鲁奇加压固定床气化技术的开发及应用

鲁奇加压固定床气化技术的开发及应用
鲁奇加压固定床气化技术的开发及应用

鲁奇加压固定床气化技术的开发及应用

煤炭气化是重要的洁净煤技术之一,广泛应用于生产化工合成气、工业燃料气、城市煤气等。随着对提高煤炭利用效率的重视和环保要求日趋严格,目前正积极开发煤炭液化技术、整体煤气化联合循环发电技术及燃料电池、氢能等新技术,这些技术的应用同样离不开煤炭气化,因此煤炭气化技术将起到越来越重要的作用。

固定床气化是目前应用最多的煤炭气化技术,从世界范围看,常压固定床气化技术基本上不再发展,而鲁奇加压气化技术则不仅得到广泛应用,而且发展势头良好,本文将简要介绍鲁奇加压气化技术的开发和应用情况。

1.鲁奇加压固定床气化技术的发展

1936年,在德国Hirschfelde建立直径为1.1m的试验装置,做了许多试验工作,在此基础上设计了第一代鲁奇加压固定床气化炉,1939年投人生产。第一代气化炉只能气化非粘结性煤,而且气化强度低,炉径Φ2600mm,生产能力为5000-8000m3/h。1954-1969年,为了气化弱粘结性烟煤和提高单炉的生产能力,德国鲁尔煤气公司和鲁奇公司合作,在试验炉上进行了各种不同变质程度的煤种试验,并在此基础上建设了一大批工厂,所用气化炉内径Φ2600/3700mm,设搅拌装置,后者生产能力达32000-45000m3/h。1969年以后,为了生产合成天然气的需要,在英国西田和南非萨索尔进行了美国东部和西部煤的试验获得成功,并对鲁奇炉的搅拌装置作了进一步的改进,使之可气化一般粘结性的烟煤,扩大了煤种使用范围。此种第三代鲁奇炉,内径为Φ3800mm(MarkIV型),生产能力达35000-50000m3/h。从1980年起,在南非萨索尔一厂又建立了Φ5000mm的MarkV型原型气化炉,其煤气产量达到100000m3/h。

在鲁奇炉的基础上,又开发了二种新技术:1)鲁尔-100气化炉。开发的目的主要是通过提高操作压力,提高气化强度,同时扩大煤种范围,以更经济地生产天然气等。2)液态排渣鲁奇炉(BG/L),固态排渣鲁奇炉气化时,必须考虑煤的灰熔点和反应性。为了克服这些缺点同时减少蒸汽耗量和提高生产能力,开发了液态排渣鲁奇炉气化技术。

2.鲁奇加压固定床气化技术的应用

伴随着鲁奇加压气化技术的发展,它在国内外得到了广泛使用。1974年,我国云南解放军化肥厂采用第一代鲁奇气化炉制气生产合成氨工艺投入运行,它使用小龙潭褐煤为气化原料,氧气-蒸汽为气化剂,在2.2MPa压力下操作。随后在一些化肥厂和城市煤气生产中也采用鲁奇炉气化工艺。表1和表2分别给出了鲁奇加压气化技术在世界其它国家和我国的开发及应用情况。

从目前鲁奇气化工艺应用情况看,主要集中于生产城市煤气、化肥合成、液体燃料油合成及联合循环发电等方面。

表1 国外安装鲁奇气化炉情况

序号安装地点安装年份使用煤种气化炉内

径,

生产能力,气化炉台mm ×106Nm3/d 数

1

德国中部

Hirschfeld

1936 褐煤1143 0.03 2

2 德国中部 Bohlen 1940 褐煤2590.8 0.25 5

3 德国中部 Bohlen 1943 褐煤2590.8 0.2832 5

4 CSSR,Most,等1944- 褐煤2590.8/2760 7.0 56

5 南非 Sasolburg 1954

含30%灰的次烟

3681.98 4.248 9

6 西德 Dorsten 1955

含氮高的粘结性

次煤

2667 1.5576 6

7 澳洲 Morwell 1956 褐煤2667 0.62 6

8 巴基斯坦 Daud Khel 1957

高硫高挥发分烟

2667 1.416 2

9 德国黑水泵1957- 褐煤3600 24

10 南非 Sasolburg 1958

含30%灰的次烟

3681.98 0.54 1

11 英国 Westfield 1960 弱粘结性次烟煤 2667 0.79 3

12 印度 Jealgora 1961 各种煤- 0.025 1

13 英国 Westfield 1962 弱粘结性次烟煤 2667 0.25 1

14 英国 Colesshill 1963

含氯高的粘结性

次烟煤

2667 1.30 5

15 南朝鲜 Naju 1963 高灰石墨无烟煤 3176 0.42 3

16 南非 Sasolburg 1966

含30%灰的次烟

3681.2 2.124 3

17 西德 Lunen 1970 次烟煤3453.4 1477* 5

18 南非 Sasolburg 1973

含30%灰的次烟

3758.2 5.38 3

19 南非 Secunda 1977 次烟煤3758.2 4

20 南非 Sasolburg 1980 次烟煤4700(Mark-V) 2.28 1

21 南非 Secunda 1980 次烟煤3758.2 39.6 36

22 南非 Secunda 1982 次烟煤3758.2 39.6 40

23 美国北达科达1983 褐煤3758.2 3.8SNG 14 表2 我国鲁奇炉制气工艺应用情况使用厂家气化炉型号气化炉台数用途备注

解放军化肥厂第一代,Φ2720mm9 合成氨1974年开车

山西化肥厂MARK—IV,Φ3800mm5(一台国产) 30万t合成氨1987年开车

哈尔滨气化厂PKM,Φ3800mm5(一台国产) 城市煤气、甲醇1993年开车

兰州煤气厂第二代,Φ2800mm 3 城市煤气

义马煤气厂MARK—IV,Φ3800mm3城市煤气、甲醇2001年投产

沈阳加压气化厂第一代, 6 城市煤气84年,已停

太原化肥厂国产,Φ2860mm 1 合成已转给解化厂

第一汽车制造厂国产,Φ1800mm 3 燃料气85年投运

北京煤化所Φ100mm 1 煤种评价

沈阳煤气化研究所Φ1200mm 1 煤种评价

北京煤化所Φ650mm 1 煤种评价已停用

2.1城市煤气生产

由于鲁奇加压气化生产的煤气中甲烷含量高,热值较高,因此适合于做城市煤气,而加压也有力于煤气的长距离输送。如英国Westfield、东德的黑水泵、捷克、澳洲等地用于城市煤气生产,美国大平原煤气厂用于生产代用天然气。我国的沈阳、哈尔滨、兰州、义马等地也建有鲁奇加压汽化厂生产城市煤气。图1为某厂生产工艺流程图。

出气化炉的粗煤气先经冷却和除尘,分离出的焦油可进一步加工成其它化工产品,冷却水经处理后循环使用。由于煤气中含有H2S,CO2含

量较高,因此煤气需要脱硫和脱除一定数量的CO2,以提高煤气热值。CO2脱除后煤气中的CO含量升高,这样就需增加变换单元(当然CO变换可

放在脱CO2前)。为提高产品的附加值,一些厂又联产甲醇,如哈尔滨煤气厂和义马煤气厂等。

如生产代用天然气,则在脱除CO2后需增加甲烷化装置。

2.2合成氨生产

使用鲁奇气化工艺生产合成氨的有巴基斯坦、南朝鲜和中国等。相对于常压间歇式水煤气生产工艺(使用无烟煤或焦炭为原料)而言,鲁奇气化不仅扩大了煤种使用范围可以使用褐煤、长焰煤、弱粘煤等低煤阶烟煤乃至贫煤等,降低了原料成本;且由于是连续生产,因此提高了气化效率;而加压气化也大大提高了气化强度。因此合成氨生产成本下降。当然,鲁奇气化也存在耗氧、气化过程产生焦油、酚水等问题。图2为山西天脊集团公司合成氨生产流程图。

2.3液体燃料油生产

与石油相比,煤炭的储量要多得多,可采年限要长得多,因此通过适当工艺将煤炭转化成汽油、柴油等是解决石油短缺的重要和可行方法。由煤炭转化生产液体燃料油的工艺可分为直接液化和间接液化,这两种工艺都离不开煤炭气化。直接液化过程中,煤炭气化用于生产加氢单元所需的氢气;间接液化是先将煤炭气化转化成合成气,然后通过催化合成液体燃料。目前世界上最成功、规模最大的间接液化企业是南非的Sasol公司,该公司的三个厂年用煤4590万t,共建有97台鲁奇炉,年产油晶458万t及200万t蜡、氨、乙烯等其它产品和城市煤气等。图3为工艺流程简图。

2.4联合循环发电

1972年在德国Lunen的斯蒂克电站投运了世界上第一个IGCC示范装置。它使用5台Lurgi气化炉(4开1备),气化产生的煤气去燃气轮机发电74MW,蒸汽轮机发电96MW。图4为示范电站流程图。

尽管该电站因效率及污染等问题停止运转,但最近几年的煤炭气化联合循环发电IGCC示范厂运行情况表明,IGCC电厂是煤基发电工艺中效率最高、环境污染最少的,因此它被誉为21世纪煤炭发电的希望。许多国家正在大力发展IGCC电厂,尤其对我国这样一个以煤炭为主要能源的国家更应重视该项技术。

3.结束语

随着石油价格上升和对环保的要求,煤炭洁净利用是必由之路,做为煤转化核心的气化技术前景广阔。固定床加压气化在我国研究和应用已有40多年历史,积累了较丰富的经验,国内也能够自行设计和制造加压气化炉,这些为鲁奇气化技术大规模应用打下了坚实基础。从目前国外加压气化

应用情况结合我国国情,我们认为鲁奇气化技术在我国的进一步应用将集中于生产城市煤气、化工合成氨及甲醇等、合成液体燃料油(间接液化)生产等领域,用于提供单一产品或多联产。另外对用于联合循环发电及生物质气化也应给予关注。

液态排渣鲁奇加压气化由于气化容量大、蒸汽消耗低、可使用小粒度煤和灰熔点低的煤等优点应受到国内重视,应投入一定资金和力量开发。

鲁奇加压气化炉工艺操作

鲁奇加压气化炉工艺操作 新疆广汇新能源造气车间--程新院 一、相关知识 1、影响化学平衡的因素有三点:①反应温度(T)、②反应压力(P)、 ③反应浓度(C)。勒夏特列原理:如果改变影响化学平衡条件之一(T、P、C),平衡将向着能够减弱这种改变的方向移动。 2、气化炉内氧化层主反应方程式 ① 2C+O?=CO?(-Q)ΔH<0 ②2C+O?=2CO(-Q)ΔH?<0 ΔH<ΔH? 3、气化炉内还原层主反应方程式 ③C+CO?=2CO(+Q)ΔH?>0 ④C+H?O=CO+H?(+Q)ΔH?>0 ⑤C+2H?=CH?(+Q)ΔH5>0 ΔH?>ΔH?>ΔH5 |ΔH|>ΔH?>|ΔH?|>ΔH?>ΔH? 4、煤灰熔点对气化炉的影响 鲁奇气化炉的操作温度介于煤的DT(变形温度)和ST(软化温度)之间。若入炉煤的灰熔点高,则操作时适当降低汽氧比,相应提高炉温,蒸汽分解率增加,煤气水产量低,气化反应完全,有利于产气。但是受气化炉设计材料的制约,汽氧比不能无限制降低,否则可能会烧坏炉篦及内件。因此受设备材质的局限,煤灰熔点不能太高,

一般控制在1150℃≦DT≦1250℃。反之,若煤灰熔点低,则操作时要适当提高汽氧比,相应降低炉温(防止炉内结渣,造成排灰困难),蒸汽分解率降低,煤气水产量增加,气化反应速度减缓,不利于产气。因此入炉煤的灰熔点要尽可能在一定的范围内,不能变化太大。二、汽氧比的判断 鲁奇加压气化炉汽氧比是调整控制气化过程温度,改变煤气组份,影响副产品产量及质量的重要因素。汽氧比过低,会造成气化炉结渣,排灰困难,不利于产气;汽氧比过高,会造成灰细或排灰困难,煤气水产量增加等。因此,在不引起灰份熔融的情况下,尽可能采用低的汽氧比。汽氧比的高低应该结合煤气组份中有效气体的含量、灰样和指标参数做出准确的判断! 1、从煤气组份1判断汽氧比的高低 我们在实际操作中一般都根据CO2、CO、H2、CH?来判断汽氧比的高低,下面分情况进行说明。 1:我公司白石湖煤产气组份 a、煤气组份中CO2和CH?同时降低,CO和H2同时升高,这种情况最容易判断,根据还原层反应方程式 ③C+H?O=CO+H?ΔH?>0 ④C+CO?=2COΔH?>0

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

Lurgi(鲁奇)加压气化炉简介

Lurgi(鲁奇)加压气化炉简介 鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。正在运行的气化炉达数百台,主要用于生产城市煤气和合成原料气。 德国鲁奇加压气化炉压力2.5~4.0Mpa,气化反应温度800~900℃,固态排渣,以小块煤(对入炉煤粒度要求是6mm以上,且13mm以上占87%,6~13mm占13%)为原料、蒸汽-氧气连续送风制取中热值煤气。气化床自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长、技术经济指标差、对低温焦油及含酚废水的处理难度较大、环保问题不易解决。 鲁奇炉的技术特点有以下几个方面: 1.固定气化床,固态排渣,适宜弱黏结性碎煤(5~50mm); 2.生产能力大。自工业化以来,单炉生产能力持续增长。例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×104m3/(h·台)。这种持续增长主要是靠操作的不断改进。 3.气化炉结构复杂,炉内设有破黏、煤分布器、炉箅等转动设备,制造和维修费用大。 4.入炉煤必须是块煤,原料来源受一定限制。 5.出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。 至今世界上共建有107台炉子,通过扩大炉径和增设破黏装置后,提高了

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

煤质对鲁奇加压气化炉的影响

浅析煤质对鲁奇加压气化炉的影响 新疆庆华集团有限公司潘连冬李群祥 摘要:本文阐述了煤质、煤种对鲁奇加压气化工艺操作的影响,以及不同工艺要求对于煤种及操作的要求。 关键词:鲁奇气化煤质挥发分灰熔点 一.前言 由于鲁奇气化炉在国内的广泛应用,尤其是近几年内蒙、新疆、贵州等地煤化工快速发展,而且以鲁奇气化工艺居 多,但是各地煤种的差异导致部分工艺操作存在一些问题,在此对该问题进行客观分析,进而在生产运行中不断优化 工艺流程、改进操作方法,保证装置能够安全稳定长周期 运行。 二.. 煤的工业成分对鲁奇气化操作的影响 1、煤中挥发份: 挥发分越高转化为焦油的有机物越多。煤焦油产生大约在320℃开始,在450℃时达到最大值。温度高于400℃ 时,生成的脂肪类碳氢化合物随挥发份升高煤热解失重(即 脱挥发份数量增加)焦油产量增加,剩余半焦在炉内随温 度升高生成一氧化碳、二氧化碳、氢气、甲烷。焦油产量 和干馏层温度和干馏层高度,气化炉内的反应温度(即灰 熔点)有关。当原料挥发份高时,则转入到焦油,轻油和

酚中去的碳就愈多,而转入到煤气中去的碳量就愈少,煤气的产率就低,当在较高的压力和较低的温度下进行气化,碳原子易生成多原子分子转入到焦油轻油或酚中,因此煤气的产率也会降低。 2、煤中固定碳: 煤中碳含量高,灰分含量下降,有利于制气,但随着碳含量升高煤的活性降低,炉内反应速度减慢,煤在炉内的停留时间增加,燃烧层拉长,还原层、干馏层缩短,同时容易引起气化炉出口温度高、灰锁温度高、灰中残碳增加、夹套耗水量增加,当碳含量达到45%以上时,燃烧层、还原层床层拉长,干馏层缩短或消失,焦油产量降低,有利于煤气水处理,同时煤气产率增加,蒸汽分解率提高。 3、原料煤中水分: 煤中所含的水份随煤的碳化度加深而减少,水分较高的煤,挥发份往往比较高,则进入气化层的焦碳的气孔率也大,因而使反应速度加快,生产的煤气质量较好,另外,在气化一定的煤质时,其焦油和水分存在着一定的关系,水分太低,会使焦油产率降低,由于加压气化炉的生产能力很高,煤在各层的加热速度很快,一般在20~40℃/min之间,因此对一些热稳定性差的煤,为防止热解,就要求煤中含有一定的水分,但煤中过高的水分又会给气化带来不良的影响. 1)、过高的水分,增加了干燥所需要的热量,从而增加

气化装置工艺流程叙述

气化装置工艺流程叙述 (1)磨煤及干燥单元(1500 单元) 来自原料煤贮仓的碎煤由称重给煤机按给定量加入到磨煤机内,被轧辊在磨盘上磨成粉状,并由高温惰性气体烘干。高温惰性气体来自惰性气体发生器。惰性气体进入磨煤机进口时温度为150,250? ,离开磨煤机时温度为100,120?。惰性气体将碾磨后的粉煤输送到磨煤机上部的旋转分级筛,筛出的粗颗粒返回到磨盘重新碾磨。出磨煤机的合格粉煤由惰性气体输送入粉煤袋式过滤器进行分离后,粉煤经旋转卸料阀、纤维分离器、及粉煤螺旋输送机送至粉煤贮罐,分离出的惰性气体小部分(约20%)排放至大气,剩余部分(约80%)经循环风机进入惰性气体发生器加热后循环使用。惰性气体发生器的燃料气正常情况下由老厂提供,并用燃烧空气鼓风机提供助燃空气。在粉煤袋式过滤器下游监测惰性气体露点,稀释氮气由稀释风机加入,以保证系统内惰性气体露点在要求的范围内。 磨煤及干燥单元设有四条生产线,每条线的处理能力满足单台气化炉100,负荷,采用三开一备的操作方式。 磨煤及干燥单元主要控制煤的颗粒尺寸(粒径分布)和粉煤的水分含量(v5%wt)。粉煤的典型粒径分布为: 1)颗粒尺寸?90卩m占90%(重量); 2)颗粒尺寸?5卩m占10%(重量)。 (2)煤加压及进煤单元(1600 单元) 煤加压及进煤单元设有三条生产线,对应三条气化及合成气洗涤生产线,该单元采用锁斗来完成粉煤的连续加压及输送。 在一次加料过程中,常压粉煤贮罐内的粉煤通过重力作用进入粉煤锁斗。粉煤锁斗内充满粉煤后,即与粉煤贮罐及所有低压设备隔离,然后进行加压,当其压力 升至与粉煤给料罐压力相同时,且粉煤给料罐内的料位降低到足以接收一批粉煤时,打开粉煤锁斗与粉煤给料罐之间平衡阀门进行压力平衡,然后依次打开粉煤锁斗和粉煤给料罐之间的两个切断阀,粉煤通过重力作用进入粉煤给料罐。粉煤锁斗卸料完成后,通过将气体排放至粉煤贮罐过滤器进行泄压,泄压完成后 重新与粉煤贮罐经压力平衡后联通,此时,一次加料完成。 粉煤锁斗加压是通过充入高压氮气完成的,高压氮气经充气锥、充气笛管、管道充气器和锁斗高压氮气过滤器进入粉煤锁斗。为了保证到烧嘴的煤流量的稳定,在粉煤给料罐和气化炉之间通过控制粉煤给料罐的压力保持一个恒定的压差,此压差的设定值根据气化炉的负荷确定。 (3)气化及合成气洗涤单元(1700 单元)

LNG气化站工艺流程图模板

LNG气化站工艺流程图模 板 1

LNG 气化站工艺流程图 如图所示, LNG经过低温汽车槽车运至LNG卫星站, 经过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压, 利用压差将LNG送至卫星站低温LNG储罐。工作条件下, 储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器, 与空气换热后转化为气态天然气并升高温度, 出口温度比环境温度低10℃, 压力为0.45-0.60 MPa, 当空温式气化器出口的天然气温度达不到5℃以上时, 经过水浴式加热器升温, 最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网, 送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气( Liquefied Natural Gas) 的简称, 主要成分是甲烷。先将气田生产的天然气净化处理, 再经超低温( -162℃) 加压 2

液化就形成液化天然气。 LNG无色、无味、无毒且无腐蚀性, 其体积约为同量气态天然气体积的1/600, LNG的重量仅为同体积水的45%左右。 一、 LNG气化站主要设备的特性 ①LNG场站的工艺特点为”低温储存、常温使用”。储罐设计温度达到负196( 摄氏度LNG常温下沸点在负162摄氏度) , 而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好, 阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好, 而且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力, 因此低温液体泵要求提高频率和扩大功率要快, 一般在几秒至十几秒内就能满足要求, 而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震, 耐台风和满足设计要求, 达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范; 气化器和低温烃泵在国内均无相关法规加以规范, 在其制造过程中执行美国相关行业标准, 在压 3

几种煤气化工艺的优缺点

浅谈几种煤气化工艺的优缺点 我国石油、天然气资源短缺,煤炭资源相对丰富。发展煤化工产业,有利于推动石油替代战略的实施,满足经济社会发展的需要,煤化工产业的发展对于缓解我国石油、天然气等优质能源供求矛盾,促进钢铁、化工、轻工和农业的发展,发挥了重要的作用。因此,加快煤化工产业发展是必要的。 1.各类气化技术现状和气化特征 煤化工要发展,一个重要的工艺环节就是煤气化技术要发展。我国自上世纪80年代就开始引进国外的煤气化技术,包括早期引进的Lurgi固定床气化、U-gas 流化床气化、Texaco水煤浆气流床气化,Shell气流床粉煤气化、以及近期拟引进的BGL碎煤熔渣气化、GSP气流床粉煤气化等等,世界上所有的气化技术在我国几乎都是有应用,正因为我国是一个以煤为主要燃料的国家,世界上也只有我国使用如此众多种类的煤气化技术。 随着煤气化联合循环发电(IGCC)、煤制油(CTL)、煤基甲醇制烯烃(MTP&MTO)等煤化工技术的发展,用煤生产合成气和燃气的加压气化工艺近年来有了较快的发展。Lurgi固定床气化、Texaco水煤浆气化、Shell干粉加压气化、GSP干粉加压气化、BGL碎煤熔渣气化、以及我国自有知识产权的多喷嘴水煤浆气化、加压两段干煤粉气流床气化、多元料浆气化等等技术在我国的煤化工领域展开了激烈的竞争,对促进煤化工的发展做出了贡献。 Lurgi固定床气化工艺在我国有哈气化、义马、天脊、云南解肥、兰州煤气厂等6个厂;Texaco水煤浆气化工艺已在我国鲁南、上海焦化、渭化、淮化、浩良河、金陵石化、南化等9个厂投入生产,情况良好;Shell干粉加压气化技术在我国已经有双环、洞氮、枝江、安庆、柳化等5个厂投产,还有10余个项目正在安装,将于今后几年陆续投产;多喷嘴水煤浆气化已在山东华鲁恒升、兖矿国泰2个厂投运,还有7个厂家正在安装,最晚在2009年投产;GSP干煤粉气化技术在神华宁夏煤业集团和山西兰花煤化工有限责任公司的煤化工厂也将投入建设;加压两段干煤粉气流床气化技术已通过中试验收,华能集团“绿色煤电”项目2000t/d级和内蒙古世林化工有限公司1000t/d级的气化装置正在设

常压炉和鲁奇炉对比稿

常压炉和鲁奇炉对比 一、气化装置投资对比: 鲁奇加压气化炉(含空分)-----------6.665亿; 纯氧常压气化炉(含空分)-----------3.297亿; 该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿。 二、年运行费用对比 鲁奇加压气化炉-------------年生产费用3.79亿元; 纯氧常压气化炉-------------年生产费用4.62亿元; 该项对比结果为:纯氧常压气化炉年运行成本比鲁奇炉高 1.43亿元。 三、常压炉和鲁奇炉对比结论 加压鲁奇炉一次性投资多3.368亿元。运行成本年节省1.43亿元,在2.35年回收该一次投资。对比结论是鲁奇炉比常压炉更适合本项目。

四、常压炉和鲁奇炉分析明细 1、投资对比 序 号项目 纯氧常压气化炉 万元 鲁奇加压气化 万元 1 焦块筛分+焦粉制块 +输送 650 650 2 入炉前煤锁100 800 3 煤气炉系统11700(8开备2)38000(三开一备) 5 循环水处理站(回收)1220 12000 6 气柜+电除尘1000 7 一级压缩机 二级压缩机 10000 8 空分8000 15000(汽轮机拖动) 投资合计 3.297亿 6.665亿差值+3.368亿 该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿2、年运行费用对比

一年(8000小时)生产费用表 序号项目纯氧常压气化炉鲁奇加压气化 1 焦炭t/h53 56 8000小时万元 13568 14336 (焦炭320元/t) 2 氧气耗Nm3/h 2592019948 8000小时万元 6220.8 4787.52 (氧气0,3元/Nm3) 3 蒸汽耗t/h 82126 30(回收用) 8000小时万元 7872 12096 (蒸汽120元/t) 4 电耗kw h 408001600 8000小时万元 18604.8 729.6 (电价0,57元/kwh) 8000小时生产费用 46265.631949.12 5合计 万元 差值+14316.68 对比结果:纯氧常压气化炉年运行成本比鲁奇炉高1.43亿元。

鲁奇气化炉

鲁奇加压气化炉 1、第三代鲁奇加压气化炉 第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。 ①炉体 加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。 两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。 夹套内的给水由夹套水循环泵进行强制循环。同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。 第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。 ②布煤器和搅拌器 如果气化黏结性较强的煤,可以加设搅拌器。布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。 从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。 搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。 ③炉算 炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。材质选用耐热的铬钢铸造,并在其表面加焊灰筋。炉箅上安装刮刀,刮刀的数量取决于下灰量。灰分低,装1~2把;对于灰分较高的煤可装3~4把。 炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。 炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有

煤气化工艺流程简述

煤气化工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

8鲁奇碎煤固定床加压气化技术

主流煤气化技术及市场情况系列展示(之八) 鲁奇碎煤固定床加压气化技术 技术拥有单位:德国鲁奇公司 上世纪30年代,德国鲁奇公司开发出碎煤固定床加压气化技术,应用于煤气化项目。其关键设备为FBDB(Fixed Bed Dry Bottom,固定床干底)气化炉,俗称鲁奇炉。几十年来,经过持续不断地改进与创新,鲁奇公司先后开发出第一代鲁奇炉(1936~1954年)、第二代鲁奇炉(1952~1965年)、第三代鲁奇炉Mark4和Mark5(1969~2008年),在此基础上,又推出第四代鲁奇炉Mark+(已于2010年8月完成该炉的基础工艺及机械设计)。同时,为满足气体排放标准,解决废水达标排放难题,鲁奇公司相继开发出高效的煤气化尾气处理和酚氨废水处理工艺技术。 一、技术特点 鲁奇公司第四代FBDB气化炉Mark+的开发目标是:增加气化炉的生产能力(为Mark4的两倍);增加设计压力到6MPag,以保证气化过程更好的经济性。同时,将从Mark4操作上获得的改进,以及鲁奇设计安装的干渣和湿渣排灰气化炉(包括低到高阶煤、不黏煤或黏结煤,还包括生物质和各种废物气化)上获得的经验,反映在Mark+的设计上。 通过应用成熟的技术和创新的设备,上述目标已全部实现。气化炉Mark+和Mark4综合比较见下表。

在更高压力下,Mark+主要改进项目包括煤锁、气化炉、灰锁系统、洗涤冷却器、废热锅炉、下游冷却系统等。最显著的改进为:采用双煤锁、使用气化炉缓冲容积,实现煤锁全面控制;增加床层高度。改进气化炉内件(包括炉箅、波斯曼套筒、粗合成气出口、内夹套),以及鲁奇专有的煤分布器和搅拌器。 Mark+气化炉的设计压力提高到6MPag。对于煤制天然气项目,这将带来整个气化岛投资成本和操作成本的降低。如对年产40×108Nm3的煤制天然气项目,气化炉台数可比Mark4减少一半,气化岛投资节省17%,全厂可减少设备约300台,煤制天然气(SNG)成本可望下降10%。对于下游的低温甲醇洗单元,由于吸收压力的提高,冷冻需求量减少;对于甲烷化单元,由于入口气中甲烷含量提高(50%的入口气为甲烷),所需循环流量降低,反应器尺寸减小。 二、配套工艺 (1)煤气化单元 鲁奇FBDB煤气化单元简化流程见上图。粒度为5~50mm的煤从煤斗加入独立的煤锁,再用粗合成气加压后,打开煤锁送入气化炉。煤以间歇操作方式加入气化炉。几乎所有用于给煤锁加压的气体,在从煤斗加煤前的减压过程中都可得到回收。 气化炉为双壁容器,在外壁和内壁间(即夹套)维持一定的锅炉给水液位,以保护外层承压壳体免受高温。同时,通过气化炉内壁传递热量,在夹套中产出

鲁奇加压气化炉炉型构造及工艺流程

第四节鲁奇加压气化炉炉型构造及工艺流程 4.第三代加压气化炉 第三代加压气化炉是在第二代炉型上的改进,其型号为Mark-Ⅲ,是目前世界上使用最为广泛的一种炉型。其内径为Ф3.8m,外径Ф4.128m,炉体高为12.5m,气化炉操作压力为3.05Mpa。该炉生产能力高,炉内设有搅拌装置,可气化强黏结性烟煤外的大部分煤种。第三代加压气化炉如图4-3-21所示。 图4-3-21 第三代加压气化炉 为了气化有一定黏结性的煤种,第三代气化炉在炉内上部设置了布煤器与搅拌器,它们安装在同一空心转轴上,其转速根据气化用煤的黏结性及气化炉生产负荷来调整,一般为10~20r/h,从煤锁加入的煤通过布煤器上的两个布煤孔进入炉膛内,平均每转布煤15~20mm厚,从煤锁下料口到煤锁之间的空间,约能储存0.5h气化炉用煤量,以缓冲煤锁在间歇充、泄压加煤过程中的气化炉连续供煤。 在炉内,搅拌器安装在布煤器的下面,其搅拌桨叶一般设有上、下两片桨叶。桨叶深入到煤层里的位置与煤的结焦性能有关,其位置深入到气化炉的干

馏层,以破除干馏层形成的焦块。桨叶的材质采用耐热钢,其表面堆焊硬质合金,以提高桨叶的耐磨性能。桨叶和搅拌器、布煤器都为壳体结构,外供锅炉给水通过搅拌器、布煤器,最后从空心轴内中心管,首先进入搅拌器最下底的桨叶进行冷却,然后再依次通过冷却上桨叶、布煤器,最后从空心轴与中心管间的空间返回夹套形成水循环。该锅炉水的冷却循环对布煤搅拌器的正常运行非常重要。因为搅拌桨叶处于高温区工作,水的冷却循环不正常将会使搅拌器及桨叶超温烧坏造成漏水,从而造成气化炉运行中断。 该炉型也可用于气化不黏结性煤种。此时,不安装布煤搅拌器,整个气化炉上部传动机构取消,只保留煤锁下料口到炉膛的储煤空间,结构简单。 炉篦分为五层,从下到上逐层叠合固定在底座上,顶盖呈锥形,炉篦材质选用耐热、耐磨的铬锰合金钢铸造。最底层炉炉篦的下面设有三个灰刮刀安装口,灰刮刀的安装数量由气化原料煤的灰分含量来决定,灰分含量较少时安装1~2把刮刀,灰分含量较高时安装3把刮刀。支承炉篦的止推轴承体上开有注油孔,由外部高压注油泵通过油管注入止推轴承面进行润滑。该润滑油为耐高温的过热缸油。炉篦的传动采用液压电动机(采用变频电动机)传动。液压传动具有调速方便,结构简单,工作平稳等优点。但为液压传动提供动力的液压泵系统设备较多,故障点增多,由于气化炉直径较大。为使炉篦受力均匀,采用两台电动机对称布置。 在该炉型中,煤锁与灰锁的上、下锥形阀都有了较大的进步,采用硬质合金密封面,使煤、灰锁的运行时间延长,故障率减少。南非sasol公司在煤灰锁上、下锥阀的密封面采用了碳化硅粉末合金技术,使锥形阀的使用寿命延长到18个月以上。 5.第四代加压气化炉 第四代加压气化炉是在第三代的基础上加大了气化炉的直径(达Ф5m),使

浅述鲁奇炉造气工艺

酒泉职业技术学院毕业论文(设计) 2008 级石油化工生产技术专业 题目:浅述鲁奇炉造气工艺 毕业时间:2011年6月 学生姓名:田艺林 指导教师:李丽 班级:2008石化(2)班 二〇一一年四月二十日

酒泉职业技术学院2011 届各专业 毕业论文成绩评定表 说明:1.以上各栏必须按要求逐项填写。2.此表附于毕业论文(设计)封面之后。

浅述鲁奇炉造气工艺 摘要 本文总结了加压气化装置的改进和管理经验。事实表明,随着工艺的不断改进和生产管理水平的提高,鲁奇加压气化工艺用于贫瘦煤的气化是可行的。新疆庆华集团隶属于中国庆华集团,是新疆第一个经国家核准的煤制天然气项目。新疆庆华集团依托丰富的煤炭资源和水资源,于2009年3月落户伊犁,并以“庆华速度”建成新疆庆华煤化工循环经济工业园,该园区总占地面积达10000多亩,计划总投资278亿元,建设项目包括:年产55亿立方米煤制天然气项目、60万吨煤焦油加氢项目、合成氨项目、综合利用热电厂项目、粉煤灰制砖项目和年产200万吨粉煤灰制水泥项目。整个煤制天然气项目建成投产后,每年需煤炭2100万吨,每年可实现销售收入160亿元,利税26亿元。 关键词:气化炉的发展,造气系统,煤气冷却,安全防范

一、概述 (一)简述 我国石油和化学工业在快速发展的同时,正面临着资源、能源和环境等多重压力。由于我国石油和天然气短缺,煤炭相对丰富的资源特征,加之国际油价的持续高位运行状态,煤炭在我国的能源和化工的未来发展中所处的地位会变得越来越重要。 目前,煤炭在我国的能源消费比重不断加大,用于发电和工业锅炉及窑炉的比例大约为70%左右,其余主要是作为化工原料及民用生活。随着煤化工技术的不断发展,煤炭作为化工原料的比重将会得到不断的提高。 传统的煤化工特点是高能耗、高排放、高污染、低效益,即通常所说的“三高一低”。随着科技的不断进步,新型的煤气化技术得到了快速的发展,煤炭作为化工原料的重要性得到了普遍的认可。煤化工目前采用的方法主要有三个途径:煤的焦化、煤的气化、煤的液化。由于最终产品的不同,三种途径均有存在的市场。煤焦化的直接产品主要有焦炭、煤焦油及焦炉气,煤气化的直接产品主要有合成气、一氧化碳和氢气,煤液化后可直接得到液体燃料。 煤焦化产业相对比较成熟,煤液化存在直接液化和间接液化两种方法,技术的成熟程度和投资等原因,制约了产业化和规模化的进一步发展。随着煤气化技术的不断成熟,特别是加压气化方法的逐步完善和下游产品的多样化,煤气化已成为我国目前煤化工的重中之重。 煤气化所产生的合成气,成为氮肥(主要是尿素)、甲醇、二甲醚、醋酸等过去主要依赖石油化工产品的主要原料,该技术途径也成为国内目前煤化工所上的主要项目。煤气化除了投资比较小的常压固定床以外,粉煤加压气化(以壳牌和GSP 为主要代表)、水煤浆加压气化(以德士古为主要代表)成为众多厂家引进国外节能环保的主要首选技术。 (二)鲁奇加压气化工艺发展前景展望

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

鲁奇炉加压气化试题库

200#试题 一、填空: 1.气化炉停车情况不同分为:计划停车、事故停车、紧急停车。 2.气化炉空气运行结束时,先断蒸汽,后断空气,切氧时,先通蒸汽,后通氧气。 3.气化剂离开炉篦依次进入灰层、燃烧层、还原层、干馏层、干燥层、预热层。 4.气化炉用煤粒度限定在5—50mm,在该范围内原煤应占总量的90%以上。 5.开车时,氧气、充压煤气管线上盲板处于盲位。 6.200#气化炉开车前,夹套建立液位时,夹套安全阀旁路应处于开位。 7.气化炉正常运行时的最低负荷为3000Nm3/h。 8.气化炉提压时,用来设定气化炉提压速度的调节阀位号为PCV-21/22CP035。 9.实际空气到氧气切换,不应超过3—5分钟,以防止气化炉床层冷却。 10.造成气化炉紧急停车的联锁有12个。 11.汽氧比的选择受灰熔点限制。 12.200#低压蒸汽总管压力控制调节阀位号为PIAH-20CP007。 13.气化炉生产的煤气不合格时,通过200#火炬排放。 14.检修时,工艺对设备应依次做到停车、排放、吹扫、置换、清洗。 15.煤的工业分析包括煤的灰份、水份、挥发份、固定碳等项目。 16.煤锁气气柜的有效容积为 3000 m3。 17.压力容器的安全附件主要指爆破片、安全阀、压力表、液位计、温度计等 18.三级巡检指的是哪三级:厂级、车间级、班组级。 19.鲁奇加压气化炉炉篦减速机润滑油脂牌号是 680#中负荷工业齿轮油,首次加油量 300 升,润滑周期8000H 。其他工号单级泵润滑油脂牌号是 46#抗磨液压油,首次加油量 0.3~ 0.5 升,润滑周期 6个月。 20.鲁奇加压气化炉中低压锅炉水分析内容是 PH 、电导率,控制指标各是 8.5~9.2 、 0.3 。 21.对于单系列气化炉,煤锁的润滑点有2个,灰锁的润滑点有 4个。 22.煤锁上阀,需要200#液压系统采用二次减压,压力减为3.0Mpa。 23.我厂煤锁操作有现场手动、控制室手动、半自动、全自动四种操作方式。 24.CLCR代表:煤锁控制室,CLLP代表:煤锁就地控制盘,NUCL代表:射线料计。 25.CF阀阀采用两个油缸的目的是使CF阀升降平稳。 26.煤锁容积为12.1m3,灰锁有效容积为11.2m3。 27.煤锁只有在BC、DV、CF、PV1、PV2阀关的情况下,TC阀才能开。 28.21WBM005-25-600C01管线的作用:形成微正压,防止粗煤气中杂质进入流量测量管线。 29.200#W001出口煤气温度是187℃,其换热面积是491m2。 30.PV代表:测量值,OP代表:输出值,SP代表:设定值。 31.气化炉出口煤气中CO2升高,CO降低,说明炉内温度低。 32.气化炉空气运行结束时,先断蒸汽,后断空气,切氧时,先通蒸汽,后通氧气。 33.气化压力升高,CH4、CO2含量升高,CO、H2含量降低,O2耗量降低。 34.气化炉切氧、升压、并网过程中,煤锁上阀关,下阀关,灰锁上阀关,下阀关。 35.气化炉切氧后,粗煤气中CO2和O2含量应控制在CO2 30-35%,O2<0.4%。 36.随着气化温度的升高,粗煤气中各成份中的CO2和CH4降低CO和H2升高。 37.气化炉开车时分别提压至 0.4 MPa、 2.1 MPa时进行煤气水切换。 38.空气点火时控制空气量约为 1500 Nm3/h。 39.绝压P绝、表压P表、大气压P大气三者的关系是:P绝= P表+ P大气。 40.鲁奇加压气化炉设计千立方粗煤气耗块煤 0.75 吨,过热蒸汽 1.06 吨,氧气 0.15 千立方。 41.气化炉顶部法兰温度仪表为TZHH-21CT011A/B,联锁值是250℃。

鲁奇加压气化炉

一、Lurgi(鲁奇)加压气化炉 鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。正在运行中的气化炉达数百台,主要用于生产城市煤气和合成原料气。 德国Lurgi加压气化炉压力2.5~4.0MPa,气化反应温度800~900℃,固态排渣,一小块煤(对入炉煤粒度要求是6mm以上,其中13mm以上占87%,6~13mm占13%)原料、蒸汽-氧连续送风制取中热值煤气。气化床层自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长,技术经济指标差,对低温焦油及含酚废水的处理难度较大,环保问题不易解决。 鲁奇炉的技术特点有以下几个方面: ①鲁奇碎煤气化技术系固定床气化,固态排渣,适宜弱粘结性碎煤(5~50mm)。 ②生产能力大。自工业化以来,单炉生产能力持续增长。例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,其产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×104m3/(h·台)。这种持续增长,主要是靠操作的不断改进。 ③气化炉结构复杂,炉内设有破黏和煤分布器、炉篦等转动设备,制造和维修费用大。 ④入炉煤必须是块煤,原料来源受一定限制。 ⑤出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。 至今世界上共建有107台炉子,通过扩大炉径和增设破黏装置后,提高了气化强度和煤种适应性。煤种涉及到次烟煤、褐煤、贫煤,用途为F-T合成、天然气、城市煤气、合成氨,气化能力8000~100000m3/h,气化内径最大5.0m,装置总规模1100~11600t/d。 与UGI炉相比,Lurgi炉有效地解决了UGI炉单炉产气能力小的问题。山西化肥厂单台气化炉最大生产能力达38000 m3/h(标)。同时,由于在生产中使用了碎煤,

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨 发表时间:2019-05-17T08:58:24.053Z 来源:《电力设备》2018年第33期作者:卢天宇 [导读] 摘要:随着近些年来我国鲁奇加压气化炉在煤化工领域应用越来越普及,其在运行、技术改造方面的管理维护要求也在持续增加。(内蒙古大唐国际克什克腾煤制天然气有限责任公司 025350) 摘要:随着近些年来我国鲁奇加压气化炉在煤化工领域应用越来越普及,其在运行、技术改造方面的管理维护要求也在持续增加。文章首先分析了鲁奇加压气化炉的技术特征与技术原理,其次对鲁奇加压气化炉运行与技术改造的内容进行了简要探讨,并在最后结合实例对技术改造升级前景进行了探索,希望能够为鲁奇加压气化炉在工业领域的应用和推广创造条件。 关键词:鲁奇炉;加压气化技术;技术改造 鲁奇炉最早由德国鲁奇公司研制成果,并在上个世纪的三十年代在西方应用并推广。最初其技术相对不太成熟,燃烧值较低的煤炭在进行试验时还不太稳定。但是,随着技术升级与发展,其目前已经能够满足大多数煤化工企业的生产实际需要,目前国内煤化工领域应用最多的也是鲁奇加压气化炉这种设备。为了进一步分析鲁奇加压气化炉的运行和技术改造策略,现就其技术特征、技术原理简要分析如下。 一、鲁奇加压汽化炉概述 1.技术特征 鲁奇炉加压气化技术是一种借助于炭和氧气燃烧产生热量作为二氧化碳、水蒸气发生的吸热反应所需要的能量的技术,该技术在应用中会产生粗煤气这种产物,该产物的主要成分包括有二氧化碳、一氧化碳、氢气以及甲烷等类型的气体。 2.技术原理 在原料煤经过煤锁并进入到气化炉之后,在一定的压力调节影响下,顺次经过干燥、干馏以及气化等影响,最终进入到燃烧层。在整个过程中,煤当中的炭物质会随着气化剂进入到最终的燃烧反应环节当中,反应产生的炉渣通过热量的传递进入到气化剂当中,最终经过炉篦排出。在气化层中会生成多种多样的物质,包括有甲烷、有机物以及有机物和焦油等,同时还有焦油、一氧化碳等物质,这些都会经由气化炉进入到洗涤器当中,最终产生的物质就是粗煤气。经过洗涤后再进行加工,即可得到成品产物。 二、鲁奇加压气化炉运行与技术改造内容 1.技术改造中常出现的问题 在技术改造中出现的问题主要涉及到灰锁充卸装置出现严重的磨损、传动主轴与轴套出现异常,同时润滑不足导致出现止推轴承损坏等。除此之外,还有灰锁煤锁上下阀出现泄漏以及出现阀芯脱离等问题。上述问题的出现会在很大程度上影响到鲁奇炉的正常使用,同时也会带来运行安全风险与故障隐患,一些故障处理不善会带来巨大的经济损失与经营风险,需要给与高度的关注。 2.技术改造原因分析与优化改进策略 2.1主轴密封 在进行气化炉的转动轴进行分析时发现,由于密封条件存在明显的缺陷,会导致漏气故障十分严重,甚至出现多次爆炸问题。在轴密封过程中,机械密封可以更改为其他密封方式进行处理,或者借助于不同的填料密封方式进行密封。其中,大轴通过填料的结合可以对不锈钢焊层进行处理,从而最大限度解决了填料部分存在的问题与缺陷,还可以在一定程度上避免出现表面麻点,降低腐蚀影响,这样也可以让密封漏气的情况得到控制和根本性的解决。 2.2炉篦故障处理 在鲁奇加压气化炉的运行过程中,炉篦可以说是最为核心的部分之一,其功能不但在于可以实现气化反应的过程控制,同时也能够调整氧气的分布情况,甚至最后的炉渣排出也需要经过其控制。通过对炉篦进行维护管理,可以有效延长炉体的使用寿命与工作效率,这对于长期稳定使用具有重要的价值。在第一代鲁奇炉当中,炉篦的高度为630mm,此时设计气化剂采用了三层分布的方式,分别采用ABC三种层级,根据实际需要设计的通风面积为10%,40%以及60%。随后,结合气化剂的分布以及内容物要求,其分布的密集程度进行了适当调整,炉篦的分布密集程度得到了有效的控制,此时形成烧结块后,煤质的质地较差,能够形成的烧结块的炉篦性能又不强,所以此时随着炉篦的使用上述问题会进一步恶化,严重影响后期的正常使用。在经过相应的改造后新型炉篦的倾角度数显著提高,此时达到了35°,与灰渣的运动安息脚十分接近,在改造过程中还添加了防磨板,通过通风面积的调整,严格按照上述设计要求进行了设计,有效解决了原来存在的各种问题,提升了设计水平与技术优化效果。 2.3气化炉主轴套处理 气化炉在进行主轴套的处理时选择了材质的更换,更换后使用耐磨铸铁材质,此时的上下轴套之间的润滑依然达不到预期的要求,同时存在有磨损严重、运行周期较短的问题。在改造中通过将轴套材质进行更改,同时做好部分堆焊处理工作,在很大程度上实现了对原来材料硬度不足问题的改进,再加上气化炉在停车备用过程中管理不足,出现了炉内冷却水影响后锈蚀的情况。结合上述问题,采用了适当的改进技术,在确保密封性与稳定性的前提下,随着轴承工作温度的提升,密封的可靠性也得到了提升。通过更换高温润滑技术,采用更先进的高温润滑技术,也在一定程度上改善了上述问题,提升了气化炉主轴套的处理水平。 2.4气化炉炉內测温 为了更好的分析气化炉的内部反应层所发生的温度变化,可以借助于卡萨利公司的氨合成塔进行温度的测控,通过对内部的温度测控系统进行改造来使得内部的温度能够得到良好的控制,同时也为气化炉的控制工艺得到良好的应用创造条件。 2.5煤锁部分 在进行煤锁的上下阀改造时发现,之前的上下阀存在运行周期过短以及密封不足的问题,经常出现泄漏的情况。在煤锁上下阀的密封面材料升级时选择了硬质合金进行升级,同时采用了分离式的设计方法,这样一来无论是加工还是后期的维修养护都变得十分便利,也可以在最大程度上限制泄漏的问题。 三、鲁奇加压气化炉运行与技术改造发展策略 1.灰锁上下阀使用寿命 结合工业实际操作中的情况来看,灰锁的上下阀寿命往往是整个鲁奇加压气化炉的运行周期主要影响因素。经过一定的技术改造后,

相关文档
最新文档