AutoCAD中绘制函数曲线的若干方法

AutoCAD中绘制函数曲线的若干方法
AutoCAD中绘制函数曲线的若干方法

AutoCAD中绘制函数曲线的若干方法

AutoCAD本身没有提供函数曲线的绘制功能,但我们可以通过多种方法来实现函数曲线的绘制:

1. 借助另外的能绘制函数曲线的CAD软件,如CAXA。CAXA提供了丰富的函数曲线,并可自定义。在CAXA中绘制好曲线后,保存为dwg文件,再在AutoCAD 中打开,复制到你的图形文件中。

2. 借助Excel,在Excel中把函数的若干点坐标计算出来,再合并成点对后在AutoCAD中用样条曲线来绘制这些点对。

以楼主说的正弦曲线为例说明如下:

(1)在Excel的A列中输入函数自变量的若干值(可以用自动填充功能),并在B例用公式计算出函数值。如A1中输入“-180“,A2中输入“=A1+1”。在B1中输入“=40*SIN(PI()*A1/180)“,其中40是振幅,把正弦曲线的Y 方向变化幅度增强(可根据对曲线的变化幅度的要求给其他值),PI()*A1/180是将A1单元格的数据转换为弧度。再拖运复制B1单元格的数据到B2。(2)在C1单元格中输入:=A1&","&B1,把A1和B1中的数据组成一对坐标点对,相当于A1是X轴坐标,B1是Y轴坐标。并把公式复制到C2。(3)选择A2:C2两个单元格,向下拖运复制到A361:C261(角度从-180°到+180°)。在C1:C361中得到一个函数周期的坐标点对数据。

(4)选择C1:C361,并复制。

(5)在AutoCAD中输入命令:SPLINE(或绘图——样条曲线),这时命令提示:指定第一个点或 [对象(O)]:

此时,把鼠标定位到提示行的最后,即那个冒号(:)后面,按Ctrl+V。会看到Excel的坐标点对在命令行出现。过一会一条优美的正弦曲线就画好了。再加上坐标轴线就行了。

3. 二次开发软件,二楼已有介绍。

4. 在其他软件中得到曲线后把图片插入到AutoCAD中,可绘制函数曲线的软件就很多了,如刚说到的Excel,还有MathCAD等很多软件。

电脑里安装有CAXA软件的推荐方法1,没有安装的推荐方法2,有二次开发能力的推荐方法3(不过那也是有相当的水平的了,用不着老朽在此哆嗦,呵呵),需在其他软件中作分析处理并得出了曲线的可用方法4。

下面把用方法2,即借助Excel的方法绘制的一条正弦曲线图片贴上来

常见OTDR测试曲线解析

常见OTDR测试曲线解析 一、正常曲线 一般为正常曲线图, A 为盲区, B 为测试末端反射峰。测试曲线为倾斜的,随着距离的曾长,总损耗会越来越大。用总损耗( dB )除以总距离( Km)就是该段纤芯的平均损耗( dB/Km )。 二、光纤存在跳接点 中间多了一个反射峰,因为很有可能中间是一个跳接点,现城域网光缆中,比较常见。如:现主干光缆由汇接局至光缆交接箱,当有需求时,需由光交接箱布放光缆至用户端,光交接箱就需跳纤联接,所以在测试这样的纤芯时,就会出现像图中这样的曲线图。当然也会有例外的情况,总之,能够出现反

射峰,很多情况是因为末端的光纤端面是平整光滑的。端面越平整,反射峰越高。例如在一次中断割接当中,当光缆砍断以后,测试的曲线应该如光路存在断点图所示,但当你再测试时,在原来的断点位置出现反射峰的话,那说明现场的抢修人员很有可能已经把该纤芯的端面做好了。 三、异常情况 出现图中这种情况,有可能是仪表的尾纤没有插好,或者光脉冲根本打不出去,再有就是断点位置比较进,所使用的距离、脉冲设置又比较大,看起来就像光没有打出去一样。出现这种情况,1、要检查尾纤连接情况; 2、就是把OTD R的设置改一下,把距离、脉冲调到最小,如果还是这种情况的话,可以判断: 1、尾纤有问题;2、OTDR 上的识配器问题; 3、断点十分近,OTDR不足以测试出距离来。如果是尾纤问题,只要换一根尾纤就知道,不行的话就要试着擦洗识配器,或就近查看纤芯了。 四、非反射事件

1、这种情况比较多见,曲线中间出现一个明显的台阶,多数为该纤芯打折,弯曲过小,受到外界损伤等因素,多为故障点。 2、若光纤模式、折射率不一样,接续时也会出现此情况,常见光纤G651光纤(标准单模光纤,B1光缆),G653光纤(色散位移光纤,B2光缆)。造成这种现象的原因是由于接头两侧光纤的背向散射系数不一样,接头后光纤背向散射系数大于前段光纤背向散射系数,而从另一端测则情况正好相反,折射率不同也有可能产生增益现象。所以要想避免这种情况,只要用双向测试法就可以了。 五、光纤存在断点 这种情况一定要引起注意!曲线在末端没有任何反射峰就掉下去了,分析:1如果知道纤芯原来的距离,1、在没有到达纤

样条插值函数与应用

样条插值函数及应用

摘要 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。 在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。 插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。 关键词三次样条函数;插值法

目录 引言 0 第一章三次样条插值 (1) 1.1 样条插值函数简介 (1) 1.2 三次样条函数应用 (2) 第二章AMCM91A 估计水塔水流量 (4) 2.1 理论分析及计算 (5) 2.2运用MATLAB软件计算 (8) 参考文献 (13)

引言 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。 在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。 在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。 现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

炉温测试板制作及曲线测试规范(20200517094721)

炉温测试板制作及曲线测试规范 1、目的: 规范SMT炉温测试方法,为炉温设定、测试、分析提供标准,确保产品质量。为炉温曲线的 制作、确认和跟踪过程的一致性提供准确的作业指导; 2、范围: 本规范适用于公司PCBA部SMT车间所有炉温设定、测试、分析及监控。 3.定义: 3.1升温阶段:也叫预热区,从室温到120度,用以将PCBA从环境温度提升到所要求的活性 温度;升温斜率不能超过3°C度/s;升温太快会造成元件损伤、会出现锡球现象,升 温太慢锡膏会感温过度从而没有足够的时间达到活性温度;通常时间控制在60S左右; 3.2恒温阶段:也叫活性区或浸润区,用以将PCBA从活性温度提升到所要求的回流温度; 一是允许不同质量的元件在温度上同质;二是允许助焊剂活化,锡膏中挥发性物质得到 有利挥发,一般普遍的锡膏活性温度是120-150度,时间在60-120S之间,升温斜率一 般控制在1度/S左右;PCBA上所有元件要达到熔锡的过程,不同金属成份的锡膏熔点 不同,无铅锡膏(SN96/AG3.5/CU0.5)熔点一般在217-220度,有铅(SN63/PB37)一 般在183度含银(SN62/PB36/AG2)为179度; 3.3回流阶段:也叫峰值区或最后升温区,这个区将锡膏在活性温度提升到所推荐的峰值温 度,加热从熔化到液体状态的过程;活性温度总是比熔点低,而峰值温度总在熔点之上, 典型的峰值温度范围是(SN63/PB37)从205-230度;无铅(SN96/AG3.5/CU0.5)从235-250 度;此段温度设定太高会使升温斜率超过2-5度/S,或达到比所推荐的峰值高,这种情 况会使PCB脱层、卷曲、元件损坏等;峰值温度:PCBA在焊接过程中所达到的最高温度; 3.4冷却阶段:理想的冷却曲线一般和回流曲线成镜像,越是达到镜像关系,焊点达到的固 态结构越紧密,焊点的质量就越高,结合完整性就越好,一般降温斜率控制在4度/S; 4、职责: 4.1 工程部 4.1.1工程师制定炉温测试分析标准,炉温测试员按此标准测试、分析监控炉温。 4.1.2 指导工艺技术员如何制作温度曲线图; 4.1.3 定义热电偶在PCB上的测试点,特别是对一些关键的元件定位; 4.1.4基于客户要求和公司内部标准来定义温度曲线的运行频率;

样条插值和曲线拟合

第三章 样条插值和曲线拟合 1.x y = 有如下的函数表 8。 解 先作差商表 4 167 1210 13 9 3 42015 11008 16012 4 60 13 1611 1 10 0-?- -- 故:8.2)48(5 1 2)8(1=-+=p 819047619.2) 98)(48(210 1 )48(512)8(2=----+=p 844444.2)98)(48)(18(3 4201) 48)(18(601 )18(311)8(3=---?+----+=p 6222.2)1(4781008 1478601) 18(86 1 )08(10)8(4=-???-??+---?+=p 已知 828427.28=,因此选定 )8(,16,9,42321p x x x ===最接近8。 利用Neville 方法得: xi 8-xi f(xi) 2.8284271 8 0 8 1 7 1 -1.33333333 3.3333333 2.4 4 4 2 2.866666667 2.6222222 2.8 2.8444444 9 -1 3 2.819047619 2.8571429 16 -8 4 f(8)= 2.828427125 xi 8-xi f(xi) 8 0 8 1 7 1 -1 1/3 3 1/3 2 2/5 4 4 2 2 13/15 2 28/45 2 4/5 2 38/45 9 -1 3 2 86/105 2 6/7 16 -8 4 已知 828427.28=,故选定)8(,16,9,42321 p x x x ====2.819047619最接近8.

真正实现C语言绘制数学函数图像

用C语言画函数图像 横纵坐标单位长度比校正(3:5) 真正的余弦函数 #include #include int sishewuru(float a); void main() { int n = 450; float a[500], b[500]; int i,j; a[0] = b[0] = 0; for (i = 1; i < n; i++)

a[i] = a[i - 1] + 0.01; b[i] = cos(a[i]); } int A[500],B[500]; for (i = 0; i < n; i++) { //printf("sin(%f)=%f\n", a[i], b[i]); a[i] = 100 * a[i]; b[i] = 55 * b[i]; A[i] = sishewuru(a[i]); B[i] = sishewuru(b[i])+60; //printf("sin(%d)=%d\n", A[i], B[i]); } for ( i = 100; i >=0; i--) { for ( j = 0; j < n; j++) { if (i==B[j]) { printf("*"); } else { printf(" "); } } printf("\n"); } } int sishewuru(float a) { int m; if (a-floor(a)<0.5) { m = a; return m; } else { m = a + 1; return m; } }

1.调节输出框大小,字符显示大小 2.确定函数的定义域 3.确定定义域上的步长 4.计算函数值 5.确定函数值放大系数 6.确定定义域恰好落在显示的区间内 7.确定坐标的单位长度与字符实际长度之间的换算关系 8.确定打点的顺序与坐标的关系 定义域在),(ππ-的正弦函数图像 定义域在),(ππ-的正切函数图像

用计算机绘制函数图像

用计算机绘制函数图像 利用计算机软件可以便捷、迅速地绘制各种函数图像。不同的计算机软件绘制函数图像的具体操作不尽相同,但都是基于我们熟悉的描点作图。即给子变量赋值,用计算法则算出相应的函数值,再由这些对应值生成一系列的点,最后连接这些点描绘出函数图像。下面以Excel 和《几何画板》为例,介绍用计算机软件作函数图像的方法。 1.用“Excel ”绘制函数3 y x =的图像 (1) 打开Excel ,在A 列输入自变量x 的值; (2) 把光标移到B 列,在编辑框输入计算法则“=POWER (A :A ,3)”,回车,在B 列 生成相应的函数值,如图1所示; (3) 选中数据区域A 、B 列,执行“插入→图表”命令,在“图表类型”中选择“XY 散点”,根据需要在“子图表类型”中选择其一。然后按照对话框中的提示,完成制图操作,就可得到如图2所示的函数3y x =的图像。 图1 图2 2.用《几何画板》绘制函数2(0)y bx b =≠的图像 (1) 打开几何画板,通过执行“构造/平行线”和“构造/线段”,生成平行于x 轴的 线段AB ,将A 固定于y 轴,B 为动点,选中B 点,执行“度量/横坐标”选项,画板上显示的点B 的横坐标B x 就是参数b 的值。 (2) 执行“图表/新建函数”,在对话框内输入函数表达式“*^2B x x ”,执行“图表 /绘制新函数”,即生成函数图像,如图3。

图3 图4 当你左右移动B 点的位置时,函数2(0)y bx b =≠就会“动”起来,如图4,如果有条件,请你绘制函数2(0)y ax bx c a =++≠的图像,并探究系数a 、b 、c 对函数图象的影响。

动态模量主曲线生成方法

主曲线使用方法 主曲线是一种将有限试验结果扩展至无限范畴的方法,它的前提是实验材料的力学特性具有时温特效,尤其是有机材料。 在时间历程上,测试4-5个温度(或者荷载)条件下的试验数据,然后,将其绘制在时间(x)-试验数据(y)的双对数log-log坐标轴上,使用时-温转换,得到主曲线。时-温转化的方法一般是,首先选择关注温度,并将该温度作为主温度;然后,顺次将不同温度下的数据沿时间(x)轴进行平移,平移多少由转换因子大小决定;最终,得到主曲线。 转换因子大小与温度值有关,可以选择WLF公式,也可以选择Arrhenius(阿尼乌斯)公式来计算,二者均可以从很多文献里获取。当不同的温度的曲线向主温度曲线处平移时,转换因子的正负便与平移方向有关,向左移是“+”,向右移是“-”(突然想起高中数学老师教的“+左-右”)。 有了上边的基本概念,就可以进行实际操作了,很简单,所有的操作都是在EXCEL表格里进行(在雅虎搜索里输入NCHRP09-29_mastersolver2-2.xls,点搜索后获取),只是要保证EXCEL 里装了solver规划求解宏(以OFFICE2007为例,点击左上角windows-Excel选项-加载项-规划求解加载项-转到-规划求解加载项-确定,如下图所示)。

在EXCEL表格DATA的sheet里,输入动态模量值和混合料其他体积参数,然后进入FIT的sheet里,将C4:C7里的数据拷贝到B4:B7,点击“规划求解”启动宏,目标单元格选择为Ⅰ23,“等于”这一项选择“最小值”,可变单元格选择为B4:B7,点击“求解”便可得到最小二乘法所列的最佳值。一般情况下,只需要一次计算就够了,个别的情况,可在使用一次规划求解,看看计算的结果不会变为止(第二次规划求解时不需要再拷贝C4:C7的数据)。

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

常见OTDR测试曲线解析80569

常见OTDR测试曲线解析 一、正常曲线 一般为正常曲线图, A 为盲区,B 为测试末端反射峰。测试曲线为倾斜的,随着距离的曾长,总损耗会越来越大。用总损耗( dB )除以总距离(Km)就是该段纤芯的平均损耗(dB/Km )。 二、光纤存在跳接点 中间多了一个反射峰,因为很有可能中间是一个跳接点,现城域网光缆中,比较常见。如:现主干光缆由汇接局至光缆交接箱,当有需求时,需由光交接箱布放光缆至用户端,光交接箱就需跳纤联接,所以在测试这样的纤芯时,就会出现像图

中这样的曲线图。当然也会有例外的情况,总之,能够出现反射峰,很多情况是因为末端的光纤端面是平整光滑的。端面越平整,反射峰越高。例如在一次中断割接当中,当光缆砍断以后,测试的曲线应该如光路存在断点图所示,但当你再测试时,在原来的断点位置出现反射峰的话,那说明现场的抢修人员很有可能已经把该纤芯的端面做好了。 三、异常情况 出现图中这种情况,有可能是仪表的尾纤没有插好,或者光脉冲根本打不出去,再有就是断点位置比较进,所使用的距离、脉冲设置又比较大,看起来就像光没有打出去一样。出现这种情况,1、要检查尾纤连接情况;2 、就是把OTD R的设置改一下,把距离、脉冲调到最小,如果还是这种情况的话,可以判断:1、尾纤有问题;2、OTDR 上的识配器问题;3、断点十分近,OTDR不足以测试出距离来。如果是尾纤问题,只要换一根尾纤就知道,不行的话就要试着擦洗识配器,或就近查看纤芯了。 四、非反射事件

1、这种情况比较多见,曲线中间出现一个明显的台阶,多数为该纤芯打折,弯曲过小,受到外界损伤等因素,多为故障点。 2、若光纤模式、折射率不一样,接续时也会出现此情况,常见光纤G651光纤(标准单模光纤,B1光缆),G653光纤(色散位移光纤,B2光缆)。造成这种现象的原因是由于接头两侧光纤的背向散射系数不一样,接头后光纤背向散射系数大于前段光纤背向散射系数,而从另一端测则情况正好相反,折射率不同也有可能产生增益现象。所以要想避免这种情况,只要用双向测试法就可以了。 五、光纤存在断点 这种情况一定要引起注意!曲线在末端没有任何反射峰就掉下去了,分析:1如果知道纤芯原来的距离,1、在没有到达

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

EXCEL表画曲线图方法

引用用Excel函数画曲线的方法1.用Excel函数画曲线图的一般方法 因为Excel有强大的计算功能,而且有数据填充柄这个有力的工具,所以,绘制曲线还是十分方便的。用Excel画曲线的最大优点是不失真。大体步骤是这样的: ⑴用“开始”→“程序”→“Microsoft office”→”Excel”,以进入Excel窗口。再考虑画曲线,为此: ⑵在A1 和A2单元格输入自变量的两个最低取值,并用填充柄把其它取值自动填入; ⑶在B列输入与A列自变量对应的数据或计算结果。有三种方法输入: 第一种方法是手工逐项输入的方法,这种方法适合无确定数字规律的数据:例如日产量或月销售量等; 第二种方法是手工输入计算公式法:这种方法适合在Excel的函数中没有列入粘贴函数的情况,例如,计算Y=3X^2时,没有现成的函数可用,就必须自己键入公式后,再进行计算; 第三种方法是利用Excel 中的函数的方法,因为在Excel中提供了大量的内部预定义的公式,包括常用函数、数学和三角函数、统计函数、财务函数、文本函数等等。 怎样用手工输入计算公式和怎样利用Excel的函数直接得出计算结果,下面将分别以例题的形式予以说明; ⑷开始画曲线:同时选择A列和B列的数据→“插入”→“图表”→这时出现如下图所示的图表向导:

选“XY散点图”→在“子图表类型”中选择如图所选择的曲线形式→再点击下面的‘按下不放可查看示例’钮,以查看曲线的形状→“下一步”→选“系列产生在 列”→“下一步”→“标题”(输入本图表的名称)→“坐标”(是否默认或取消图中的X轴和Y轴数据)→“网络线”(决定是否要网格线)→“下一步”后,图形就完成了; ⑸自定义绘图区格式:因为在Excel工作表上的曲线底色是灰色的,线条的类型(如连线、点线等)也不一定满足需要,为此,可右击这个图,选“绘图区格式”→“自定义”→“样式”(选择线条样式)→“颜色”(如果是准备将这个曲线用在Word上,应该选择白色)→“粗细”(选择线条的粗细)。 ⑹把这个图形复制到Word中进行必要的裁剪; ⑺把经过裁剪过的图形复制到Word画图程序的画板上,进行补画直线或坐标,或修补或写字,“保存”后,曲线图就完成了。 2.举例 下面针对三种不同的情况举三个例子说明如下: 例1. 下图是今年高考试题的一个曲线图,已知抛物线公式是Y=2X^2 ,请画出其曲线图。 因为不能直接利用Excel给出的函数,所以,其曲线数据应该用自己输入公式的方法计算出来,画图步骤如下:

用C++实现数学函数图形绘制(含源文件)

用VC++实现数学函数图形绘制 Use the VC++ to realize drawing figures of mathematic functions 摘要 Visual C++(以下简称VC++)是面向对象与可视化软件开发工具中比较成熟的一类。MFC是VC++中直接由Microsoft提供的类库,它集成了大量已定义好的类,我们可以根据需要,调用相应类,或根据需要自定义类。正是基于MFC 的这种特性,我们试图设计出具有封装性、独立性的功能模块------函数数据生成模块,函数曲线输出模块,模块之间的桥梁是由模板类CArray派生的CPoint 类数组充当的。函数数据生成模块用来实现对函数的设置并获得采样点,数组得到采样点数据并将其传递到输出模块中。从整体来看,实现了各程序模块的独立性,使得在函数模块中可任意添加、删除函数,可使用不同的DC和GDI,可实现不同的输出方式,整个工程在函数绘图功能上是无限扩展的。经过反复的调试和检验,我们实现了预期目标。我们的主要目的是尝试VC++在数学函数绘图方面的功能和应用。这是对VC++的探索,也是对数学函数绘图多样化的尝试。 关键字 数学函数图形绘制模板数组三次样条

【Abstract】 Visual C++ is one of the object oriented and visual software developer ,which is more mature than others . MFC is a class warehouse which is supplied by Microsoft ,and it contains a great deal of defined classes .we can transfer the corresponded class if necessary ,or give a fresh definition according our needs . Exactly based on MFC this kind of character, we try to design out the function mold which have the function to pack the class and be independent ------Mold for creating Function data, Mold for outputting the function curve, mold piece of born mold piece be sent by Cpoint Array rared by template CArray.The first mold is to make out sets for the function and get data we need which will be sent to the defined array,so now the array have the data that is to be got by the second mold.From whole project,we can see the independence of each mold,and exactly we may increase and decrease functions if necessary,we even can use different DC and GDI to realize the customed exportation method by which we can have a new view of the function curve. So, the function of the project can be extended freely.after repeatedly debugging and examining,we achieve our purpose.The most important thing we are trying is to find a way to connect the VC++ and the figures of mathmetic functions.This is not only a exploration to VC++,but also a attempt for realizing diversifing the mathmetic functions. 【Key words】 Mathematic functions drawingfigures template array tripline

炉温曲线测试规范

炉温曲线测试规范 1.目的 本规范规定了炉温曲线的测试周期、测试方法等,以通过定期的、正确的炉温曲线测试确定最佳的曲线参数,最终保证PCB装配的最佳、稳定的质量,提高生产效率和产品直通率。 2.定义 2.1回流曲线 在使用焊膏工艺方式中,通过固定在PCB表面的热电偶及数据采集器测试出PCB在回流焊炉中时间与温度的可视数据集合,根据焊膏供应商推荐的曲线,对不同产品通过适当调整温度设置及传输链的速度所得到的最佳的一组炉温设置参数。 2.2固化曲线 在使用点胶或印胶工艺方式中,通过固定在PCB表面的热电偶及数据采集器测试出PCB在固化炉中时间与温度的可视数据集合,根据焊膏供应商推荐的曲线,对不同产品通过适当调整温度设置及传输链的速度所得到的最佳的一组炉温设置参数。 2.3基本产品 指在一个产品系列中作为基本型的产品,该系列的其它产品都在此基础上进行贴装状态更改或对印制板进行少量的改版,一般情况下一个产品系列同一功能的印制板其图号仅在版本号上进行区分,如“***-1”与“***-2”或“***V1.1”与“***V1.2”等。 2.4派生产品 指由于设计贴装状态更改、或印制板在原有基础上进行少量的改版所生成的其所改动的CHIP 类器件数量未超过50只、同时没有对外形尺寸大于□20mm×20mm的IC器件(不包括BGA、CSP等特殊封装的器件)的数量进行调整的产品。 2.5全新产品 指产品公司全新开发、设计贴装状态更改或印制板在原有基础上改版时所生成的其所改动的CHIP类器件数量超过50只、或对外形尺寸大于□20mm×20mm的IC器件的数量进行调整的产品。凡状态更改中增加或减少了BGA、CSP等特殊封装的器件的产品均视为全新产品。 2.6测试样板 指用来测试炉温的实装板,该板必须贴装有与用来测试的生产状态基本一致的元器件。 3.职责 4.炉温测试管理 4.1炉温测试周期:原则上工程师根据当月所生产的产品应每月测试一次,将测试结果记录在“炉温参数设置登记表”上,并将炉温曲线打印存档。 4.2原则上全新产品必须经过炉温测试,确定准确的炉温设置参数,但对批量小于100套的全新工程师可以根据原有的相似产品根据观察实物的焊接效果进行自行调整。 4.3全新产品在炉温测试时应领取新的测试样板,派生产品可采用原基本产品的测试样板进行炉温测试,以针对不同的产品及状态设置相应准确的炉温参数。 5.测试准备 5.1炉温测试使用DataPaq炉温测试仪,热电偶使用K型。 5.2选择测温点。 热电偶应该安装在能代表PCB板上最热与最冷的连接点上(引脚到焊盘的连接点上),以及热敏感器件和其它高质量器件上,以保证其被足够地加热,一般测温点至少在三点及以上。测温点按以

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

实验一:绘制信源熵函数曲线

成绩 信息与通信工程学院实验报告 (软件仿真性实验) 课程名称:信息论基础 实验题目:绘制信源熵函数曲线指导教师:毛煜茹班级:学号:19 学生姓名:王宇 一、实验目的和任务 掌握离散信源熵的原理和计算方法。 熟悉matlab软件的基本操作,练习应用matlab软件进行信源熵函数曲线的绘制。 理解信源熵的物理意义,并能从信源熵函数曲线图上进行解释其物理意义。二、实验内容及原理 实验内容: 用matlab软件绘制二源信源熵函数曲线。根据曲线说明信源熵的物理意义。 实验原理: (1)离散信源相关的基本概念、原理和计算公式 产生离散信息的信源称为离散信源。离散信源只能产生有限种符号。

假定X是一个离散随机变量,即它的取值范围R={x1,x2,x3,…}是有限或可数的。设第i个变量x i发生的概率为p i=P{X=x i}。则: 定义一个随机事件的自信息量I(x i)为其对应的随机变量x i出现概率对数的负值。即: I(x i)= -log2p(x i) 定义随机事件X的平均不确定度H(X)为离散随机变量x i出现概率的数学期望,即: ∑∑ - = = i i i i i i x p x p x I x p X H) ( log ) ( ) ( ) ( ) ( 单位为比特/符号或比特/符号序列。 平均不确定度H(X)的定义公式与热力学中熵的表示形式相同,所以又把平均不确定度H(X)称为信源X的信源熵。 必须注意以下几点: 某一信源,不管它是否输出符号,只有这些符号具有某些概率特性,必有信源的熵值; 这熵值是在总体平均上才有意义,因而是个确定值,一般写成H(X),X是指随机变 量的整体(包括概率分布)。 信息量则只有当信源输出符号而被接收者收到后,才有意义,这就是给与信息者的信 息度量,这值本身也可以是随机量,也可以与接收者的情况有关。 熵是在平均意义上来表征信源的总体特征的,信源熵是表征信源的平均不确定度,平 均自信息量是消除信源不确定度时所需要的信息的量度,即收到一个信源符号,全 部解除了这个符号的不确定度。或者说获得这么大的信息量后,信源不确定度就被 消除了。信源熵和平均自信息量两者在数值上相等,但含义不同。 当某一符号x i的概率p(x i)为零时,p(x i)log p(x i) 在熵公式中无意义,为此规定这时的 p(x i)log p(x i) 也为零。当信源X中只含有一个符号x时,必有p(x)=1,此时信源熵H (X)为零。

函数的图像和函数的三种表示方法

函数的图象 课前预习 要点感知1对于一个函数,如果把自变量与函数的________分别作为点的横、纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的________. 预习练习1-1下列各点在函数y=3x+2的图象上的是( ) A.(1,1) B.(-1,-1) C.(-1,1) D.(0,1) 1-2点A(1,m)在函数y=2x的图象上,则点A的坐标是________. 要点感知2由函数解析式画其图象的一般步骤是:①________;②________;③________.当堂训练 知识点1函数图象的意义 1.下列图形中的曲线不表示y是x的函数的是( ) 2.下图是我市某一天内的气温变化图,根据下图,下列说法中错误 的是( ) A.这一天中最高气温是24 ℃ B.这一天中最高气温与最低气温的差为16 ℃ C.这一天中2时至14时之间的气温在逐渐升高 D.这一天中只有14时至24时之间的气温在逐渐降低 3.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关 系如图所示,则下列说法正确的是( ) A.甲、乙两人的速度相同 B.甲先到达终点 C.乙用的时间短 D.乙比甲跑的路程多 4.(湖州中考)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分 钟)的函数关系如图所示,则小明的骑车速度是________千米/分钟. 5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90 km的过程中,行驶 的路程y与经过的时间x之间的函数关系,请根据图象填空: (1)________出发的早,早了____小时,________先到达,先到____小时; (2)电动自行车的速度为______km/h,汽车的速度为______km/h. 知识点2画函数图象 6.画出函数y=2x-1的图象. (1)列表: x…-101… y…… (2)描点并连线; (3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1 的图象上 (4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.

EXCEL 制函数图像

做教学工作的朋友们一定会遇到画函数曲线的问题吧!如果想快速准确地绘制一条函数曲线,可以借助EXCEL的图表功能,它能使你画的曲线既标准又漂亮。你一定会问,是不是很难学呀?其实这一点儿也不难,可以说非常简便,不信你就跟我试一试。 1,以绘制y=|lg(6+x^3)|的曲线为例,其方法如下:在某张空白的工作表中,先输入函数的自变量:在A列的A1格输入"X=",表明这是自变量,再在A列的A2及以后的格内逐次从小到大输入自变量的各个值;实际输入的时候,通常应用等差数列输入法,先输入前二个值,定出自变量中数与数之间的步长,然后选中A2和A3两个单元格,使这二项变成一个带黑色边框的矩形,再用鼠标指向这黑色矩形的右下角的小方块“■”,当光标变成"+"后,按住鼠标拖动光标到适当的位置,就完成自变量的输入。 输入函数式:在B列的B1格输入函数式的一般书面表达形式,y=|lg(6+x^3)|;在B2格输入“=ABS(LOG10(6+A2^3))”,B2格内马上得出了计算的结果。这时,再选中B2格,让光标指向B2矩形右下角的“■”,当光标变成"+"时按住光标沿B列拖动到适当的位置即完成函数值的计算。

绘制曲线:点击工具栏上的“图表向导”按钮,选择“X,Y散点图”(如图7),然后在出现的“X,Y散点图”类型中选择“无数据点平滑线散点图”;此时可察看即将绘制的函数图像,发现并不是我们所要的函数曲线,单击“下一步”按钮,选中“数据产生在列”项,给出数据区域,这时曲线就在我们面前了(如图8)。 需要注意:如何确定自变量的初始值,数据点之间的步长是多少,这是要根据函数的具 体特点来判断,这也是对使用者能力的检验。如果想很快查到函数的极值或看出其发展趋 势,给出的数据点也不一定非得是等差的,可以根据需要任意给定。

matlab简介(解常微分方程绘制函数图像)

MATLAB简介 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。 一、基本功能 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 二、特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。 三、优势 1.友好的工作平台编程环境 MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。 2.强大的科学计算机数据处理能力 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。

OTDR测试曲线分析方法.

OTDR测试曲线分析方法 OTDR是光缆工程施工和光缆线路维护工作中最重要的测试仪器,它能将长100多公里光纤的完好情况和故障状态,以一定斜率直线(曲线)的形式清晰的显示在几英寸的液晶屏上。根据事件表的数据,能迅速的查找确定故障点的位置和判断障碍的性质及类别,对分析光纤的主要特性参数能提供准确的数据。目前OTDR型号种类繁多,操作方式也各不相同,但其工作原理是一致的。在光纤线路的测试中,应尽量保持使用同一块仪表进行某条线路的测试,各次测试时主要参数值的设置也应保持一致,这样可以减少测试误差,便于和上次的测试结果比较。即使使用不同型号的仪表进行测试,只要其动态范围能达到要求,折射率、波长、脉宽、距离、平均化时间等参数的设置亦和上一次的相同,这样测试数据一般不会有大的差别。 一、OTDR测试的主要参数: 1.测纤长和事件点的位置。 2.测光纤的衰减和衰减分布情况。 3.测光纤的接头损耗。 4.光纤全程回损的测量。 二、测试参数设置: 1.波长选择: 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 2.脉宽: 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。一般 10公里以下选用100ns、300 ns ,10公里以上选用300ns、1μs。 3.测量范围: OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5倍距离之间。 4.平均时间: 由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min的获得取提高 0.8dB

相关文档
最新文档