主要的推荐算法简介

主要的推荐算法简介
主要的推荐算法简介

在推荐系统简介中,我们给出了推荐系统的一般框架。很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣。目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐。

一、基于内容推荐

基于内容的推荐(Content-basedRecommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。在基于内容的推荐系统中,项目或对象是通过相关的特征的属性来定义,系统基于用户评价对象的特征,学习用户的兴趣,考察用户资料与待预测项目的相匹配程度。用户的资料模型取决于所用学习方法,常用的有决策树、神经网络和基于向量的表示方法等。基于内容的用户资料是需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。

基于内容推荐方法的优点是:

λ 1)不需要其它用户的数据,没有冷开始问题和稀疏问题。

λ 2)能为具有特殊兴趣爱好的用户进行推荐。

λ 3)能推荐新的或不是很流行的项目,没有新项目问题。

λ 4)通过列出推荐项目的内容特征,可以解释为什么推荐那些项目。

λ 5)已有比较好的技术,如关于分类学习方面的技术已相当成熟。

缺点是要求内容能容易抽取成有意义的特征,要求特征内容有良好的结构性,并且用户的口味必须能够用内容特征形式来表达,不能显式地得到其它用户的判断情况。

二、协同过滤推荐

协同过滤推荐(Collaborative FilteringRecommendation)技术是推荐系统中应用最早和最为成功的技术之一。它一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。协同过滤最大优点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影。

协同过滤是基于这样的假设:为一用户找到他真正感兴趣的内容的好方法是首先找到与此用户有相似兴趣的其他用户,然后将他们感兴趣的内容推荐给此用户。其基本思想非常易于理解,在日常生活中,我们往往会利用好朋友的推荐来进行一些选择。协同过滤正是把这一思想运用到电子商务推荐系统中来,基于其他用户对某一内容的评价来向目标用户进行推荐。

基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的,即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息,如填写一些调查表格等。

和基于内容的过滤方法相比,协同过滤具有如下的优点:

λ1)能够过滤难以进行机器自动内容分析的信息,如艺术品,音乐等。

λ2)共享其他人的经验,避免了内容分析的不完全和不精确,并且能够基于一些复杂的,难以表述的概念(如信息质量、个人品味)进行过滤。

λ3)有推荐新信息的能力。可以发现内容上完全不相似的信息,用户对推荐信息的内容事先是预料不到的。这也是协同过滤和基于内容的过滤一个较大的差别,基于内容的过滤推荐很多都是用户本来就熟悉的内容,而协同过滤可以发现用户潜在的但自己尚未发现的兴趣偏好。

λ4)能够有效的使用其他相似用户的反馈信息,较少用户的反馈量,加快个性化学习的速度。

虽然协同过滤作为一种典型的推荐技术有其相当的应用,但协同过滤仍有许多的问题需要解决。最典型的问题有稀疏问题(Sparsity)和可扩展问题(Scalability)。

三、基于关联规则推荐

基于关联规则的推荐(Association Rule-basedRecommendation)是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零售业中已经得到了成功的应用。管理规则就是在一个交易数据库中统计购买了商品集X的交易中有多大比例的交易同时

购买了商品集Y,其直观的意义就是用户在购买某些商品的时候有多大倾向去

购买另外一些商品。比如购买牛奶的同时很多人会同时购买面包。

算法的第一步关联规则的发现最为关键且最耗时,是算法的瓶颈,但可以离线进行。其次,商品名称的同义性问题也是关联规则的一个难点。

四、基于效用推荐

基于效用的推荐(Utility-basedRecommendation)是建立在对用户使用项目的效用情况上计算的,其核心问题是怎么样为每一个用户去创建一个效用函数,因此,用户资料模型很大程度上是由系统所采用的效用函数决定的。基于效用推荐的好处是它能把非产品的属性,如提供商的可靠性(VendorReliability)和产品的可得性(Product Availability)等考虑到效用计算中。

五、基于知识推荐

基于知识的推荐(Knowledge-basedRecommendation)在某种程度是可以看成是一种推理(Inference)技术,它不是建立在用户需要和偏好基础上推荐的。基于知识的方法因它们所用的功能知识不同而有明显区别。效用知识(FunctionalKnowledge)是一种关于一个项目如何满足某一特定用户的知识,因此能解释需要和推荐的关系,所以用户资料可以是任何能支持推理的知识结构,它可以是用户已经规范化的查询,也可以是一个更详细的用户需要的表示。

六、组合推荐

由于各种推荐方法都有优缺点,所以在实际中,组合推荐(HybridRecommendation)经常被采用。研究和应用最多的是内容推荐和协同过滤推荐的组合。最简单的做法就是分别用基于内容的方法和协同过滤推荐方法去产生一个推荐预测结果,然后用某方法组合其结果。尽管从理论上有很多种推荐组合方法,但在某一具体问题中并不见得都有效,组合推荐一个最重要原则就是通过组合后要能避免或弥补各自推荐技术的弱点。

在组合方式上,有研究人员提出了七种组合思路:

λ1)加权(Weight):加权多种推荐技术结果。

λ2)变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。

λ3)混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。λ4)特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。

λ5)层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。

λ6)特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。

λ7)元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。

七、主要推荐方法的对比

各种推荐方法都有其各自的优点和缺点,见表1。

常用分析方法

绍的主要方法有六种,分别为:1、对比分析法:将A公司和B公司进行对比、2、外部因素评价模型(EFE)分析、3、内部因素评价模型(IFE)分析、4、swot 分析方法、5、三种竞争力分析方法、6、五种力量模型分析。对比分析法是最常用,简单的方法,将一个管理混乱、运营机制有问题的公司和一个管理有序、运营良好的公司进行对比,观察他们在组织结构上、资源配臵上有什么不同,就可以看出明显的差别。在将这些差别和既定的管理理论相对照,便能发掘出这些差异背后所蕴含的管理学实质。企业管理中经常进行案例分析,将A和B公司进行对比,发现一些不同。各种现象的对比是千差万别的,最重要的是透过现象分析背后的管理学实质。所以说,只有表面现象的对比是远远不够的,更需要有理论分析。外部因素评价模型(EFE)和内部因素评价模型(IFE)分析来源于战略管理中的环境分析。因为任何事物的发展都要受到周边环境的影响,这里的环境是广义的环境,不仅指外部环境,还指企业内部的环境。通常我们将企业的内部环境称作企业的禀赋,可以看作是企业资源的初始值。公司战略管理的基本控制模式由两大因素决定:外部不可控因素和内部可控因素。其中公司的外部不可控因素主要包括:政府、合作伙伴(如银行、投资商、供应商)、顾客(客户)、公众压力集团(如新闻媒体、消费者协会、宗教团体)、竞争者,除此之外,社会文化、政治、法律、经济、技术和自然等因素都将制约着公司的生存和发展。由此分析,外部不可控因素对公司来说是机会与威胁并存。公司如何趋利避险,在外部因素中发现机会、把握机会、利用机会,洞悉威胁、规避风险,对于公司来说是生死攸关的大事。在瞬息万变的动态市场中,公司是否有快速反应(应变)的能力,是否有迅速适应市场变化的能力,是否有创新变革的能力,决定着公司是否有可持续发展的潜力。公司的内部可控因素主要包括:技术、资金、人力资源和拥有的信息,除此之外,公司文化和公司精神又是公司战略制定和战略发展中不可或缺的重要部分。一个公司制定公司战略必须与公司文化背景相联。内部

构建哈夫曼树及输出哈夫曼代码及算法思想

哈夫曼树描述文档 一、思路 通过一个argv[]数组存储从test文件中读取字母,然后利用ascal 码循环计算每个字母的权值,利用weight[]是否为零,确定叶子节点,节点个数为count,传入到构建哈夫曼树的子程序中,然后利用cd[]数组存储每一个叶子节点的哈夫曼代码.输出代码时,通过与argv[]数组的比对,扫描ht数组,进而读出所有的数据。 二、截图 三、代码 #include #include #include typedefstruct { char data; int weight; int parent; intlchild;

intrchild; }HTNode; typedefstruct { char cd[50]; int start; }HCode; using namespace std; int enter(char argv[])//进行读入操作 { fstream in; ofstream out; char c; int number=0;//字母个数置为0 in.open("test.txt",ios::in); //打开文件test.txt out.open ("code.txt",ios::trunc); //打开文件code.txt,如果不存在就新建一个,如果存在就清空 if(!in.eof()) in>>c; //从test.txt中读取一个字符存入c printf("原文本是:\n"); while(! in.eof()){ //文件不为空,循环读取一个字符 cout<>c; //从test.txt中读取一个字符存入c } argv[number]='\0'; printf("\n"); in.close; out.close; //使用完关闭文件 return(number);//返回叶子节点数目 } voidCreateHT(HTNodeht[],int n) { inti,j,k,lnode,rnode; double min1,min2; for(i=0;i<2*n-1;i++) ht[i].parent=ht[i].lchild=ht[i].rchild=-1;//置初值 for(i=n;i<2*n-1;i++) { min1=min2=32167; lnode=rnode=-1; for(k=0;k<=i-1;k++) if(ht[k].parent==-1) {

基于协同过滤的推荐算法及代码实现

基于协同过滤的推荐算法与代码实现 什么是协同过滤? 协同过滤是利用集体智慧的一个典型方法。要理解什么是协同过滤(Collaborative Filtering, 简称CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。 协同过滤一般是在海量的用户中发掘出一小部分和你品位比较类似的,在协同过滤中,这些用户成为邻居,然后根据他们喜欢的其他东西组织成一个排序的目录作为推荐给你。当然其中有一个核心的问题: 如何确定一个用户是不是和你有相似的品位? 如何将邻居们的喜好组织成一个排序的目录? 简单来说: 1. 和你兴趣合得来的朋友喜欢的,你也很有可能喜欢; 2. 喜欢一件东西A,而另一件东西B 与这件十分相似,就很有可能喜欢B; 3. 大家都比较满意的,人人都追着抢的,我也就很有可能喜欢。 三者均反映在协同过滤的评级(rating)或者群体过滤(social filtering)这种行为特性上。 深入协同过滤的核心 首先,要实现协同过滤,需要一下几个步骤: 1. 收集用户偏好 2. 找到相似的用户或物品 3. 计算推荐 (1)收集用户偏好 要从用户的行为和偏好中发现规律,并基于此给予推荐,如何收集用户的偏好信息成为系统推荐效果最基础的决定因素。用户有很多方式向系统提供自己的偏好信息,而且不同的应用也可能大不相同,下面举例进行介绍:

以上列举的用户行为都是比较通用的,推荐引擎设计人员可以根据自己应用的特点添加特殊的用户行为,并用他们表示用户对物品的喜好。 在一般应用中,我们提取的用户行为一般都多于一种,关于如何组合这些不同的用户行为,基本上有以下两种方式: 将不同的行为分组:一般可以分为“查看”和“购买”等等,然后基于不同的行为,计算不同的用户/物品相似度。类似于当当网或者Amazon 给出的“购买了该图书的人还购买了...”,“查看了图书的人还查看了...”

国密算法(国家商用密码算法简介)

国家商用密码算法简介 密码学是研究编制密码和破译密码的技术科学,起源于隐秘消息传输,在编码和破译中逐渐发展起来。密码学是一个综合性的技术科学,与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。密码学的基本思想是对敏感消息的保护,主要包括机密性,鉴别,消息完整性和不可否认性,从而涉及加密,杂凑函数,数字签名,消息认证码等。 一.密码学简介 密码学中应用最为广泛的的三类算法包括对称算法、非对称算法、杂凑算法。 1.1 对称密码 对称密码学主要是分组密码和流密码及其应用。分组密码中将明文消息进行分块加密输出密文区块,而流密码中使用密钥生成密钥流对明文消息进行加密。世界上应用较为广泛的包括DES、3DES、AES,此外还有Serpent,Twofish,MARS和RC6等算法。对称加密的工作模式包括电码本模式(ECB 模式),密码反馈模式(CFB 模式),密码分组链接模式(CBC 模式),输入反馈模式(OFB 模式)等。1.2 非对称密码 公钥密码体制由Diffie和Hellman所提出。1978年Rivest,Shamir和Adleman提出RAS密码体制,基于大素数分解问题。基于有限域上的离散对数问题产生了ElGamal密码体制,而基于椭圆曲线上的离散对数问题产生了椭圆曲线密码密码体制。此外出现了其他公钥密码体制,这些密码体制同样基于困难问题。目前应用较多的包括RSA、DSA、DH、ECC等。 1.3杂凑算法 杂凑算法又称hash函数,就是把任意长的输入消息串变化成固定长的输出串的一种函数。这个输出串称为该消息的杂凑值。一个安全的杂凑函数应该至少满足以下几个条件。 1)输入长度是任意的; 2)输出长度是固定的,根据目前的计算技术应至少取128bits长,以便抵抗生日攻击; 3)对每一个给定的输入,计算输出即杂凑值是很容易的; 4)给定杂凑函数的描述,找到两个不同的输入消息杂凑到同一个值是计算上不可行的,或给定 杂凑函数的描述和一个随机选择的消息,找到另一个与该消息不同的消息使得它们杂凑到同一个值是计算上不可行的。 杂凑函数主要用于完整性校验和提高数字签名的有效性,目前已有很多方案。这些算法都是伪随机函数,任何杂凑值都是等可能的。输出并不以可辨别的方式依赖于输入;在任何输入串中单个比特

16种常用数据分析方法

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度1. 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关; 3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767; for(int x=1;x<=j-1;x++) { if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j;

个性化推荐算法概述与展望

Hans Journal of Data Mining 数据挖掘, 2019, 9(3), 81-87 Published Online July 2019 in Hans. https://www.360docs.net/doc/cc11133957.html,/journal/hjdm https://https://www.360docs.net/doc/cc11133957.html,/10.12677/hjdm.2019.93010 Overview and Prospect of Personalized Recommendation Algorithm Xinxin Li Dalian University of Foreign Languages, Dalian Liaoning Received: Jun. 19th, 2019; accepted: Jul. 2nd, 2019; published: Jul. 9th, 2019 Abstract In recent years, the word “information overload” frequently appears in people’s vision, it has be-come a hot word in the field of computer, and it is also an important problem that researchers ur-gently need to solve. In order to solve the problem of information overload, researchers in the field of computer constantly optimize the personalized recommendation algorithm, strive to re-duce the difficulty of information retrieval for users, to provide users with the best personalized recommendation results. This paper gives a brief overview of the personalized recommendation methods which are widely used and common. Combined with the experience of using personalized recommendation algorithm to generate results in daily life, the author puts forward expectations for the development of personalized recommendation algorithm in the future. Keywords Personalized Recommendation, Collaborative Filtering, Hybrid Recommendation 个性化推荐算法概述与展望 李鑫欣 大连外国语大学,辽宁大连 收稿日期:2019年6月19日;录用日期:2019年7月2日;发布日期:2019年7月9日 摘要 近年来,“信息过载”一词频繁出现在人们的视野中,它成为了计算机相关领域中的热门词汇,同时它也是研究人员急待解决的重要问题。为解决信息超载的问题,计算机领域研究人员不断优化个性化推荐

哈夫曼算法及其改进

霍夫曼编码及其改进 在通信中,为了提高信息传输效率,得到或接近信息熵的最小信息率,我们需要解决信源编码的问题。在信源编码中,我们试图让信源编码的平均码长尽可能缩短,减少冗余度,从而提高编码效率。信源编码又分为无失真信源编码和限失真信源编码。 哈夫曼编码(Huffman Coding)是一种无失真编码方式,是可变字长编码(VLC)的一种,由Huffman于1952年提出,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。哈夫曼编码是一种最优的前缀编码技术。 对于多元独立信源,哈夫曼编码为最佳编码,之所以称之为最佳编码,因为其拥有以下特性:(1) 保证概率大的对应短码,概率小的对应长码,即短码得到充分利用;(2) 每次缩减信源的最后两个码字,总是最后面的一个码元不同,而前面的各个码元相同;(3) 每次缩减信源的最长两个码字有相同的码长。 平均码长n=2×10+8 38+3×7+6+3 38 +4×2 38 +5×1+1 38 =2.68 冗余度 哈夫曼编码是一种非唯一性编码,其编码方式并不唯一。首先,因为对缩减信源最后两个概率小的符号用0和1码的赋予可以是任意的,故可以得到不同的码,但是它们只是码的具体形式不同。其码长n不变,平均码长?也不变,所以没有本质区别。其次,若当缩减信源中合并后的符号概率与其他信源符号概率相同时,从编码方法上说哪个在上面哪个在下面是没有本质区别的,但是得到的码是不相同的对这两种不同的码,它们的码长n不同,但是平均码长?是相同的。 为了克服哈夫曼编码方式存在的问题,提高哈夫曼编码的可用性,我们需要设法降低哈夫曼编码树的存储空间。在数据特定的情况下,我们可以让编码器和解码器使用事先约定的编码树,如此可以消除哈夫曼树生成和传输储存的时间,但是当信源变化,此种方法就不再适用,不具备通用性。

基于内容的推荐算法

基于内容的推荐算法(Content-Based Recommendation)1.基本思想 基本思想就是给用户推荐与他们曾经喜欢的项目内容相匹配的新项目。 基于内容的推荐的基本思想是:对每个项目的内容进行特征提取(FeatureExtraction),形成特征向量(Feature Vector);对每个用户都用一个称作用户的兴趣模型(User Profile)的文件构成数据结构来描述其喜好;当需要对某个用户进行推荐时,把该用户的用户兴趣模型同所有项目的特征矩阵进行比较得到二者的相似度,系统通过相似度推荐文档。 (基于内容的推荐算法不用用户对项目的评分,它通过特定的特征提取方法得到项目特征用来表示项目,根据用户所偏好的项目的特征来训练学习用户的兴趣模型,然后计算一个新项目的内容特征和用户兴趣模型的匹配程度,进而把匹配程度高的项目推荐给用户。) 2.基于内容的推荐层次结构图:

CB的过程一般包括以下三步: (1)Item Representation:为每个item抽取出一些特征(也就是item的content 了)来表示此item;对应着上图中的Content Analyzer。 (2)Profile Learning:利用一个用户过去喜欢(及不喜欢)的item的特征数据,来学习出此用户的喜好特征(profile);对应着上图中的Profile Learner。 (3)Recommendation Generation:通过比较上一步得到的用户profile与候选item 的特征,为此用户推荐一组相关性最大的item。对应着上图中的Filtering Component。 3.详细介绍上面的三个步骤: 3.1 Item Representation 项目表示:对项目进行特征提取,比如最著名的特征向量空间模型,它首先将一份文本(项目)以词袋形式来表示,然后对每一个词用词频-逆向文档频率(TF-IDF)来计算权重,找出若干权重较大的词作为关键词(特征)。每个文本(项目)都可以表示成相同维度的一个向量 TF-IDF词频-逆文档频率计算: TF 词项t在文档d中出现的次数,df 表示词项t在所有文档出现的次数,idf 为反向文档频率,N为文档集中所有文档的数目。 TF-IDF公式同时引入词频和反向文档频率,词频TF表示词项在单个文档中的局部权重,某一词项在文档中出现的频率越高,说明它区分文档内容的属性越强,权重越大。IDF表示词项在整个文档集中的全局权重,某一词项在各大文档都有出现,说明它区分文档类别属性的能力越低,权值越小。

转 常用加密算法介绍

转常用加密算法介绍 5.3.1古典密码算法 古典密码大都比较简单,这些加密方法是根据字母的统计特性和语言学知识加密的,在可用计算机进行密码分析的今天,很容易被破译。虽然现在很少采用,但研究这些密码算法的原理,对于理解、构造和分析现代密码是十分有益的。表5-1给出了英文字母在书报中出现的频率统计。 表5-1英文字母在书报中出现的频率 字母 A B C D E F G H I J K L M 频率 13.05 9.02 8.21 7.81 7.28 6.77 6.64 6.64 5.58 4.11 3.60 2.93 2.88 字母 N O P Q

R S T U V W X Y Z 频率 2.77 2.62 2.15 1.51 1.49 1.39 1.28 1.00 0.42 0.30 0.23 0.14 0.09 古典密码算法主要有代码加密、替换加密、变位加密、一次性密码簿加密 等几种算法。 1.代码加密 代码加密是一种比较简单的加密方法,它使用通信双方预先设定的一组有 确切含义的如日常词汇、专有名词、特殊用语等的代码来发送消息,一般只能 用于传送一组预先约定的消息。 密文:飞机已烧熟。 明文:房子已经过安全检查。 代码加密的优点是简单好用,但多次使用后容易丧失安全性。 2.替换加密 将明文字母表M中的每个字母替换成密文字母表C中的字母。这一类密码 包括移位密码、替换密码、仿射密码、乘数密码、多项式代替密码、密钥短语 密码等。这种方法可以用来传送任何信息,但安全性不及代码加密。因为每一 种语言都有其特定的统计规律,如英文字母中各字母出现的频度相对基本固定,根据这些规律可以很容易地对替换加密进行破解。以下是几种常用的替换加密 算法。

哈夫曼算法的实现及应用

摘要:哈夫曼树是带权路径长度(WPL)最小的二叉树,通过对哈夫曼算法的研究,提出一种求取哈夫曼树带权路径长度的计算方法和应用。 关键词:哈夫曼算法、二叉树、WPL、编码 1 引言: 哈夫曼树是一种特殊的二叉树,又称最优二叉树:假设有一组(无序)实数{w1,w2,w3,w4,…,wm},现要构造一棵以wi(i=1,2,3,4…,m)为权的m个外部结点的扩充二叉树,使得带权的外部路径长度WPL最小。满足这一要求的扩充二叉树就称为哈夫曼树或最优二叉树。若l表示从根到第i个外部结点的路径长度,m为外部结点的个数,wi 为第i个外部结点的权值,则有WPL=∑wili(0 #include #define MAXINT 50 #define MAXNUM 50 /* 数组w中最多容纳的元素个数,注意m<=MAXNUM */ #define MAXNODE 100 /* 哈夫曼树中的最大结点数,注意2*m-1

delaunay三角网生长准则及算法

Delaunay 三角网是Voronoi(或称thiessen多边形,V 图)图的伴生图形 ◆Delaunay 三角网的定义: 由一系列相连的但不重叠的三角形的集合, 而且这些 三角形的外接圆不包含这个面域的其他任何点。 ◆Voronoi图的定义: Voronoi图把平面分成N 个区,每一个区包括一个点, 该点所在的区域是距离该点最近的点的集合。 ◆Delaunay三角网的特性: ◆不存在四点共圆; ◆每个三角形对应于一个Voronoi图顶点; ◆每个三角形边对应于一个Voronoi图边; ◆每个结点对应于一个Voronoi图区域; ◆Delaunay图的边界是一个凸壳; ◆三角网中三角形的最小角最大。 空外接圆准则最大最小角准则最短距离和准则 在TIN中,过每个三角形的外接圆均不包含点集的其余任何点在TIN中的两相邻三角形形成 的凸四边形中,这两三角形 中的最小内角一定大于交换 凸四边形对角线后所形成的 两三角形的最小内角 一点到基边的两端的距离 和为最小 Delaunay三角剖分的重要的准则

张角最大准则面积比准则对角线准则 一点到基边的张角为最大三角形内切圆面积与三角形 面积或三角形面积与周长平 方之比最小 两三角形组成的凸四边形 的两条对角线之比。这一 准则的比值限定值,须给 定,即当计算值超过限定 值才进行优化 Delaunay三角剖分的重要的准则 不规则三角网(TIN)的建立 ●三角网生长算法就是从一个“源”开始,逐步形成覆盖整个数据区域的三角网。 ●从生长过程角度,三角网生长算法分为收缩生长算法和扩张生长算法两类。 方法说明方法实例 收缩生长算法先形成整个数据域的数据边界(凸壳), 并以此作为源头,逐步缩小以形成整个三 角网 分割合并算法 逐点插入算法 扩张生长算法从一个三角形开始向外层层扩展,形成覆 盖整个区域的三角网 递归生长算法

推荐系统的常用算法原理和实现

推荐系统的出现 推荐系统的任务就是解决,当用户无法准确描述自己的需求时,搜索引擎的筛选效果不佳的问题。联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对他感兴趣的人群中,从而实现信息提供商与用户的双赢。 推荐算法介绍 基于人口统计学的推荐 这是最为简单的一种推荐算法,它只是简单的根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。 系统首先会根据用户的属性建模,比如用户的年龄,性别,兴趣等信息。根据这些特征计算用户间的相似度。比如系统通过计算发现用户A和C比较相似。就会把A喜欢的物品推荐给C。 优缺点: ?不需要历史数据,没有冷启动问题 ?不依赖于物品的属性,因此其他领域的问题都可无缝接入。 ?算法比较粗糙,效果很难令人满意,只适合简单的推荐 基于内容的推荐 与上面的方法相类似,只不过这次的中心转到了物品本身。使用物品本身的相似度而不是用户的相似度。

系统首先对物品(图中举电影的例子)的属性进行建模,图中用类型作为属性。 在实际应用中,只根据类型显然过于粗糙,还需要考虑演员,导演等更多信息。 通过相似度计算,发现电影A和C相似度较高,因为他们都属于爱情类。系统还会发现用户A喜欢电影A,由此得出结论,用户A很可能对电影C也感兴趣。 于是将电影C推荐给A。 优缺点: ?对用户兴趣可以很好的建模,并通过对物品属性维度的增加,获得更好的推荐精度 ?物品的属性有限,很难有效的得到更多数据 ?物品相似度的衡量标准只考虑到了物品本身,有一定的片面性 ?需要用户的物品的历史数据,有冷启动的问题 协同过滤 协同过滤是推荐算法中最经典最常用的,分为基于用户的协同过滤和基于物品的协同过滤。那么他们和基于人口学统计的推荐和基于内容的推荐有什么区别和联系呢? 基于用户的协同过滤——基于人口统计学的推荐 基于用户的协同过滤推荐机制和基于人口统计学的推荐机制都是计算用户的相似度,并基于“邻居”用户群计算推荐,但它们所不同的是如何计算用户的相似度,基于人口统计学的机制只考虑用户本身的特征,而基于用户的协同过滤机制可是在用户的历史偏好的数据上计算用户的相似度,它的基本假设是,喜欢类似物品的用户可能有相同或者相似的口味和偏好。 基于物品的协同过滤——基于内容的推荐

常用加密算法概述

常用加密算法概述 常见的加密算法可以分成三类,对称加密算法,非对称加密算法和Hash算法。 对称加密 指加密和解密使用相同密钥的加密算法。对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去——如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。 常见的对称加密算法:DES、3DES、DESX、Blowfish、IDEA、RC4、RC5、RC6和AES 非对称加密 指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以可以通过信息发送者的公钥来验证信息的来源是否真实,还可以确保发送者无法否认曾发送过该信息。非对称加密的缺点是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比非对称加密慢上1000倍。 常见的非对称加密算法:RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用) Hash算法 Hash算法特别的地方在于它是一种单向算法,用户可以通过Hash算法对目标信息生成一段特定长度的唯一的Hash值,却不能通过这个Hash值重新获得目标信息。因此Hash算法常用在不可还原的密码存储、信息完整性校验等。 常见的Hash算法:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1 加密算法的效能通常可以按照算法本身的复杂程度、密钥长度(密钥越长越安全)、加解密速度等来衡量。上述的算法中,除了DES密钥长度不够、MD2速度较慢已逐渐被淘汰外,其他算法仍在目前的加密系统产品中使用。 加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢?

经典推荐算法研究综述

Computer Science and Application 计算机科学与应用, 2019, 9(9), 1803-1813 Published Online September 2019 in Hans. https://www.360docs.net/doc/cc11133957.html,/journal/csa https://https://www.360docs.net/doc/cc11133957.html,/10.12677/csa.2019.99202 Review of Classical Recommendation Algorithms Chunhua Zhou, Jianjing Shen, Yan Li, Xiaofeng Guo Information Engineering University, Zhengzhou Henan Received: Sep. 3rd, 2019; accepted: Sep. 18th, 2019; published: Sep. 25th, 2019 Abstract Recommender systems are effective tools of information ?ltering that are prevalent due to cont i-nuous popularization of the Internet, personalization trends, and changing habits of computer us-ers. Although existing recommender systems are successful in producing decent recommend a-tions, they still suffer from challenges such as cold-start, data sparsity, and user interest drift. This paper summarizes the research status of recommendat ion system, presents an overview of the field of recommender systems, describes the classical recommendation methods that are usually classified into the following three main categories: content-based, collaborative and hybrid recommendation algorithms, a nd prospects future research directions. Keywords Recommender Systems, Cold-Start, Data Sparsity, Collaborative Filtering 经典推荐算法研究综述 周春华,沈建京,李艳,郭晓峰 信息工程大学,河南郑州 收稿日期:2019年9月3日;录用日期:2019年9月18日;发布日期:2019年9月25日 摘要 推荐系统作为一种有效的信息过滤工具,由于互联网的不断普及、个性化趋势和计算机用户习惯的改变,将变得更加流行。尽管现有的推荐系统也能成功地进行推荐,但它们仍然面临着冷启动、数据稀疏性和用户兴趣漂移等问题的挑战。本文概述了推荐系统的研究现状,对推荐算法进行了分类,介绍了几种经

加密算法

用C语言实现凯撒加密算法 一、凯撒加密算法的来源与简介 “凯撒密码”据传是古罗马凯撒大帝用来保护重要军情的加密系统。它是一种替代密码,通过将字母按顺序推后起3位起到加密作用,如将字母A换作字母D,将字母B 换作字母E。据说凯撒是率先使用加密函的古代将领之一,因此这种加密方法被称为凯撒密码。 假如有这样一条指令: RETURN TO ROME 用凯撒密码加密后就成为: UHWXUA WR URPH 如果这份指令被敌方截获,也将不会泄密,因为字面上看不出任何意义。 这种加密方法还可以依据移位的不同产生新的变化,如将每个字母左19位,就 产生这样一个明密对照表: 明:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 密:T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 在这个加密表下,明文与密文的对照关系就变成: 明文:THE FAULT, DEAR BRUTUS, LIES NOT IN OUR STARS BU T IN OURSELVES. 密文:MAX YTNEM, WXTK UKNMNL, EBXL GHM BG HNK LMTKL UNM BG HNKLXEOXL. 很明显,这种密码的密度是很低的,只需简单地统计字频就可以破译。于是人们在单一凯撒密码的基础上扩展出多表密码,称为“维吉尼亚”密码。它是由16世纪 法国亨利三世王朝的布莱瑟·维吉尼亚发明的,其特点是将26个凯撒密表合成一个,见下表: 原: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A :A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B :B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C: C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E: E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F: F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G: G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H: H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I: I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J: J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K: K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L: L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M: M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N: N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

Delaunay三角网表示点和删除算法

0引言 对于静态数据三角化(数据点不能动态插入与删除),有许多D-三角网构建算法[1-5];对于动态的点插入,使用逐点插入的方法进行动态局部更新;对于动态的点删除,使用的方法有两种,一是基于凸耳权值的点删除方法[6-7],二是基于空外接圆准则和凸耳性质的点删除方法[8-9],上述两种方法都是基于凸耳删除的方法,存在难以理解或算法效率差的缺点。本文提出了一种数据结构来存储D-三角网和表现其拓扑关系,对其中的点删除算法进行了改进,可实现D-三角网中数据点的快速删除操作。 1存储结构 对于三角格网的存储结构,本文设计了点、有向边的存储 表示,三角形的信息在有向边的遍历中隐含,其C++实现如下: Class Point2d {double x,y;} Class Edge { Public:Int num;Edge* next;Edge* prev; Point2d*data;Edge (){data =0;} Edge*Sym (){return (num<1)?this+1:this-1;}Edge*Onext (){return next;}Edge*Oprev (){return prev;} void EndPoints (Point2d*or,Point2d*de ){data =or;Sym ()->data =de;} TwinEdge*Tedge (){return (TwinEdge *)(this -num );}}; Class TwinEdge {Private:Edge e [2];Public:TwinEdge (){ e [0].num =0;e [0].next =&(e [0]);e [1].num =1;e [1].next =&(e [1]); 收稿日期:2007-03-01E-mail :mengl@https://www.360docs.net/doc/cc11133957.html, 基金项目:国家863高技术研究发展计划基金项目(2002AA114020、2001AA135210);中国科学院知识创新基金项目(20036020)。 作者简介:孟亮(1968-),男,山西临汾人,博士研究生,研究方向为GIS 、计算机图形学;方金云(1968-),男,山东青岛人,博士,副研究员,研究方向为海量空间数据处理关键支撑技术、网格GIS 等;唐志敏(1966-),男,江苏江阴人,研究员,博士生导师,研究方向为计算机系统结构、网络并行处理。 Delaunay 三角网表示和点删除方法 孟 亮,方金云,唐志敏 (中国科学院计算技术研究所,北京100080) 摘 要:对于三角网的表示方法,提出了一种双循环链表结构,这种结构能够方便的表示三角网的边拓扑和面拓扑信息,以及多边形结构。基于这种结构,对三角网点删除算法进行了改进。以前的点删除算法是基于连续的凸耳删除,提出的方法是基于多边形边的构建方法,利用D-三角网的空外接圆属性。与其它方法相比,这种方法具有容易理解,效率高的优点。关键词:Delaunay 三角网;凸耳;点删除;拓扑结构;双循环链表中图法分类号:TP391;P208 文献标识码:A 文章编号:1000-7024(2008)03-0738-03 Delaunay TIN expression and point deletion method MENG Liang, FANG Jin-yun, TANG Zhi-min (Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100080,China ) Abstract :As to representation of triangulated irregular network (TIN ),a dual-circulation linked list structure is proposed,this structure can conveniently express edge and plane topology information of triangulated irregular network,and polygon structure.Based on this structure,improvements are achieved about TIN point deletion algorithm.Previous point deletion algorithm is based on continuous ears deletion,the methods proposed is based on edge construction method of polygon,using Delaunay TIN circumcircle https://www.360docs.net/doc/cc11133957.html,pared with other methods,this method has the advantage of easy understanding,higher efficiency. Key words :Delaunay triangulated irregular network;ears;point deletion;topology structure;dual-circulation linked list 2008年2月计算机工程与设计 Feb.2008 第29卷第3期Vol.29 No.3 Computer Engineering and Design

相关文档
最新文档