矢量栅格一体化数据结构

矢量栅格一体化数据结构
矢量栅格一体化数据结构

矢量栅格一体化数据结构

一、矢量、栅格数据结构的优缺点

矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。

矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM直接进行联合空间分析。

栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。

栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。

在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。

矢栅一体化的概念

对于面状地物,矢量数据用边界表达的方法将其定义为多边形的边界和一内部点,多边形的中间区域是空洞。而在基于栅格的GIS中,一般用元子空间充填表达的方法将多边形内任一点都直接与某一个或某一类地物联系。显然,后者是一种数据直接表达目标的理想方式。对线状目标,以往人们仅用矢量方法表示。

事实上,如果将矢量方法表示的线状地物也用元子空间充填表达的话,就能将矢量和栅格的概念辨证统一起来,进而发展矢量栅格一体化的数据结构。假设在对一个线状目标数字化采集时,恰好在路径所经过的栅格内部获得了取样点,这样的取样数据就具有矢量和

栅格双重性质。一方面,它保留了矢量的全部性质,以目标为单元直接聚集所有的位置信息,并能建立拓扑关系;另一方面,它建立了栅格与地物的关系,即路径上的任一点都直接与目标建立了联系。

因此,可采用填满线状目标路径和充填面状目标空间的表达方法作为一体化数据结构的基础。每个线状目标除记录原始取样点外,还记录路径所通过的栅格;每个面状地物除记录它的多边形周边以外,还包括中间的面域栅格。无论是点状地物、线状地物、还是面状地物均采用面向目标的描述方法,因而它可以完全保持矢量的特性,而元子空间充填表达建立了位置与地物的联系,使之具有栅格的性质。这就是一体化数据结构的基本概念(图2-4-2)。从原理上说,这是一种以矢量的方式来组织栅格数据的数据结构。

三个约定和细分格网法

(一)三个约定

为了设计点、线、面状地物具体的一体化数据结构,首先作如下约定:

1、地面上的点状地物是地球表面上的点,它仅有空间位置,没有形状和面积,在计算机内部仅有一个位置数据。

2、地面上的线状地物是地球表面的空间曲线,它有形状但没有面积,它在平面上的投影是一连续不间断的直线或曲线,在计算机内部需要用一组元子填满整个路径。

3、地面上的面状地物是地球表面的空间曲面,并具有形状和面积,它在平面上的投影是由边界包围的紧致空间和一组填满路径的元子表达的边界组成。

(二)细分格网法

由于一体化数据结构是基于栅格的,表达目标的精度必然受栅格尺寸的限制。可利用细分格网法提高点、线(包括面状地物边界)数据的表达精度,使一体化数据结构的精度达到或接近矢量表达精度。

如图2-4-3所示,在有点、线通过的基本格网内再细分成256×256细格网(精度要求低时,可细分为16×16个细格网)。为了与整体空间数据库的数据格式一致,基本格网和细格网均采用十进制线性四叉树编码,将采样点和线性目标与基本格网的交点用两个Morton码表示(简称M码)。前一M1表示该点(采样点或附加的交叉点)所在基本格网的地址码,后者M2 表示该点对应的细分格网的Morton码,亦即将一对X,Y坐标用两个Morton 码代替。例如X=,Y=,可转换为M1 =275,M2=2690。

这种方法可将栅格数据的表达精度提高256倍,而存贮量仅在有点、线通过的格网上增加两个字节(当细分为16×16格网时,存贮量仅增加一个字节,精度提高16倍)。

矢栅一体化数据结构的设计

线性四叉树编码、三个约定和多级格网法为建立矢栅一体化的数据结构奠定了基础。线性四叉树是基本数据格式,三个约定设计点、线、面数据结构的基本依据,细分格网法保证

足够精度。

1、点状地物和结点的数据结构

根据基本对点状地物的约定,点仅有位置、没有形状和面积,不必将点状地物作为一个覆盖层分解为四叉树,只要将点的坐标转化为地址码M1 和M2 ,而不管整个构形是否为四叉树。这种结构简单灵活,便于点的插入和删除,还能处理一个栅格内包含多个点状目标的情况。

所有的点状地物以及弧段之间的结点数据用一个文件表示,其结构见表2-4-1。可见,这种结构几乎与矢量结构完全一致。

2、线状地物的数据结构

一般认为用四叉树表达线状地物是困难的。但采用元子填满整条路径的方法,它的数据结构将变得十分简单。根据对线状地物的约定,线状地物有形状但没有面积,没有面积意味着线状地物和点状地物一样不必用一个完全的覆盖层分解四叉树,而只要用一串数据表达每个线状地物的路径即可,表达一条路径就是要将该线状地物经过的所有栅格的地址全部记录下来。一个线状地物可能有几条弧段组成,所以应先建立一个弧段数据文件,如表2-4-2所示。

表2-4-2中的起结点号和终结点号是该弧段的两个端点,它们与表2-4-1联接可建立弧段与结点间的拓扑关系。表2-4-2中的中间点串不仅包含了原始采样点(已转换成用M1、M2表示),而且包含了该弧段路径通过的所有格网边的交点,它所包含的码填满了整条路径。为了充分表达线性地物在地表的空间特性,增加高程Z分量。一条线性地物是在崎岖的地面上通过的,只有记录该曲线通过的DEM格网边上的交点的坐标和高程值才能较好地表达它的空间形状和长度。

虽然这种数据结构比单纯的矢量结构增加了一定的存储量,但它解决了线状地物的四叉树表达问题,使它与点状、面状地物一起建立统一的基于线性四叉树编码的数据结构体系。这对于点状地物与线状地物相交,线状地物之间的相交,以及线状地物与面状地物相交的查询问题变得相当简便和快速。

有了弧段数据文件,线状地物的数据结构仅是它的集合表示,如表2-4-3。

3、面状地物的数据结构

根据对面状地物的约定,一个面状地物应记录边界和边界所包围的整个面域。其中边界由弧段组成,它同样引用表2-4-2中的弧段信息。面域信息则由线性四叉树或二维行程编码表示。

同一区域的各类不同地物可形成多个覆盖层,例如建筑物、耕地、湖泊等可形成一

个覆盖层,土地利用类型、土壤类型又可形成另外两个覆盖层。这里规定每个覆盖层都是单值的,即每个栅格内仅有一个面状地物的属性值。每个覆盖层可用一棵四叉树或一个二维行程编码来表示。为了建立面向地物的数据结构,做这样的修改,二维行程编码中的属性值可以是叶结点的属性值,也可以是指向该地物的下一个子块的循环指针。即用循环指针将同属于一个目标的叶结点链接起来,形成面向地物的结构。

图2-4-4是链接情况,表2-4-4、表2-4-5是对应的二维行程编码、带指针的二维行程码。表2-4-5中的循环指针指向该地物下一个子块的地址码,并在最后指向该地物本身。这样,只要进入第一块就可以顺着指针直接提取该地物的所有子块,从而避免像栅格数据那样为查询某一个目标需遍历整个矩阵,大大提高了查询速度。

对于面状地物的边界栅格,采用面积占优法确定公共格网值,如果要求更精确地进行面积计算或叠置运算,可进一步引用弧段的边界信息。

面状地物的数据结构包括表2-4-2的弧段文件、表5的带指针二维行程表和表2-4-6的面文件。

这种数据结构是面向地物的,具有矢量的特点。通过面状地物的标识号可以找到它的边界弧段并顺着指针提取所有的中间面块。同时它又具有栅格的全部特性,二维行程本身就是面向位置的结构,表2-4-5中的Morton码表达了位置的相互关系,前后M码之差隐含了该子块的大小。给出任意一点的位置都可在表2-4-5中顺着指针找到面状地物的标识号确定是哪一个地物。

4、复杂地物的数据结构

由几个或几种点、线、面状简单地物组成的地物称为复杂地物。例如将一条公路上的中心线、交通灯、立交桥等组合为一个复杂地物,用一个标识号表示。复杂地物的数据结构如表4-4-7所示。

GIS矢量数据和栅格数据知识点

栅格数据和矢量数据 矢量数据 定义: ?矢量数据结构通过记录空间对象的坐标及空间关系来表达空间对象的位置。 ?点:空间的一个坐标点; ?线:多个点组成的弧段; ?面:多个弧段组成的封闭多边形; 获取方法 ?定位设备(全站仪、GPS、常规测量等) ?地图数字化 ?间接获取 ●栅格数据转换 ●空间分析(叠置、缓冲等操作产生的新的矢量数据) 矢量数据表达考虑内容 ?矢量数据自身的存储和管理 ?几何数据和属性数据的联系 ?空间对象的空间关系(拓扑关系) 矢量数据表达 ?简单数据结构 ?拓扑数据结构 ?属性数据组织 矢量数据结构编码方式 实体式 索引式 双重独立式 链状独立 栅格数据 定义 以规则像元阵列表示空间对象的数据结构,阵列中每个数据表示空间对象的属性特征。或者说,栅格数据结构就是像元阵列,每个像元的行列号确定位置,用像元值表示空间对象的类型、等级等特征。 每个栅格单元只能存在一个值。 对于栅格数据结构 ●点:为一个像元 ●线:在一定方向上连接成串的相邻像元集合。 ●面:聚集在一起的相邻像元集合。 获取方式: ●遥感数据 ●图片扫描数据 ●矢量数据转换 ●手工方式 栅格数据坐标系 栅格数据压缩编码方案 栅格数据的分层

栅格数据的组织方法 栅格数据特点 编码方式: 直接编码—无压缩编码 链式编码—便界编码 游程长度编码 块式编码 四叉树编码 矢量数据优点: ?表示地理数据的精度较高 ?严密的数据结构,数据量小 ?完整的描述空间关系 ?图形输出精确美观 ?图形数据和属性数据的恢复、更新、综合都能实现 ?面向目标,不仅能表达属性,而且能方便的记录每个目标的具体属性信息缺点: ?数据结构复杂 ?矢量叠置较为复杂 ?数学模拟比较困难 ?技术复杂,特别是软硬件 栅格数据优点: ?数据结构简单 ?空间数据的叠置和组合方便 ?各类空间分析很易于进行 ?数学模拟方便 缺点: ?图形数据量大 ?用大像元减少数据量时,精度和信息量受损 ?地图输出不美观 ?难以建立网络连接关系 ?投影变换比较费时 ?矢量数据结构是一种常见的图形数据结构,它用一系列有序的x、y坐标对表示地理实体的空间位置。 ?矢量结构的特点:属性隐含,定位明显 ?矢量型数据结构按其是否明确表示各地理实体的空间相互关系可分为实体型和拓扑型两大类。 实体型与拓扑型数据结构比较 ?两者都是目前最常用的数据结构模型 实体型代表软件为MapInfo 拓扑型代表软件为ARC/INFO ?它们各具特色 实体型虽然会产生数据冗余和歧异,但易于编辑。 拓扑型消除了数据的冗余和歧异,但操作复杂,甚至会产生新的数据冗余。

ArcGIS进阶_栅格编辑

ArcGIS数据处理——栅格编辑 问题提出: 在矢量化栅格数据时,尤其是进行全自动矢量化时,对栅格数据进行编辑清理,将不需要被数字化的像素清理掉,可以减少大量矢量化后的编辑工作。 数据准备 所使用的数据为存放在e:\data\3.1文件夹下的31地理数据库中的cropmap图像,将其添加到ArcMap 中。 编辑栅格 1. 启动编辑会话 Tips:将图像设为可编辑状态才能进行清理 Step1:单击ArcMap主菜单上的“自定义->扩展模块” Step2:在打开的扩展模块对话框中,勾选ArcScan以激活ArcScan工具条,

Step3:单击关闭按钮,完成ArcScan工具条的激活 Step4:右键单击ArcMap内容列表中的cropmap图像名,在弹出菜单中单击“编辑要素->开始编辑”启动编辑会话 Tips:也可以单击编辑器工具条上的编辑器下拉箭头,选择开始编辑启动编辑会话 Step5:在ArcMap主菜单空白处单击鼠标右键,在弹出菜单中勾选ArcScan加载ArcScan工具条。 Step6:单击ArcScan工具条中的“栅格清理->开始清理”启动清理会话 Step7:单击ArcScan工具条中的“栅格清理->栅格绘画工具条”加载栅格绘画工具条。 2. 进行栅格编辑 栅格编辑工具包括栅格清除和栅格绘制。栅格清除工具用于清除那些不需要被矢量化的像素,栅格绘制工具用于将需要连续矢量化但并末相连的像素连接起来。进行栅格编辑后可以提高自动矢量化 的效率,减少后期的矢量编辑工作。

Step1:单击栅格绘画工具条中的擦除工具图标,鼠标变为一个橡皮擦形状 Step2:用擦除工具在不需要被矢量化的像素上移动以擦除这些像素,如图地编号、图廓线等Tips:“擦除”实际上是将像素的值改变为背景像素的值 Step3:单击栅格绘画工具条中的画笔工具,在断开处绘制以将线连接起来;经过擦除和绘制编辑后,cropmap图像如图: Step4:单击ArcScan工具条的“栅格清理->保存”将修改内容保存至原栅格图像,供矢量化使用。Tips:也可以单击ArcScan工具条的“栅格清理->另存为”将编辑后的栅格保存为新栅格文件。

矢量栅格数据结构的优缺点

§2、4 矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义与操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作与算法的复杂化,作为一种基于线与边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据与栅格表示的影像数据不能直接运算(如联合查询与空间分析),交互时必须进行矢量与栅格转换。矢量数据与DEM(数字高程模型)的交互就是通过等高线来实现的,不能与DEM直接进行联合空间分析。 栅格数据结构就是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像与DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价就是数据量的极大增加。因为只使用行与列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不就是面向实体的,各种实体往往就是叠加在一起反映出来的,因而难以识别与分离。对点实体的识别

需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。 通过以上的分析可以瞧出,矢量数据结构与栅格数据结构的优缺点就是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的与应用特点、可能获得的数据精度以及地理信息系统软件与硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 完

ArcGIS栅格数据矢量化和编辑

实验三 ArcGIS栅格数据矢量化和编辑 一、主要内容 1、掌握ArcMap中地图、数据框架、组图层、数据层等基本概念及相互关系; 2、掌握利用ArcMap进行地图屏幕扫描数字化的主要流程及具体操作; 二、ArcMap基础知识 基本概念 1) 地图—Map (ArcMap document) 在ArcGIS中,一个地图存储了数据源的表达方式(地图,图表, 表格) 以及空间参考。在ArcMap中保存一个地图时,ArcMap将创建与数据的链接,并把这些链接与具体的表达方式保存起来。当打开一个地图时,它会检查数据链接,并且用存储的表达方式显示数据。一个保存的地图并不真正存储显示的空间数据! 2) 数据框架—Data Frame 在“新建地图”操作中,系统自动创建了一个名称为“Layers”的数据框架。在ArcMap中,一个数据框架显示统一地理区域的多层信息。一个地图中可以包含多个数据框架,同时一个数据框架中可以包含多个图层。例如,一个数据框架包含中国的行政区域等信息,另一个数据框架表示中国在世界的位置。但在数据操作时,只能有一个数据框架处于活动状态。在Data View只能显示当前活动的数据框架,而在Layout View可以同时显示多个数据框架,而且它们在版面布局也是可以任意调整的。 3)组图层-- New Group Layer 有时需要把一组数据源组织到一个图层中,把它们看作Contents窗口中的一个实体。例如,有时需要把一个地图中的所有图层放在一起或者把与交通相关的图层(如道路、铁路和站点等)放在一起,以方便管理。 4)数据层 ArcMap可以将多种数据类型作为数据层进行加载,诸如AutoCAD 矢量数据DWG,ArcGIS的矢量数据Coverage、GeoDatabase、TIN 和栅格数据GRID,ArcView的矢量数据ShapeFile,ERDAS的栅格数据ImageFile,USDS的栅格数据DEM等。注意Coverage不能直接编辑,要编辑需要将Coverage转换成ShapeFile。

矢量、栅格数据结构的优缺点资料

矢量、栅格数据结构 的优缺点

§2.4 矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体

的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。 通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 完

ArcGis数据结构转换

ArcGis数据结构转换 地理信息系统的空间数据结构主要有栅格结构和矢量结构,它们是表示地理信息的两种不同方式。栅格结构是最简单最直观的空间数据结构,又称为网格结构(raster或grid cell)或象元结构(pixel),是指将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素,由行、列号定义,并包含一个代码,表示该象素的属性类型或量值,或仅仅包含指向其属性记录的指针。因此,栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。矢量结构是通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体。在地理信息系统中栅格数据与矢量数据各具特点与适用性,为了在一个系统中可以兼容这两种数据,以便有利于进一步的分析处理,常常需要实现两种结构的转换。 1.栅格数据向矢量数据的转换 栅格向矢量转换处理的目的,是为了将栅格数据分析的结果,通过矢量绘图装置输出,或者为了数据压缩的需要,将大量的面状栅格数据转换为由少量数据表示的多边形边界,但是主要目的是为了能将自动扫描仪获取的栅格数据加入矢量形式的数据库。 由栅格数据可以转换为3种不同的矢量数据,分为点状、线状和面状的矢量数据。下面以栅格数据转换为面状矢量数据为例进行说明,其他两种转换操作大同小异,这里不再具体说明。 (1)展开Conversion Tools工具箱,打开From Raster 工具集,双击Raster to Polygon,打开Raster to Polygon对话框(图1)。 图1 Raster to Polygon对话框 (2)在Input raster文本框中选择输入需要转换的栅格数据。 (3)在Output Polygon Features文本框键入输出的面状矢量数据的路径与名称。 (4)选择Simplify Polygons按钮(默认状态是选择),可以简化面状矢量数据的边界形状。(5)单击OK按钮,执行转换操作。

栅格跟踪矢量化

本章内容 练习一:栅格跟踪 练习二:批量矢量化 ArcScan是ArcGIS中一个把扫描栅格转化为矢量GIS图层的工具,这个过程可以交互式或自动进行。 要学习ArcScan最简单的方式就是完成本章的练习。 练习一显示的是怎样去设置栅格捕捉选项和环境,捕捉栅格像元并跟踪栅格像元来创建线状要素和面状要素。 联系二显示的是怎样去编辑栅格图层,删掉不必要的像元,应用矢量化设置和利用批量矢量化模式来生成矢量要素。 每个练习大约在花费15到20分钟来完成。 练习一:栅格跟踪 ArcScan使得从扫描栅格上建立新要素变得简单,这个过程可以减少在矢量数据库中一体化栅格数据的时间。 在本练习中,你可以从扫描地图中通过跟踪栅格像元来生成矢量要素,你开始必须启动ArcMap和导入一个包含栅格数据、两个shape文件的地图文档。 启动ArcMap 在作这个练习之前你必须先启动ArcMap并导入练习数据。 1、在开始菜单中或桌面上双击ArcMap的快捷方式来启动ArcMap。

2、单击标准工具栏上的Open按钮 3、在ArcScan目录中选择ArcScanTrace.mxd,这个文件一般在安装的练习数据中(默认在C:\ArcGIS\ArcTutor) 4、点击Open. 改变栅格图层的特征 栅格图像必须变为为单色才能利用ArcScan工具和命令,通过拉伸来改变栅格特征成为单一值。 1、在ArcMap的Table of Contents中选择ParcelScan.img栅格图层,右击并选择Properties。 2、在Properties对话框中单击Symbology页面。 3、在Show框中,单击Unique Values。

矢量、栅格数据结构的优缺点

§矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 精

实验三、ArcMap栅格数据矢量化

实验三、ArcMap栅格数据矢量化 一、主要内容 1、掌握ArcMap中地图、数据框架、组图层、数据层等基本概念及相互关系; 2、掌握利用ArcMap进行地图屏幕扫描数字化的主要流程及具体操作; 二、ArcMap基础知识 基本概念 1) 地图—Map (arcMap document) 在ArcGIS中,一个地图存储了数据源的表达方式(地图,图表, 表格) 以及空间参考。在ArcMap中保存一个地图时,ArcMap将创建与数据的链接,并把这些链接与具体的表达方式保存起来。当打开一个地图时,它会检查数据链接,并且用存储的表达方式显示数据。一个保存的地图并不真正存储显示的空间数据! 2) 数据框架—Data Frame 在“新建地图”操作中,系统自动创建了一个名称为“Layers”的数据框架。在ArcMap 中,一个数据框架显示统一地理区域的多层信息。一个地图中可以包含多个数据框架,同时一个数据框架中可以包含多个图层。例如,一个数据框架包含中国的行政区域等信息,另一个数据框架表示中国在世界的位置。但在数据操作时,只能有一个数据框架处于活动状态。在Data View只能显示当前活动的数据框架,而在Layout View可以同时显示多个数据框架,而且它们在版面布局也是可以任意调整的。 3)组图层-- New Group Layer 有时需要把一组数据源组织到一个图层中,把它们看作Contents窗口中的一个实体。例如,有时需要把一个地图中的所有图层放在一起或者把与交通相关的图层(如道路、铁路和站点等)放在一起,以方便管理。 4)数据层 ArcMap可以将多种数据类型作为数据层进行加载,诸如AutoCAD矢量数据DWG,ArcGIS的矢量数据Coverage、GeoDatabase、TIN和栅格数据GRID,ArcView的矢量数据ShapeFile,ERDAS的栅格数据ImageFile,USDS的栅格数据DEM等。注意Coverage 不能直接编辑,要编辑需要将Coverage转换成ShapeFile。 5)shape的要素类型 point、polyline、Polygon、Multipoint、MultiPatch. 三、ArcScan矢量化具体内容及操作 ArcScan ARCSCAN是ARC/INFO的扫描图预处理及矢量化模块,具有噪音消除、斑点剔除、交互式线状要素跟踪、栅格到矢量的批处理、栅格与矢量数据的一体化编辑功能。ArcScan是ArcGIS中一个把扫描栅格转化为矢量GIS图层的工具,这个过程可以交互式或自动进行。 ArcScan工具使用的几个前提是: 1, ArcScan扩展模块必须激活 2, ArcMap中添加了至少一个栅格数据层(TIF IMG图象等)和至少一个矢量数据层(可以是点线面等) 3, 栅格数据必须进行过二值化处理(变为黑白图片) 4, Editor必须启动 练习1:栅格跟踪 ArcScan使得从扫描栅格上建立新要素变得简单,这个过程可以减少在矢量数据库中一体化栅格数据的时间。

栅格数据结构和矢量数据结构空间分析

一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM数字高程模型)的交互是通过等高线来实现的,不能与DEM 直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1 ),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等

ArcGIS专题操作之-自动矢量化

实验一使用ArcScan进行自动矢量化 专业年级::学号: 一、实验目的:了解ArcGIS中ArcScan工具,掌握使用ArcScan进行自动矢量化的技术;掌握线要素转化为面要素的方法。 二、实验要求: 1.栅格图象的二值化 2.对栅格图像进行校准和配准。 3.创建要素层(点线面图层) 4.使用ArcScan进行自动矢量化 5.线要素转化为面要素 三、实验内容: 1.栅格图象的二值化 1、灰度图像二值化:直接利用属性工具框进行二值化,先将xujiapeng.img加载进来,右击选porperties,点击symbology/show下unique values ,右侧将1设为白色,0设为黑色 2、彩色图像二值化:, 1)将landuse.jpg加载进来 2)将彩色图像转为连续灰度图像:右击选择porperties,打开属性框,选择symbology/show 下的stretched,点击Ok 3)利用空间分析模块确定分值界限,将spatial analyst模块调出来 a、利用spatial analyst/reclassify重分类确定界限 b、利用栅格计算器raster calculator进行分界([landuse.jpg] <= 160)

c、将背景设为白色,图线设为黑色:右击选porperties,点击symbology/show下unique values ,右侧将1设为白色,0设为黑色 3.创建要素层(点线面图层) 在ArcCatalog下建立点线面要素层 4.使用ArcScan进行自动矢量化 ArcScan激活条件:图是二值化图,并与Editor同时使用(start editor并且target为矢量化 的目标类型) 1)将建立好的点线面要素层拖入ArcMap中,利用将徐家棚图像二值化或按彩色二值化步骤将landuse.jpg二值化 2)点击按钮,打开raster sanpping option对话框(如下图)设置线的矢量化宽度及多少像素作为实体块来提取 3)设置捕捉,点击Editor/snap,在下框选按中心和交叉点矢量化

(完整word版)矢量栅格一体化数据结构

矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 矢栅一体化的概念 对于面状地物,矢量数据用边界表达的方法将其定义为多边形的边界和一内部点,多边形的中间区域是空洞。而在基于栅格的GIS中,一般用元子空间充填表达的方法将多边形内任一点都直接与某一个或某一类地物联系。显然,后者是一种数据直接表达目标的理想方式。对线状目标,以往人们仅用矢量方法表示。 事实上,如果将矢量方法表示的线状地物也用元子空间充填表达的话,就能将矢量和栅格的概念辨证统一起来,进而发展矢量栅格一体化的数据结构。假设在对一个线状目标数字化采集时,恰好在路径所经过的栅格内部获得了取样点,这样的取样数据就具有矢量和栅格双重性质。一方面,它保留了矢量的全部性质,以目标为单元直接聚集所有的位置信息,并能建立拓扑关系;另一方面,它建立了栅格与地物的关系,即路径上的任一点都直接与目标建立了联系。 因此,可采用填满线状目标路径和充填面状目标空间的表达方法作为一体化数据结构的基础。每个线状目标除记录原始取样点外,还记录路径所通过的栅格;每个面状地物除记录它的多边形周边以外,还包括中间的面域栅格。无论是点状地物、线状地物、还是面状地物均采用面向目标的描述方法,因而它可以完全保持矢量的特性,而元子空间充填表达建立了位置与地物的联系,使之具有栅格的性质。这就是一体化数据结构的基本概念(图2-4-2)。从原理上说,这是一种以矢量的方式来组织栅格数据的数据结构。 三个约定和细分格网法 (一)三个约定 为了设计点、线、面状地物具体的一体化数据结构,首先作如下约定:

ARCGIS数据矢量化

测绘工程专业 地图学实习报告 实习内容:ARCGIS的认识 班级:测绘一班 学号:0 姓名:0 指导老师0 时间:第四周

ARCGIS的认识 一、实验目的 1.认识并简单掌握 ArcGIS Desktop的三个部分ArcMap、ArcCatalog、ArcToolBox; 2.能熟练使用ArcMap进行矢量化; 二、实验准备 1.软件准备: 实验前确保笔记本电脑已经安装过中文破解版ARCGIS10.0软件,并且能正常稳定运行。由于破解版软件不稳定,故应反复装载,直到能正常运行为止。 2.实验数据: 图1:矢量化数据 3.知识预备: (1)ArcGIS Desktop是GIS专业人员在编译、使用和管理地理信息时使用的主要产品。它包含全面的专业GIS应用程序,可支持大量GIS任务,包括制图、数据编译、分析、地理数据库管理和地理信息共享等。包括一组应用程序ArcMap、ArcCatalog、ArcGlobe、ArcScene、ArcToolbox和模型构建器。通过使用这些应用程序和界面,可以执行从简单到高级的任何GIS任务。

(2)理解GIS的三种角度: ①GIS就是空间数据库:GIS 是一个包含了用于表达通用GIS 数据模型(要素、栅格、拓扑、网络等等)的数据集的空间数据库。 ②GIS就是地图:从空间可视化的角度看:GIS是一套智能地图,同时也是用于显示地表上的要素和要素间关系的视图。底层的地理信息可以用各种地图的方式进行表达,而这些表现方式可以被构建成“数据库的窗口”,来支持查询、分析和信息编辑。 ③GIS是空间数据处理分析工具集:从空间处理的角度看,GIS 是一套用来从现有的数据集获取新数据集的信息转换工具。这些空间处理功能从已有数据集提取信息,然后进行分析,最终将结果导入到数据集中。 这三种观点在ESRI ArcGIS Desktop中分别用ArcCatalog(GIS是一套地理数据集的观点)、ArcMap(GIS是一幅智能的地图)和ArcToolbox(GIS是一套空间处理工具)来表达。这三部分是组成一个完整GIS的关键内容,并被用于所有GIS应用中的各个层面。ArcMap是ArcGIS Desktop中一个主要的应用程序,具有基于地图的所有功能,包括制图、地图分析和编辑。 三、实验原理 1.矢量和栅格区别: 矢量和栅格是地理信息系统中两种主要的空间数据结构,他们的数据来源、结构和格式都不同。栅格是将空间分割成有规则的网格,在各个栅格单元上给出出相应的属性值来表示地理实体的一种数据组织形式。它是一个规则的阵列,其中各个像元互不影响。矢量数据结构是利用欧几里得几何学中的点、线、面及其组合体来表示地理实体的空间分布的一种数据组合方式,这些要素之间有着密切

ArcMap栅格化矢量数据

在ArcMap中栅格化矢量数据的情况有: 1、将GeoDatasetbase中的FeatureClass或者是基于文件的矢量数据栅格化(ShapeFile,Coverage等等); 2、将TIN栅格化。 要是自己运用ArcGIS engine编程实现,这两种情况的实现过程不相同。在ArcToolBox中,情况下是运用Conversion Tools下的To Raster工具;情况2则是运用3D Analyst下的Conversion Tools‐‐TIN to Raster工具。下面别离介绍如何实现这两种功效。 一、 栅格化FeatureClas在AE9.0的esriGeoAnalyst类库下可以找到接口IConversionOp, 可以实现这个接口的类是RasterConversionOp。 IConversionOp下的方法有:RasterDataToLineFeatureData、RasterDataToPointFeatureData、RasterDataToPolygonFeatureData、ToFeatureData、ToRasterDataset。在ArcGIS Engine的在线帮助中,我们可以找到对应方法的语法。 IConversionOp接口下的RasterDataToLineFeatureData、RasterDataToPointFeatureData、RasterDataToPolygonFeatureData方法可以实现从栅格图层中提取出点状、线状、面状矢量要素,在AE中,可以实现提取矢量要素的栅格对象有Raster,RasterDataset,RasterBand 以及RasterDescriptor;ToRasterDataset方法可以实现将点、线、面、矢量要素栅格化,在AE中,可以举行栅格化的矢量要素对象有 featureclass,featureclassdescriptor,featurelayer;ToRasterDataset方法可以实现矢量要素之间的互相转换。 Set variable=object.ToRasterDataset dataset,rasterFormat,pWorkspace,name 生成的是IRasterDataset对象,输入的参量要求为:dataset必需为 featureclass,featureclassdescriptor,featurelayer对象;ToRasterDataset只支持三种栅格类型ESRI GRID,ERDAS Imagine以及TIFF格式,rasterFormat值为代表这三种类型的字符串,如值为"GRID"则代表ESRI GRID类型,生成没有扩展名的栅格文件,如值为"TIFF",则代表TIFF格式,生成扩展名为".tiff"的栅格文件,如值为"TIF",也代表TIFF格式,生成扩展名为".tif"扩展名的栅格文件,如值为"ERDAS Image",则生成扩展名为".img"格式的栅格文件;参量name的定名规则,要与rasterFormat一致,要带上扩展名。pWorkspace 可以支持ArcGIS Engine中三种Workspace:FileSystemWokspace,Personal GDB,Remote GDB。 利用ToRasterDataset方法栅格化矢量数据时,还要定义分析环境参量,包括地舆分析环境参量,通过执行IGeoAnalysisEnvironment接话柄现;栅格分析环境参量,通过执行IRasterAnalysisEnvironment接话柄现;要是栅格文件保存于GDB中,则还需要设置GDB 环境参量,通过执行IRasterAnalysisGDBEnvironment接话柄现。IRasterAnalysisEnvironment 继承了IGeoAnalysisEnvironment接口,以是也能够直接在IRasterAnalysisEnvironment接口下定义相关的分析环境参量。 (有相关的实现代码) 二、栅格化TIN将其转换为栅格DEM 栅格化TIN应该用ITINSurface接口下的QueryPixelBlock方法。在执行该方法以前,可以定义栅格化时高程的内插方法:ITinSurface‐RasterInterpolationMethod,内插方法有线性内插,以及自然邻居内插,要是本来的TIN中含有软、硬断开线,欲保持地貌形态,推荐将内插方法定义为:esriNaturalNeighborInterpolation。 实现语法为:object.QueryPixelBlock xOrigin,yOrigin,xPixelSize,yPixelSize,Type,valueForNoData,block

基于ArcGIS Engine的栅格数据转换矢量数据

基于ArcGIS Engine的栅格数据转换矢量数据 摘要:ArcGIS提供了栅格数据向矢量数据转换函数,但是有特定的要求。同时,在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,从而可以到达栅格数据转矢量数据的要求。 关键词:ArcGIS Engine ;栅格数据;矢量数据 Abstract: The ArcGIS provides raster data to vector data conversion function, but it has the specific requirements. At the same time, providing the operating raster data function in the ArcGIS Engine, can edit the raster data, to reach the raster data to the vector data requirements. Key words: ArcGIS Engine, raster data, vector data 在日常地理信息数据处理中,会对栅格数据进行各种要求处理,并且最终要求将其转换成矢量数据[1][2][3][4][5]。我们可以采用ArcGIS Engine中提供的操作栅格数据的函数,对栅格数据进行各种编辑,满足对栅格数据的各种操作,同时可以将栅格数据转换成矢量数据。 ArcGIS栅格转矢量工具 在ArcGIS桌面版中打开ArcToolbox找到转换工具->由栅格转出,可以找到具体的栅格转矢量的工具。比较常用的是转点、转线、转面。查看帮助文档可以看到栅格转面矢量的函数是RasterToPolygon_conversion (in_raster, out_polygon_features, {simplify}, {raster_field}),其用法要求为:输入栅格的栅格单元大小可以任意,但必须属于有效的整数型栅格数据集。对栅格数据集要求必须是整数型(指栅格数据中格网像素的数据类型)。然而,在实际数据中大部分栅格数据采用浮点型。在ArcGIS中可以通过查看栅格数据的文件属性来查看栅格数据的像素数据类型,如图1。 由于ArcGIS中栅格转矢量工具的具体要求,所有必须对栅格数据进行像素类型转换;同时,要满足数据转出的其它要求,比如某一个栅格数据中,只要求像素值在某个特定范围的数据转出为矢量数据等各种具体的实际操作要求,有必须对栅格数据进行改写等的操作。在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,所有,有必要运用ArcGIS Engine对栅格数据进行编辑,从而满足栅格转矢量等各种具体要求。

矢量、栅格数据结构的优缺点

§2.4 矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM 直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需

要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。 通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 完

栅格矢量数据的相互转换

栅格、矢量数据的相互转换 地理信息系统空间数据类型主要有矢量和栅格结构。矢量结构包含有拓扑信息,通常应用于空间关系的分析;栅格数据则易于表示面状要素,主要应用于空间分析和图象处理。由于栅格和矢量数据在GIS应用过程中各有其优缺点,所以,一般情况下,同一个GIS系统能够处理、存储栅格和矢量数据。对同一研究区域而言,有时为了分析处理问题的方便,需要实现栅格和矢量数据间的转换(如扫描图象的矢量化,地形图的栅格化)。 矢量向栅格的转换 图3-37 栅格单元属性值的确定 从矢量向栅格转换过程中,应尽量保持矢量图形的精度。在决定属性值时尽可能保持空间变量的真实性和最大信息量。在图3-37中,格网单元对应几种不同的属性值,而每一单元只能取一个值。在这种情况下,有如下一些取值方法。 (1)中心点法:用处于格网单元0处的地物类型或空间特征决定属性值。此时,该单元属性值为C。此法常用于连续分布的地理要素,如降雨量分布、大气污染等; (2)面积占优法:以占单元面积最大的地物类型和空间特征决定格网单元的属性值。此时,栅格单元的属性值为B。面积占优法适合分类较细、地物类别斑块较小的情况; (3)重要性法:根据格网单元内不同地物的重要性,选取最重要的地物类型代表相应的格网单元的属性值。这种方法对于特别重要的地理实体,尽管其面积很小或不在格网的中心,也采取保留的原则。重要性法常用于具有特殊意义而面积较小的地理要素,特别是具有点、线状分布的地理要素,如城镇、交通枢纽、河流水系等。 在进行弧段或多边形的矢量化时,可以利用上述三种方法确定格网的属性值。 为了逼近原图或原始数据精度,除了采用上述几种取值方法外,还可以采用提

基本ArcGIS的地形数据提取与分析

基于ArcGIS10地形数据提取与分析 舒城县林业局汪自胜 摘要:本文以森林资源调查工作实践为例,详细总结了如何利 用ArcGIS10软件对纸质地形图,通过扫描、矢量化生成高程栅格数据;利用高程栅格数据进行等高线加密、高程统计、坡向和坡度分析;以及利用坡向、坡度等地形因子实现自动区划图斑的方法和过程。 关键词:森林资源调查 ArcGIS 地形分析 地形因子是划分森林资源调查图斑的重要因子,在条件有限的 情况下,我们经常是利用纸质地形图,通过人工判定,来确定工作 图斑的海拔、坡向和坡度。准确度受判定人员的业务水平影响较大。利用ArcGIS10的矢量化工具和地形数据分析工具,可以实现对图斑 地形因子的自动判读,甚至可以自动区划图斑。 一、地形图矢量化 要想利用计算机来进行地形分析,首先应对纸质地形图进行扫 描矢量化,将其转化成计算机可以识别的数据格式(见图1)。 图1 地形图灰度栅格图像 地形图矢量化前,需要将纸质图扫描成灰度栅格图像,并对栅 格图像进行二值化处理。 1、在ArcMap中对栅格图像进行符号化处理。分类方法:手动;类别数:2;调整中断值,直到满意为止,记录下中断值; 2、重分类。利用ArcToolbox工具箱中的“空间分析-重分类” 工具,根据记录的中断值,对图像进行重分类,生成二值图(见图2)。

图2 重分类工具设置和二值图 3、矢量化。加载用来保存矢量化成果的点、线要素类文件,在 编辑状态下,运用ArcScan工具开始矢量化。 (1)根据矢量化点、线的栅格宽度,在矢量化设置中设置理想 的最大线宽等参数。可以在完成设置后,运用“显示预览”功能来 查看参数设置是否合理(见图3)。 图3 矢量化设置和效果预览 (2)运用“在区域内部生成要素”工具选择要矢量化的区域, 在弹出的模板对话框中,对点、线要素的模板采用默认设置,完成 自动矢量化。 (3)运用编辑工具清理掉错误短线和噪点,对断开的地方等进 行修补。 (4)将等高线、道路和水系地物进行分层,分别保存到等高线、道路、水系要素类中。

相关文档
最新文档