs can be extremely important. Ingestion of geogenic As from groundwater sources is manifested as chronic health disorders in most of the affected regions of the world (BGS & DPHE, 2001; Bhattacharya et al.,2002a,b; Smedley and Kinniburgh, 2002; Welch and Stollenwerk, 2003; Bundschuh et al., 2005; Naidu et al., 2006). In Asia, the impact of As toxicity is particularly alarming. For example, in the Bengal Basin of Bangladesh and West Bengal, India (Bhattacharya et al., 1997, 2002a,b, 2004, 2006a; Mukherjee and Bhattacharya, 2001), As in groundwater has emerged as the largest environmental health disaster

1

putting at least 100 million people at risk of cancer and other As-related diseases. Recent studies indicate the occurrence of geogenic As in the Central Gangetic Plains of Uttar Pradesh, Bihar, Jharkhand and the Brahmaputra valley in Assam, and several regions of Madhya Pradesh and Chattisgarh, India (Chakraborti et al., 2004; Mukherjee et al., 2006). During the past few years, As has also been detected in groundwaters of the sedimentary aquifers of the Terai Belt in Southern Nepal (Bhattacharya et al., 2003; Tandukar et al., 2006), Pakistan (Nickson et al., 2005), the Red River Delta and Mekong Basin of Vietnam and Cambodia (Berg et al., 2001, 2007), raising severe constraints on

its use as a drinking water resource. However, few reports are available on the epidemiology and prevalence of Asrelated diseases in these areas. Arsenic is also reported in groundwaters of Australia (Smith, 2005;

O'Shea, 2006; Smith et al., 2003, 2006), where the concentrations levels ar e well above the drinking water standard of 7 μg/L recommended by the National Health and Medical Research Council and the Natural Resource Management Ministerial Council of Australia (NHMRC/NRMMC, 2004). In addition, As from anthropogenic sources is also reported in groundwaters of Guam (ATSDR, 2002; Vuki et al., 2007-this volume), a small island in Western Pacific Ocean. Arsenic is also found in widely scattered geographical areas in the United States and Canada as well as in many other countries of Latin America such as Mexico, Argentina, Bolivia, Brazil andNicaragua,where the sources of As are geogenic as well as anthropogenic sources (Matschullat, 2000; Nordstrom, 2002; Smedley et

al., 2002; 2005; Barragner-Bigot, 2004; Bundschuh et al., 2005; Bhattacharya et al., 2006b; Nriagu et al., 2007).

1.2. Field screening for arsenic

Following the discovery of As in the Bengal Basin, there is now an urgent need to address the public health implications due to exposure from drinking water sources. In order to do this and initiate appropriate mitigation measures, there is an urgent need to identify the As-contaminated tubewells (TW) that supply most of this drinking water (Chowdhury and Jakariya, 1999). This involves screening of water in millions of TW, and raising community awareness about the health problems related to chronic As exposure from drinking water. An overall risk assessment including a component of mitigation for As contamination should be based on accurate determination of As levels in TW water using economically viable methods for As screening. Field test kits offer a more practical tool than laboratory measurements within the time frame and financial resources available for screening and assessment of the

As-contaminated

2

wells as well as their monitoring. Simple, low-cost methods for As determination, such as the field test kits have proved to be most suitable for performing the TW screening quickly. Several commercial field test kits are available for determination of As in TW water (Rahman et al., 2002; Khandaker, 2004; Deshpande and Pande, 2005; van Geen et al., 2005; Steinmaus et al., 2006). Field kits provide

semiquantitative results and the reliability of several field kits are questioned because of poor accuracy (Rahman et al., 2002). Thus, there is a need for further evaluation of the screening results by the field kit, prior to its recommendation for wide scale use in Bangladesh and elsewhere in the world.

1.3. Epidemiology

Ingestion of groundwater with elevated As concentrations and the associated human health effects are prevalent in several regions across the world. Arsenic toxicity and chronic arsenicosis is of an alarming magnitude particularly in South Asia and is a major environmental health disaster (Chakraborti et al., 2004;

Kapaj et al., 2006). Arsenic is perhaps the only human carcinogen

for which there is adequate evidence ofcarcinogenic risk by both inhalation and ingestion (Centeno et al., 2002; Chen and Ahsan, 2004). Most ofthe ingested As is rapidly excreted via the kidney within a few days (Tam et al., 1979; Buchet et al., 1981; Vahter, 1994). However, high levels of As are retained for longer periods of time in the bone, skin, hair, and nails of exposed humans (Karagas et al., 2000; Mandal et al., 2003). Studies of As speciation in the urine of exposed humans indicate that the metabolites comprise 10–15% inorganic As (iAs) and monomethylarsonic acid

(MMAV) and a major proportion (60–80%) of dimethylarsenic acid (DMAV) (Tam et al., 1979;

Vahter et al., 1995; Hopenhayn-Rich et al., 1996). Recent studies have found

monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII)

in trace quantities in human urine (Aposhian et al., 2000; Del Razo et al., 2001; Mandal et al., 2001). In general, MMAIII is more toxic than

As(III) and As(V) (viz.Petrick et al., 2000, 2001).

1.4. Agriculture

The adverse effects of As in groundwater used for irrigation water

on crops and aquatic ecosystems is also of major concern. In addition to potential human health impacts caused by ingestion of food containing As, thep otential for reduced crop yield due to its build-up in the soil is an active area of research. The fate of As in agricultural soils is

often less well studied compared to groundwater, and in general has been studied in the context of As uptake by

3

different plants (Huq et al., 2001, 2006; Das et al., 2004; Al

Rmalli et al., 2005; Correll et al., 2006; Naidu et al., 2006). Crop quality and the effect of As on crop quality and yield is becoming a major worldwide concern, particularly for rice which forms the staple

for many South-Asian countries where groundwater is widely used for irrigation (Meharg and Rahman, 2003). In a recent study it was reported that irrigation has increased in Bangladesh since 1970, while since 1980, the area under groundwater irrigation for the cultivation of Boro rice has increased by almost an order of magnitude (Harvey et al., 2005).

Based on available information on the distribution of As concentration

in groundwater (BGS and DPHE, 2001) and the area under shallow tubewell irrigation (BADC, 2005), Saha (2006)n estimated that approximately 1000 metric tons of As is cycled with irrigation water during the dry season of each year. Rice yield has been reported to decrease by 10% at a concentration of 25 mg/kg As in soil (Xiong et al., 1987). A greenhouse study by Abedin et al. (2002) revealed reduced yield of a local variety of rice (BR-11) irrigated with water having As concentrations in the range of 0.2 to 8 mg/L. The accumulation of As in rice field soils and its introduction into the food chain through uptake by the rice plant is of major concern (Duxbury et al., 2003).

1.5. Anthropogenic arsenic

Large quantities of As are released into the environment through industrial activities, which can be dispersed widely and as such play an important role in the contamination of soils, waters, and air (Nriagu, 1989; Jacks and Bhattacharya, 1998; Juillot et al., 1999; Matschullat, 2000; Pacyna and Pacyna, 2001). Elevated concentrations of As in soils occur only locally, but in areas of former industrial areas it may cause environmental concern (Nriagu, 1994; Smith et al., 1998; Kabata-Pendias and Pendias, 2001). Although many minerals contain As compounds, the anthropogenic contribution to the environment in the past accounted for 82,000 metric tons/year worldwide (Nriagu and Pacyna, 1988). Inorganic As compounds such as calcium arsenate, lead arsenate, sodium arsenate and many others were used by farmers as insecticides

pesticides for debarking trees, in cattle and sheep dips to control ticks, fleas, lice and also in aquatic weed control. Water soluble preparatives, such as chromated copper arsenate (CCA) and other As-based chemicals used as wood preservatives during the past have lead to widespread metal contamination in soils around the wood preservation facilities (Bhattacharya et al., 2002c). However, the use of inorganic As compounds in agriculture has gradually disappeared since the

4

1960s due to greater understanding of As toxicity and awareness regarding food safety and environmental contamination (Vaughan, 1993; Sanok et al., 1995; Smith et al., 1998). In addition, during manufacturing of As-containing pesticides and herbicides, release of waste and As-laden liquids near the manufacturing areas may contaminate soil and water bodies (Mahimairaja et al., 2005). There are several “hot spots” around the world where soils have very high concentrations of As caused by natural geochemical enrichment and long-lasting ore mining and processing. For example, in Poland, mine spoils, slag dumps and tailings, that remained in the areas of As manufacturing and industrial processes, also contain extremely high concentrations of As (Karczewskam et al., 2004, 2005). There is a widespread concern regarding bioavailability of As in the terrestrial environment in industrialized regions of the world. The majority of incidences of soil As pollution could be traced back to a period prior to extensive statutory controls over As emissions (Meharg et al., 1994). For example,

England was one of the cradles of the industrial revolution in the 19th century that has left behind an extensive legacy of As-contaminated sites. As part of the Land Ocean Interaction Study (LOIS) the As concentrations in the rivers of northeastern England reveal As enrichment within the urban and industrially affected rivers (Neal and Robson, 2000; Neal and Davies, 2003). The study revealed that the concentration of dissolved As in the rural areas averaged between 0.6

and 0.9 mg/L, while for the rivers influenced by industrial discharges the average between 3.2 and 5.6 mg/L, while suspended particulate As is much lower (average 0.1 to 0.2 mg/L for the rural and 0.2 to 0.8 mg/L

for the industrial rivers). However, for the industrialized rivers dissolved As concentrations can be as high as 25.6 mg/L.

The possible mobilization of As in the soils, and subsequent

leaching into ground or surface water or entry into the human food chain, should always be considered as a serious hazard. Detailed investigations are therefore necessary to estimate the total concentrations of As in soils in such areas, its chemical fractionation, and potential

solubility to evaluate the potential risks from As mobilization.

1.6. Microbial transformations of arsenic

Mobilization of As in natural ecosystems is predominantly driven by microbially mediated biogeochemical interactions. Microbial reduction of As(V) to the more toxic and mobile As(III) species occurs via detoxification (Cervantes et al., 1994) or respiration processes (Ahmann

et al., 1994). The genes that encode the proteins involved in As resistance are either plasmid or

5

chromosomally borne, and have been best studied in Escherichia coli. Plasmid R773 comprises of five genes arsRDABC organized in an operon (Chen et al., 1986). The arsC gene encodes the As(V)-reductase; arsA and arsB act as the As(III) efflux pumps; arsR and arsD regulate the ars operon. Only a handful of microorganisms capable of respiring As(V) have been isolated (Oremland and Stolz, 2003). The As(V)- reductase genes (arrA and arrB) involved in As(V) reduction have been identified in a number of bacteria, and they share high sequence identities (Santini and Stolz, 2004). The As(V)-respiring microorganisms can use different electron donors (e.g. acetate, hydrogen), and range from mesophiles to extremophiles (Oremland and Stolz, 2003). These laboratory studies indicate that microbial processes involved in As(V) reduction and mobilization is many times faster than inorganic chemical transformations (Ahmann et al., 1997; Jones et al., 2000). This has led researchers to conclude that these microorganisms play an important role in As cycling in the sub-surface (Ahmann et al., 1997; Jones et al., 2000; Islam et al., 2004).

1.7. Remediation

Several technologies are currently available for As removal, ranging from simple and effective coagulation– flocculation, to sophisticated technologies such as ion exchange and reverse osmosis (Naidu and

Bhattacharya, 2006). In addition, low-cost remediation methods, such as auto-attenuation and the use of geological material as natural sorbents for As (e.g. laterite, bauxsols, natural red earth or Fe-rich oxisols) have emerged as possible alternatives for the removal of As from groundwater in the developing world (Gen?Fuhrman et al., 2004, 2005; Naidu and Bhattacharya, 2006; Vithanage et al., 2006), but there is a pressing need to develop these methods further and in a cost-effective way. The concept of phytoremediation of As-contaminated sites was proposed over twenty years ago (Chaney, 1983). Phytoremediation has an advantage over conventional remediation of As-contaminated soils that include burial and chemical stabilization, which may pose long-term health threats due to leakage or chemical instability (Allen, 2001; Fostner and Haase, 1998). Thus phytoremediation has the potential to become an environmentally friendly and low-cost alternative remediation technique. It is well documented that some tropical and sub-tropical plant species can tolerate and uptake various inorganic and organic

forms of As (Meharg and Hartley-Whitaker, 2002). Mesquite is am plant

that grows well in humid and desert environments that has been shown to absorb Cr(VI) and other metals such as Pb (Aldrich et al., 2004). X-ray absorption spectroscopic (XAS) studies

6

revealed that mesquite can bioreduce Cr(VI) to the less toxic Cr(III) (Aldrich et al., 2003). However, a significant gap of information exists

on the ability of desert plant species to uptake As or other toxic elements.

1.8. Current research

Research on As is currently very active and includes assessment of interactions at scales ranging from molecular bonding to sub-continental, As speciation in inorganic and organic materials through a wide variety of chemical and spectroscopic approaches, and an emerging understanding of the role of microbes and other biota in As cycling. A recent review

on health impacts of As resulted in drinking water standards of 10 μg/L or even lower in some countries

(Kapaj et al., 2006). These lowered standards are projected to

greatly increase water supply costs in many regions. The increased pressure on society to protect human health and the ecosystem has stimulated research using a wide multitude of approaches and techniques (Naidu et al., 2006; Bhattacharya et al., 2007). Considering the seriousness of this global As problem, a two-day symposium was organized to facilitate a thorough discussion on a broad range of inter-

disciplinary issues that are related to the research on As in the environment. These include understanding the natural and anthropogenic processes which accelerate or control human exposure to As and different aspects of remediation. The outline of the symposium and the subsequent publications are described below.

2. Theme of the Special Symposium

The Special Symposium (SYP-4) “Arsenic in the Environment: Biology and Chemistry”

was organized as part of the 8th International Conference on Biogeochemistry of Trace Elements (ICOBTE) in Adelaide, Australia during April 2005. This Special Symposium attracted a wide range of contributions from a large number of multidisciplinary As researchers, that covered major themes, such as: 1) sources and characterization of As in groundwater environment; 2) processes that control mobility and speciation of As in soil, water and biota; 3) prediction of the fate of As in natural environments in response to geochemical, hydrologic, and biologic changes; 4) analytical techniques and speciation studies; 5) remediation and management of As-contaminated soils and groundwater; and 6) impact of As on agriculture and water supply management. The articles included in this special issue address many of these issues and pave the way through recent findings on the environmental behaviour of As in terms of its occurrence, sources, health impacts, and remediation. Besides understanding the fundamental processes of As

7

mobilization, the articles discuss a wide variety of chemical and spectroscopic approaches, and increased understanding of the importance of microbes and other biota in As cycling. Although much has been learned about As in the environment the ability to predict the impact of intentional and unintentional changes to hydrologic and geochemical regimes often remains elusive.

Key research contributions from several international teams of scientists working on As in the environment, groundwater in the Bengal Delta Plain and elsewhere in the world were presented and discussed during the symposium and are amalgamated in this Special Issue of The Science of the Total Environment.

3. Layout and summary of the articles

This special issue comprises 14 articles and 1 short communication, grouped into four sections. 1) Arsenic in the groundwater environment; 2) arsenic in agricultural soils and mining environment; 3) biogeochemistry of As and toxicity, and 4) remediation of Ascontaminated soils and sediments.

3.1. Arsenic in the groundwater environment

This section has five articles. The first two contributions deal

with the specific issues related to the occurrence of geogenic As in the alluvial aquifers of Bangladesh. The first paper (von Br?mssen et al., 2007-this volume) targets low-arsenic aquifers in areas with high concentrations of geogenic As in groundwater with a case study from Matlab Upazila in Southeastern Bangladesh. The local drillers are constructing deeper tubewells than in the recent past (60 m instead of

30 m), primarily because of low concentrations of dissolved Fe and As (von Bromssen et al., 2005; Jakariya et al., 2007). The paper discusses the relation between the colour of the sediments and groundwater redox conditions. This study revealed that the sediment colour is a reliable indicator of high and low As concentrations that can be used by local

drillers to target low-As groundwater. The presence of As contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has also resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As (Stollenwerk, 2003). However, infiltration of high-As groundwater induced by increased pumping of these aquifers clearly indicate the possible risks for an increase in As concentrations. The following paper (Stollenwerk et al., 2007-this volume) presents a study on the investigation of the

adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. At this site a shallow, chemically reduced aquifer with 900 μg/LAs overlies a more oxidized aquifer with b5 μg/L As. Since no

8

thick layer of clay was present at the site to inhibit vertical transport of groundwater, there was an apparent risk for an increase in the concentration of dissolved As in the deeper aquifers. Laboratory experiments and geochemical modeling were used to show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.

The problem of geogenic As is not only restricted to the Bengal

Basin and its surrounding region. DissolvedAs in groundwaters from coastal aquifers used extensively for human consumption has led to widespread concern in eastern Australia. In the next paper O'Shea et al. (2007-this volume), discuss about the source of naturally occurring As

in a coastal sand aquifer of eastern Australia. The study suggests that

As is regionally derived from erosion of As-rich stibnite(Sb2S3) mineralisation present in the hinterland. Fluvial processes have transported the eroded material over time to deposit an aquifer

lithology elevated in As. The findings of this study indicate that any aquifer containing sediments derived from mineralised provenances may be at risk of natural As contamination. Groundwater resource surveys should thus incorporate a review of the aquifer source provenance when assessing the likely risk of natural As occurrence in an aquifer.

In the next paper (Jakariya et al., 2007-this volume) analytical results of field test kits and laboratory measurements by AAS as a “gold standard” for As in water for 12,532 TWs in Matlab Upazila in Bangladesh were compared. The study indicated that the field kit correctly determined the status of 87% of the As levels compared to the Bangladesh Drinking Water Standard (BDWS) of 50 μg/L, and 91% of the WHO guideline value of 10 μg/L. However, due to analytical and human errors during the determination of As by the field test kits, there were considerable discrepancies in the correct screening of As concentrations between 10–24.9 μg/L and 50–99.9

μg/L. Proper training of the field personnel, verification of the field test kit results with laboratory

analyses, and further development of the field test kits, will improve the accuracy of As measurements at low concentrations.

The concluding short contribution in this section (Vuki et al.,

2007-this volume) deals with a study on the speciation of As in spring

waters located along Tumon Bay in the small island of Guam in Western Pacific Ocean. Earlier investigation conducted by the Guam Environmental Protection Agency (GEPA, 2002) on total concentrations of As in groundwater springs and seepages at Guam indicated concerns over As contamination resulting predominantly from anthropogenic sources. Although more detailed studies are required for a detailed evaluation of

9

the extent of As contamination in Guam. The results of this study show that total As concentrations in the spring water samples ranged

from b0.3–1.2 μg/L with inorganic arsenate

As(V) the dominant species. The low concentrations of dissolved As

are also consistent with the values recorded for the groundwater wells

in the northern part of Guam (GWA, 2003). These concentrations are much lower than the previously reported values, probably due to a much more rigorous methodological approach; this suggests the need for and

requires further investigations on the status of As contamination in groundwater on the island.

3.2. Arsenic in agricultural soils and miningenvironment

The first article in this section (Saha and Ali, 2007- this volume) deals with the dynamics of arsenic in agricultural soils irrigated with As-contaminated groundwater in Bangladesh. Arsenic concentrations in the soil layers of 12 rice fields located in four Asaffected areas and two unaffected areas in Bangladesh were monitored systematically. This study clearly shows enrichment of As in the top soil of rice fields irrigated

with As-contaminated groundwater (79–436 μg/L), compared to areas where irrigation water contained very lowAs (b1 μg/L).The study also revealed significant spatial and temporal variations of As concentrations in the contaminated rice field. Arsenic concentration of rice field soils increased significantly by the end of the irrigation season. About 71% of the As that was applied to the rice field with irrigation water accumulated in the top 0 to 75 mm soil layer. Most of this As was leached from the soil during the following wet season. It is very important that the observed spatial and temporal variability of As in rice field soils is taken into consideration in the future studies on As contamination of rice production.

There are several hot spots in Poland where soils have very high concentrations of As, caused both by natural geochemical enrichment and long-lasting ore mining and processing operations (Karczewska et al., 2004, 2005). Detailed investigations are therefore necessary to estimate the total concentrations of As in soils in such hot-spot-areas, its chemical fractionation, and potential solubility to evaluate the risks for mobilization of As. In the second article in this section (Krysiak and Karczewska, 2007-this volume) an attempt has been made to assess the levels and environmental risk associated with possible increases in As mobility under changing pH and redox conditions in soils and waste material in two areas of former As mining and processing activities Zloty Stok (Zlote Mts.) and lezniak (Kaczawskie Mts.) in SW Poland.

Arsenic concentrations were measured in twenty six soil samples

collected from 12 sites, and

10

represented a broad spectrum of soil properties and parent material origin, including natural soils, mine spoils, slags and tailings. Most soils in the area had extremely high concentrations of As (range

100?3,500 mg/kg), both of natural and anthropogenic origin. Sequential extraction techniques suggested that the main species of As in all soils were those bound to iron (Fe) oxides, whereas the contributions of mobile and specifically sorbed As forms were relatively low. In tailings and tailing-affected alluvial soils, As occurred mainly in residual forms, however these soils also had considerable amounts of mobile As. In all other soils, mobile As forms were very low.

The last paper in this section (Eapaea et al., 2007-this volume) discusses the dynamics of As in the mining sites of Pine Creek Geosyncline of Northern Territory of Australia. This study examined the mobility and retention of As in soil and sediments from five mine sites in the region, based on measuring the operationally- defined forms of As in soils and other sediments using a modified sequential extraction procedure. The study revealed that As was present both in soluble and loosely bound forms, such as Al–As, Fe–As, Ca–As associations,

Fe(OH)3 occluded As,

organic bound As and residual As in sediment phases. Two general management principles were suggested for trapping the mine waste

contaminants to minimize dispersion of As and heavy metals into the environment. These included prevention of direct discharge to creeks or water ways and discharges into constructed wetland with aquatic macrophytes to trap sediment that provides organic matter for arsenic and heavy metal retention.

3.3. Biogeochemistry of arsenic

This section contains three articles describing the aspects of biogeochemical interactions of As and toxicology. The first article deals with Arsenicicoccus bolidensis, a novel As-reducing actinomycete

in contaminated sediments near the Adak mine (Routh et al., 2007). At Adak, a small mining town in the V?sterbotten district of Northern Sweden, high-As concentrations are encountered in surface and groundwater, sediments, and soil. In spite of the oxic conditions, As-rich surface and ground water samples indicate a predominance of As(III) species (up to 83%). Several microorganisms potentially involved in As cycling were isolated from the sediment enrichment cultures (Routh et al., 2007-this volume). Results from laboratory investigations show that A. bolidensis (a novel gram-positive, facultatively anaerobic, coccus-shaped actinomycete) actively reduced As(V) to As(III) in aqueous media. The second article (Chen et al., 2007-this volume) reveals that arbuscular mycorrhizal fungi (AMF) may play an important role in

11

protecting plants against As contamination. However, little is known about the direct and indirect involvement of AMF in detoxification

化工英文文献翻译

Heavy Oil Development Technology of Liaohe Oilfield Han Yun (Scientific Research Information Department Exploration&Development Research Institute,Liaohe Oilfield Company) Liaohe Oilfield,the largest heavy oil production base in China,features in various reservoir types,deep burial,and wide range of crude oil viscosity.For many years,a series of technologies have been developed for different oil products and reservoir types of the oilfield,of which water flooding,foam slug drive,steam stimulation,steam drive,and SAGD are the main technologies. After continuous improvement,they have been further developed and played an important role in the development of heavy oil in the oilfield. Liaohe Oilfield is abundant in heavy oil resources,46%of the total proved reserves of Liaohe Oilfield Company. Horizontally the resources concentrates in the West Depression and the southern plunging belt of the Central Uplift in Liaohe Rift. Vertically,it is mainly distributed in Paleocene Shahejie Formation(ES). The distinctive geological feature of Liaohe 0ilfield is manifested in three aspects:first,the heavy oil reservoirs are deeply buried and 80%of them are buried more than 900m deep;second,the heavy oil viscosity ranges widely.For most of the reservoirs.the dead oil viscosity ranges in 100~100000mPa·s with the maximum 650000mPa·s.Third the reservoir types are various with complicated oil—water relationship,most of the reservoirs are edge water and bosom water reservoirs and there are also edge water reservoirs,top water reservoirs and bosom water reservoirs.For more than 20 years of development,Liaohe Oilfield has developed series of heavy oil development technologies for different oil products and different types of reservoirs,such as water flooding, foam slug drive,steam stimulation steam drive and SAGD.The most difficult issues have been overcome in the development of the super

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 平设计任何时期平面设计可以参照一些艺术和专业学科侧重于视觉传达和介绍。采用多种方式相结合,创造和符号,图像和语句创建一个代表性的想法和信息。平面设计师可以使用印刷,视觉艺术和排版技术产生的最终结果。平面设计常常提到的进程,其中沟通是创造和产品设计。共同使用的平面设计包括杂志,广告,产品包装和网页设计。例如,可能包括产品包装的标志或其他艺术作品,举办文字和纯粹的设计元素,如形状和颜色统一件。组成的一个最重要的特点,尤其是平面设计在使用前现有材料或不同的元素。平面设计涵盖了人类历史上诸多领域,在此漫长的历史和在相对最近爆炸视觉传达中的第20和21世纪,人们有时是模糊的区别和重叠的广告艺术,平面设计和美术。毕竟,他们有着许多相同的内容,理论,原则,做法和语言,有时同样的客人或客户。广告艺术的最终目标是出售的商品和服务。在平面设计,“其实质是使以信息,形成以思想,言论和感觉的经验”。

在唐朝(618-906 )之间的第4和第7世纪的木块被切断打印纺织品和后重现佛典。阿藏印在868是已知最早的印刷书籍。在19世纪后期欧洲,尤其是在英国,平面设计开始以独立的运动从美术中分离出来。蒙德里安称为父亲的图形设计。他是一个很好的艺术家,但是他在现代广告中利用现代电网系统在广告、印刷和网络布局网格。于1849年,在大不列颠亨利科尔成为的主要力量之一在设计教育界,该国政府通告设计在杂志设计和制造的重要性。他组织了大型的展览作为庆祝现代工业技术和维多利亚式的设计。从1892年至1896年威廉?莫里斯凯尔姆斯科特出版社出版的书籍的一些最重要的平面设计产品和工艺美术运动,并提出了一个非常赚钱的商机就是出版伟大文本论的图书并以高价出售给富人。莫里斯证明了市场的存在使平面设计在他们自己拥有的权利,并帮助开拓者从生产和美术分离设计。这历史相对论是,然而,重要的,因为它为第一次重大的反应对于十九世纪的陈旧的平面设计。莫里斯的工作,以及与其他私营新闻运动,直接影响新艺术风格和间接负责20世纪初非专业性平面设计的事态发展。谁创造了最初的“平面设计”似乎存在争议。这被归因于英国的设计师和大学教授Richard Guyatt,但另一消息来源于20世纪初美国图书设计师William Addison Dwiggins。伦敦地铁的标志设计是爱德华约翰斯顿于1916年设计的一个经典的现代而且使用了系统字体设计。在20世纪20年代,苏联的建构主义应用于“智能生产”在不同领域的生产。个性化的运动艺术在2俄罗斯大革命是没有价值的,从而走向以创造物体的功利为目的。他们设计的建筑、剧院集、海报、面料、服装、家具、徽标、菜单等。J an Tschichold 在他的1928年书中编纂了新的现代印刷原则,他后来否认他在这本书的法西斯主义哲学主张,但它仍然是非常有影响力。Tschichold ,包豪斯印刷专家如赫伯特拜耳和拉斯洛莫霍伊一纳吉,和El Lissitzky 是平面设计之父都被我们今天所知。他们首创的生产技术和文体设备,主要用于整个二十世纪。随后的几年看到平面设计在现代风格获得广泛的接受和应用。第二次世界大战结束后,美国经济的建立更需要平面设计,主要是广告和包装等。移居国外的德国包豪斯设计学院于1937年到芝加哥带来了“大规模生产”极简到美国;引发野火的“现代”

1外文文献翻译原文及译文汇总

华北电力大学科技学院 毕业设计(论文)附件 外文文献翻译 学号:121912020115姓名:彭钰钊 所在系别:动力工程系专业班级:测控技术与仪器12K1指导教师:李冰 原文标题:Infrared Remote Control System Abstract 2016 年 4 月 19 日

红外遥控系统 摘要 红外数据通信技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持。红外收发器产品具有成本低,小型化,传输速率快,点对点安全传输,不受电磁干扰等特点,可以实现信息在不同产品之间快速、方便、安全地交换与传送,在短距离无线传输方面拥有十分明显的优势。红外遥控收发系统的设计在具有很高的实用价值,目前红外收发器产品在可携式产品中的应用潜力很大。全世界约有1亿5千万台设备采用红外技术,在电子产品和工业设备、医疗设备等领域广泛使用。绝大多数笔记本电脑和手机都配置红外收发器接口。随着红外数据传输技术更加成熟、成本下降,红外收发器在短距离通讯领域必将得到更广泛的应用。 本系统的设计目的是用红外线作为传输媒质来传输用户的操作信息并由接收电路解调出原始信号,主要用到编码芯片和解码芯片对信号进行调制与解调,其中编码芯片用的是台湾生产的PT2262,解码芯片是PT2272。主要工作原理是:利用编码键盘可以为PT2262提供的输入信息,PT2262对输入的信息进行编码并加载到38KHZ的载波上并调制红外发射二极管并辐射到空间,然后再由接收系统接收到发射的信号并解调出原始信息,由PT2272对原信号进行解码以驱动相应的电路完成用户的操作要求。 关键字:红外线;编码;解码;LM386;红外收发器。 1 绪论

计算机网络-外文文献-外文翻译-英文文献-新技术的计算机网络

New technique of the computer network Abstract The 21 century is an ages of the information economy, being the computer network technique of representative techniques this ages, will be at very fast speed develop soon in continuously creatively, and will go deep into the people's work, life and study. Therefore, control this technique and then seem to be more to deliver the importance. Now I mainly introduce the new technique of a few networks in actuality live of application. keywords Internet Network System Digital Certificates Grid Storage 1. Foreword Internet turns 36, still a work in progress Thirty-six years after computer scientists at UCLA linked two bulky computers using a 15-foot gray cable, testing a new way for exchanging data over networks, what would ultimately become the Internet remains a work in progress. University researchers are experimenting with ways to increase its capacity and speed. Programmers are trying to imbue Web pages with intelligence. And work is underway to re-engineer the network to reduce Spam (junk mail) and security troubles. All the while threats loom: Critics warn that commercial, legal and political pressures could hinder the types of innovations that made the Internet what it is today. Stephen Crocker and Vinton Cerf were among the graduate students who joined UCLA professor Len Klein rock in an engineering lab on Sept. 2, 1969, as bits of meaningless test data flowed silently between the two computers. By January, three other "nodes" joined the fledgling network.

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

材料英文文献翻译

The development of plastic mould China's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inch big-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai days Electrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of a two-cavity mold and the air Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life expectancy, non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad,and the gap between a specific data table. Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factory communications and broadcasting companies, such as mold manufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the new company will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger. In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAM systems, such as the United States EDS UG Ⅱ,

文献翻译英文原文

https://www.360docs.net/doc/cb7203357.html,/finance/company/consumer.html Consumer finance company The consumer finance division of the SG group of France has become highly active within India. They plan to offer finance for vehicles and two-wheelers to consumers, aiming to provide close to Rs. 400 billion in India in the next few years of its operations. The SG group is also dealing in stock broking, asset management, investment banking, private banking, information technology and business processing. SG group has ventured into the rapidly growing consumer credit market in India, and have plans to construct a headquarters at Kolkata. The AIG Group has been approved by the RBI to set up a non-banking finance company (NBFC). AIG seeks to introduce its consumer finance and asset management businesses in India. AIG Capital India plans to emphasize credit cards, mortgage financing, consumer durable financing and personal loans. Leading Indian and international concerns like the HSBC, Deutsche Bank, Goldman Sachs, Barclays and HDFC Bank are also waiting to be approved by the Reserve Bank of India to initiate similar operations. AIG is presently involved in insurance and financial services in more than one hundred countries. The affiliates of the AIG Group also provide retirement and asset management services all over the world. Many international companies have been looking at NBFC business because of the growing consumer finance market. Unlike foreign banks, there are no strictures on branch openings for the NBFCs. GE Consumer Finance is a section of General Electric. It is responsible for looking after the retail finance operations. GE Consumer Finance also governs the GE Capital Asia. Outside the United States, GE Consumer Finance performs its operations under the GE Money brand. GE Consumer Finance currently offers financial services in more than fifty countries. The company deals in credit cards, personal finance, mortgages and automobile solutions. It has a client base of more than 118 million customers throughout the world

中英文文献以及翻译(化工类)

Foreign material: Chemical Industry 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins. The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals which

变电站_外文翻译_外文文献_英文文献_变电站的综合概述

英文翻译 A comprehensive overview of substations Along with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life. Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。Therefore, power transmission and distribution is critical. Substation is to enable superior power plant power plants or power after adjustments to the lower load of books is an important part of power transmission. Operation of its functions, the capacity of a direct impact on the size of the lower load power, thereby affecting the industrial production and power consumption.Substation system if a link failure, the system will protect the part of action. May result in power outages and so on, to the production and living a great disadvantage. Therefore, the substation in the electric power system for the protection of electricity reliability,

相关文档
最新文档