数学物理方法论文

数学物理方法论文
数学物理方法论文

数学物理方法第一篇总结

1.1复数与复数运算

(一)复数的概念

一个复数可以表示为某个实数与某个纯虚数iy 的和,z=x+iy ,这是复数的代数式,x 和y 叫做该复数的实部和虚部,并分别记做Re z 和Im z 。 如果将x 和y 当做平面上点的坐标,复数z 就跟平面上的点一一对应起来,这个平面称为复数平面,两个坐标轴分别称为实轴和虚轴。

复数的三角式]sin [cos θθρi z +=,其中22y x +=

ρ,()x /y arctg =θ。

共轭复数的概念

如果两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。 (二)无限远点 复球面

无限远点:复平面上ρ为无限大的点.

复球面:与复平面相切于坐标原点o ,其上每一点都与复平面上的点构成一一对应关系的球面.

(三)复数的运算

已知两个复数:211sin cos θθi z += 222sin cos θθi z += 1.加减运算 )sin (sin )cos (cos z 212121θθθ+++=+i z 2.乘法运算

[])sin(i )cos()sin )(cos sin (cos 21212122112121θθθθρρθθθθρρ+++=++=i i z z

3.除法运算

[])(i 2

12121212121)sin(i )cos(θθθθθθ-=-+-=e r r

r r z z 4.复数的乘幂)

sin (cos θθρn i n z n

n

+=

5.复数的方根)sin (cos

n

i n z n

n

θ

θ

ρ+=

(四)典型例题

计算下列数值(其中θ为常数)

1.?θθθn cos 3cos 2cos cos +++

2.θθθθn sin 3sin 2sin sin +++

1.2复变函数

(一)复变函数的定义

对于复平面的点集E ,它的每个点z 都有一个或多个点ψ通过确定的关系与之对应。则称ψ为z 的复变函数,记作:ψ= f (z ), z ∈E E 叫做定义域。 (二)区域的概念

在解析函数论中,函数的定义域一般不是点集,而是满足一定条件的点集,称为区域,用B 表示。

邻域:以某点z0为圆心,以任意小的正实数为半径的圆的内部,称为0z 的邻域。 内点:若0z 及其邻域均属于点集E ,则称为该点集的内点。 外点:若0z 及其邻域均不属于点集E ,则称为该点集的外点。

边界点:若在0z 的每个邻域内,既有属于E 得点,也有不属于E 的点,则称0z 为该点集的边界点,它既不是E 的内点,也不是E 的外点,边界点的全体称为边界线。 区域是指满足下列两个条件的点集: 1. 全由内点组成;

2. 具有连通性,即点集的任意两点都可以用一条折线连起来,且折线上的点全部属于该点

集。

(三)典型例题 求解方程2sinz =

1.3导数

(一)导数的概念

设函数(z)f =ω是在区域B 上定义的单值函数,即对于B 上的每一个Z 值,有且只有一个ω值与之相对应。若在B 上的某点z ,极限z

z z z lim z lim

z 0z ??+=???→?)

(—)(f f ω存在,并且

与0z →?的方式无关,则称f (x )在z 点可导。

(二)柯西黎曼方程

柯西-黎曼方程在直角坐标系下的C-R 条件,是复变函数可导的必要条件????

?????-=????=??y u x v y v x u

柯西-黎曼方程在极坐标系下的C-R 条件,是复变函数可导的必要条件???

?

?????=????=??θρρθρu v v u 1-

函数f (z )可导的充分必要条件:f (z )的偏导数y

v

x v y u x u ????????,,,存在且连续,并满足C-R 条件。

(三)典型例题

试从极坐标系中的柯西黎曼方程中????

?????=????=??θ

ρρθρu v v u 1-消去u 或者v 。

(四)人物传记

1.柯西:法国数学家,他在纯数学和应用数学的功力是相当深厚的,在数学写作上,他是被认为在数量上仅次于欧拉的人,他首创性的工作是关于单复变函数论,阐明了有关概念,并且用这种积分来研究多种多样的问题,如实定积分的计算,级数与无穷乘积的展开,用含参变量的积分表示微分方程的解等等。他还在综合工科学校所授分析课程及有关教材给数学界造成了极大的影响。

2.黎曼:德国数学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。他初次登台作了题为“论作为几何基础的假设”的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。

1.4解析函数

(一)解析函数的定义

若函数f (z )在z0点及其邻域上处处可导,则f (z )在z0点解析。又若f (z )在区域B 上每点都解析,则f (z )是区域B 上的解析函数。 (二)解析函数的性质

1.若函数f (z )=u+iv 在区域B 上解析,则u(x,y)=1C ,v(x,y)=2C ,是B 上的两组正交曲线组。

2.若函数f (z )=u+iv 在区域B 上解析,则u ,v 均为B 上的调和函数。 (三)典型例题

已知解析函数()z f 的实部()y x u ,或者虚部()y x v ,,求该解析函数。 1.y e u x

sin =;

2.xy y x u +-=2

2

,()00=f ;

2.1复变函数的积分

(一)复变函数积分的定义

设在复数平面的某分段光滑曲线l 上定义了连续函数f (z ),在l 上取一系列分点z0(即起点A ), z1 , z2,…, zn (即终点B ),把l 分成n 个小段,在每个小段[zk-1,zk]上任取一点ξk ,作 和得

k k n

z f f ?=∑∑==)(z z 1

k 1k k

n

1

k k

ζζ)—(

)(—

当n →∞且每小段都无限缩短时,如果这个和的极限存在,且其值与各个ξk 的选取无关,则这个和为函数f(z)沿曲线l 从A 到B 的路积分,记作

?l

dz z f )(=??++-l

l

dy y x u dx y x v i dy y x v dx y x u ),(),(),(),(

(二)复变函数积分的性质 1.常数因子可以移到积分号外;

2.和积分等于积分和;

3.反转路径,积分反号;

4.全路径上的积分等于各段积分之和

一般来说,复变函数积分值不仅依赖于起点和终点,同时还与积分路径有关。

2.2柯西定理

(一)单连通区域的情况

单通区域:在其中做任何简单的闭合围线,围线内的点都是属于该区域内的点。也可以认为是一根闭合曲线围成的区域。

单连区域柯西定理:如果函数f (z )在闭单通区域B 上解析,则沿B 上的任一分段光滑闭合曲线l ,有?=l dz z f 0)(

证明如下

???++-=l

l

l

dy y x u dx y x v i dy y x v dx y x u dz z f ),(),(),(),()(

Z 0(A)

由于f (z )在B 上解析,因而有

y v

x v y u x u ????????,,,在B 上连续, 根据格林公式dxdy y P x Q Qdy Pdx l S

??

??-??=

+)(

和C-R 条件y

u

x v y v x u ??=????=??-,得: ?=l

dz z f 0)(

(二)复通区域情形

为了将奇点排除在区域之外,需要做一些适当的闭合曲线把奇点分隔出去,即形成复通区域。 一般来说,在区域内,只要有一个简单的闭合曲线内有不属于该区域的点,这样的区域便称为复通区域。

对于区域(单或复通区域)的境界线,通常这样规定(内外)正方向,区域在观察者的左边。 复通区域柯西定理:

如果f (z)是闭复通区域上的单值解析函数,则?∑?

=+=l

n

i l i

dz z f dz z f 0)()(1

l 为区域外境界

线, l i 为内境界线,积分均沿正方向进。 证明如下:

向积分相等。

沿内外境界线逆时针方即:+的积分值抵消,于是

其中沿同一割线两边缘+++按单通区域柯西定理,

?∑??

?

??

??===+=+l

n

i l l l

BA

l AB

l

i

dz

z f dz z f 1

)()(0

1

1

(三)柯西定理的总结:

1.闭单通区域上的解析函数沿境界线积分为零;

2.闭复通区域上的解析函数沿所有内外境界线正方向积分和为零;

3.闭复通区域上的解析函数沿境界线逆时针方向积分等于沿所有内境界线逆时针积分之和。

4.对于某个闭单通或闭复通于区上为解析的函数,只有起、终点固定不变,当积分路径连续变形(不跳过“孔”),路积分值不变。

2.3不定积分

(一)不定积分的概念

根据柯西定理,若函数f (z )在单通区域B 上解析,则沿B 上任一路径L 的积分

?l

)(z

d

z f

的值只跟起点和终点有关,而与路径无关。因此,当起点和终点固定时,这个不定积分就定义了一个单值函数,记作

?=z

z d f z F 0

)()(ζζ

例如).n ()(为整数dz

z I n

l ?

-=α

1. 若回路L 不包围点α,则被积函数在l 所包围的区域上是解析的,按照柯西定理,积分

值为零。

2. 接着讨论L 包围α的情形,如果0≥n ,被积函数在l 所包围的区域是解析的,积分值

也为零;如果0

αi z Re =-

?αα?π

???id e R e R d e R dz z I i in n l

C

i in n n ???=+=-=20

)Re ()(

α 讨论:1. 0)

1(1

-120

)1(1

=+=≠++π?

n i n e n i iR

I n 时,当

2. i d i

I n π?π

2-120

===?

时,当

2.4柯西公式

单通域柯西公式:若f (z )在闭单通区域B 上解析,L 为B 的境界线,α为B 内一点,则

dz z z f i f l ?-=

α

πα)

(21)(。 复通域柯西公式:若f (z)在L 上所围区域上存在奇点,则考虑挖去奇点后的复通区域。在

复通区域上f (z)解析,则柯西公式仍成立,只要将L 理解为所有的境界线,且均取正向。 柯西导数公式:由于z 为区域内点,积分变数在境界线上,ξ-z ≠0,积分号下的导数f (ξ)/(ξ-z)在区域上处处可导。因此,可以在积分号下对z 求导,得:

dz z f i z f l ?-=

'2)()(2!1)(ξξπ反复在积分号下求导,得dz z f i n z f l n n ?+-=1)

()

()(2!)(ξξπ。 (三)典型例题 已知函数()2

2,t tx e x t -=ψ。将x 作为参数,t 为复变数,应用柯西公式将0

=??t n

n t

ψ表示成回

路积分。

l

l ε

?++=π

??

20

)1(1d e iR n i n

3.1复数项级数

(一)设有复数项的无穷级数

++++=∑∞

=k k k

w w w w

21

1他的每一项都可以分为实部和

虚部,k k k iv u w +=那么他的前n+1项的和可以表示为:

∑∑∑∑∑∑=∞

→=∞

→=∞

→===+=+=n

k k n n k k n n k k n n k k n

k k

n k k

v i u w v i u

w 1

1

1

1

1

1

lim lim lim ,

这样,复数项无穷级数的收敛问题就归结为两个实数级数的收敛问题。 级数收敛的判断依据

(二)柯西收敛判据:对于任一给定的小正数ε,存在一个N ,使得n>N 时ε<∑++=||

1

p

n n k k

w

p 为任意正整数。

绝对收敛:如果复数项级数各项的模(正实数)组成的级数 收敛,则wk 绝对收敛。 (三)绝对收敛级数的性质

绝对收敛的复数项级数必是收敛的,各项先后次序可变,其和不改变。 应用柯西收敛判据,复变项级数在B (或l )上收敛的充要条件是:

在B (或l )上各点z ,对于任一给定小正数ε,存在N(z),使得n>N(z)时,

ε<∑++=|)(|

1

p

n n k k

z w ,p 为任意正整数。如果N 与z 无关,则复变项级数在B (或l )上一致收

敛。

(四)典型例题

3.2幂级数

(一)各项都是幂函数的复变项级数

+-+-+=-∑∞

=2020101

)()()

(z z a z z a a z z a k k

k

其中

z0,a0,a1,a2,…都是复常数。这样的级数叫做以z0为中心的幂级数。

绝对收敛:由幂级数各项模组成的正项级数|a0|+|a1||z-z0|+|a2||z-z0|2+…+|ak||z-z0|k+…

(二)正项级数的收敛性的判别: 1.达朗贝尔判别法

如果1||||lim ||||||||lim 01

0101<-=--+∞→++∞→z z a a z z a z z a k

k k k k k k k 则正项级数收敛,幂级数绝对收敛。如果

1|||

|lim ||||||||lim ,||101010=>-->-+∞→++∞→R a a z z a z z a R z z k

k k k k k k k 则也就是说,

幂级数后面的项的模越来越大,必然是发散级数。即如果|z-z0|>R ,则发散。

那么以z0为圆心做一个半径为R 的圆CR ,圆内绝对收敛,圆外发散。CR 称为幂级数的收敛圆,半径R 为收敛半径。 3. 根值判别法 如果1||||lim 0<-∞

→k k k k z z a ,则正项模级数收敛,幂级数绝对收敛; 如果1||||lim

0>-∞

→k

k k k z z a ,则正项模级数发散,幂级数绝对发散;

收敛半径为k

k k a R |

|1lim

∞→=。

幂级数在收敛圆内的性质: 1.和函数是解析函数;

2.可以逐项求导,且收敛半径不变; 3.可以逐项积分,且收敛半径不变; (三)典型例题 (四)人物传记

达朗贝尔:法国著名的物理学家、数学家和天文学家,一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有八卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。 达朗贝尔生前为人类的进步与文明做出了巨大的贡献,也得到了许多荣誉。

3.3泰勒级数展开

(一)已知,任意阶导数都存在的实变函数可以展开为泰勒级数,既然解析函数的任意阶导数都存在,也希望能把解析函数展开为复变项的泰勒级数。

定理:设f (z)在以z0为圆心的圆CR 内解析,则对圆内任意z 点,f (z)可以展开为幂级

∑∞

=-=00)()(k k

k z z a z f 其中!)()()

(210)(10

1k z f d z f i a k C k k R =-=?+ξξξπ。1R C 为圆R C 内包含z 且与R C 同心的圆。

泰勒展开公式(具有唯一性):

+-+-+=-=∑∞

=2020100

0)()()()(z z a z z a a z z a z f k k k

!

)(0)(k z f a k k =

(二)几个典型的泰勒展开公式

1.∑∑

=∞

==-=

000

0)(!)(!)(k k k

k k z

k z z z k z f e (在00=z 的邻域) 2. +-+-=-=

=!

7!5!3!1)(!)(sin 75300

0)(z z z z z z k z f z k

k k (在00=z 的邻域) 3. k

z i n z k

k k )1()

1(2ln 1

1

--+

=∑∞

=+π(在10=z 的邻域) 4.

()

?

??

???+-+-++=+ 32m

!3)1(!2)1(!111z 1z m m z m m z m m (在00=z 的邻域)

5.

∑∑∑∞

=∞=∞=-=-==-0

2020)1()(11k k k k k

k k z z Z Z (在00=z 的邻域) (三)典型例题 (四)人物传记

泰勒:18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒。泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(信中首先提出的著名定理--泰勒定理:泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先河。

3.4解析延拓 3.5洛朗级数展开

(一)当所研究的区域上存在函数的奇点时,就不能将函数展为泰勒级数,而需要考虑除去奇点的环域上的展开,这就是洛朗级数展开。 定理:

设f (z )在环形区域201R z z R <-<的内部单值解析,则对环域上的任意一点,f (z )可展为幂级数∑∞

-∞

=-=

k k k z z a z f )()(0,其中ξξξπ?+-=

c

k k d z f i a 1

0)()

(21,积分路径C 位于环域内按逆时针方向绕内圆一周的任意闭合曲线。

(二)几个典型的洛朗展开公式 1.|)

|0()!

(10

1z z k e k

k z

<-=

∑-∞=

2. ∑∑∞

=+∞=----=----=-0202)1(2

1)1(1121)21()1(41112111k k k k k k

k z z z z z (∞<

3. )||0(!

7!5!31sin 6

42∞<<+-+-=z z z z z z (三)洛朗展开和泰勒展开的区别与联系

联系:都是单值解析函数;展开形式均以0z 为展开中心。

区别:1.0z 是泰勒函数f (z )的奇点,洛朗展开中的0z 不一定是f (z )的奇点;

2.泰勒展开的区域是R <0z -z ,是绝对且一致收敛的函数。洛朗展开的区域是

201R z z R <-<,也是绝对且一致收敛的函数;

3.泰勒展开无负幂次项,洛朗展开可以有负幂次项,也可以没有负幂次项。 (三)典型例题

在挖去奇点0z 的环域上或指定的环域上将下列函数展为洛朗级数 (五)人物传记

洛朗:法国数学家提出洛朗级数,复变函数f (z )的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。

3.6孤立奇点的分类

孤立奇点:若函数f (z)在某点z0不可导,而在z0的任意小邻域内除z0之外处处可导,则z0为f (z) 的孤立奇点。

若在z0无论多么小的邻域内总可以找到除z0外的不可导点,z0为f (z)的非孤立奇点。 在挖去孤立奇点z0而形成的环域上的解析函数f (z)的洛朗级数分三种: (1)无负幂项,0z 为f (z)的可去奇点; (2)有有限个负幂项,0z 为f (z)的极点; (3)有无限个负幂项,0z 为f (z)的本性奇点。 典型例题

设函数()z f 和()z g 分别以点0z 为m 阶和n 阶极点,问对下列函数而言,0z 是何种性质的点: (1)

()

()

z g z f ;(2)()()z g z f ;(3)()()

z g z f +

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

数学物理方法试题

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、什么是解析函数?其特征有哪些?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、写出复数2 3 1i +的三角形式和指数形式(8分) 7、求函数 2 ) 2)(1(--z z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) 9、计算实变函数定积分dx x x ?∞ ∞-++1 1 4 2(8分) 10、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 二、计算题(共30分) 1、试用分离变数法求解定解问题(14分) ?? ?????=-===><<=-====0, 2/100 ,000002t t t l x x x x xx tt u x u u u t l x u a u

2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ??? ? ? ???? ===-==?====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π 3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。(10分) 嘉应学院 物理 系 《数学物理方法》A 课程考试题 一、简答题(共70分) 1、什么是解析函数?其特征有哪些?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 7、求函数2 )2)(1(1 --z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) t e y y y -=-'+''32

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法__武汉大学(5)--期中考试试卷

物理科学与技术学院2011级数学物理方法期中考试 专业 ; 学号 ; 姓名; 1、填空或选择填空(20分) 1、长为l 温度为0T 的均匀杆,一端温度保持为零度,另一端有其热流密度为)(t f 的热量流入,则该杆的热传导的定解问题为[ ] 2、函数)4(2-=z Ln w 的支点为[ ], 它有[ ]叶里曼面; 而函数3 2--z z 的支点为[ ], 它有[ ]叶里曼面;3、由Γ函数的相关知识,可得积分 dx e x x 206-∞ ?=[ ]; [以下两题,分别请在A,B,C,D四答案中选择一个你认为正确的答案填入空内] 4.设)(z f 在单连通区域σ内处处解析且不为零,l 为σ内的任何一条闭合围道,则积分 =+'+''?dz z f z f z f z f l ) ()()(2)([ ];A.i π2 B.i π2- C. 0 D.不能确定 5.∞=z 为z z f sin 1)(=的:[ ]A.一阶极点 B.本性奇点 C.解析点 D.非孤立奇点 二、(20分)验证xy y x y x u +-=22),(为调和函数,并求一满足条件0)0(=f 的解析函数iv u z f +=)(三、(20分)试分别用科希积分理论和留数理论计算下列函数和围道积分之值(要求写出 主要步骤的依据)1、设 ?=--=23)(z d z e z f ζζπζζ,求)(i f ; 2、计算? =-+23) 1)(1(1z dz z z z ;四、(20分)试将函数61)(2-+=z z z f 按以下要求展开为泰勒或罗朗级数,并指出所展开的级数的收敛域及类型(是泰勒还是罗朗)。 1、以0=z 为中心展开; 2、在2=z 的去心领域中展开 五、(20分)利用留数定理计算下列实积分:

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法教学大纲

《数学物理方法》课程简介 课程编号:L2112113 英文名称:Methods of Mathematical Physics 学分:4 学时:64 授课对象:光电子技术科学专业 课程目标: 《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。 课程内容: 复变函数(18学时),付氏变换(20学时),数理方程(26学时) 预修课程: 大学物理学、高等数学。 教材: 《数学物理方法》,科学出版社,邵惠民编著。 主要教学参考书: 《数学物理方法》,高教出版社,梁昆淼主编。 《数学物理方法》,高教出版社,郭敦仁主编。 《数学物理方法》,吴崇试主编 《数学物理方法》,中国科技大学出版社,严镇军编著。 《特殊函数概论》,北京大学出版社,王竹溪、郭敦仁编著。 《数学物理方法解题指导》,高等教育出版社,胡嗣柱、徐建军编。 "Mathematics of Classical and Quantum Physics" F.W. Byron & R.W. Fuller,

《数学物理方法》课程教学大纲 (Methods of Mathematical Physics) 一、基本信息 课程编号:L2112113 课程类别:学科基础课必修课 适用层次:本科 适用专业:光电子技术科学专业 开课学期:4 总学分:4 总学时:64学时 考核方式:考试 二、课程教育目标 《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学数学方法和工具。因此本课程应受到相关专业学生和教师的重视。 对实际的工程、技术、科学问题,通常需要转换为物理问题,然后利用物理原理进一步翻译为数学问题,进一步求解该数学问题,再将得到的数学结果翻译成物理问题,即讨论所得结果的物理意义。因此,数学是物理的语言之一,《数学物理方法》是联系数学和物理类及光电子类专业课程的纽带。本课程的主要任务就是告诉学生如何将各种物理问题翻译成数学的定解问题,并了解、掌握求定解问题的若干方法,如行波法、分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等。 三、教学内容与要求 教学内容: 1复变函数部分 复变函数基本知识、复变函数积分、复变幂级数、留数定理及应用、拉普拉斯变换简介。 2付氏变换部分

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法

数学物理方法 Mathematical Methods in Physics 课程编号:22189906 总学时:72学分:4 课程性质:专业必修课 课程内容:数学是物理学的表述语言。复变函数论和数学物理方程是学习理论物理课程的重要的数学基础。该课程包括复变函数论和数学物理方程两部分。复变函数论部分 介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。数学物 理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分 离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔 函数及其性质以及格林函数的基本知识。该课程有着逻辑推理抽象严谨的特点, 同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。我 们将把抽象的数学知识和在物理学中的应用结合起来,使学生不但能学习数学本 身,同时还能提高学生运用所学数学知识解决实际问题的能力。 先修课程:高等数学 参考书目:《数学物理方法》(陆全康、赵蕙芬编),第二版高等教育出版社《数学物理方法》(吴崇试)第二版,北京大学出版社 力学和热学 (1)与(2) Mechanics and Thermal Physics (1) and (2) 课程编号:22189936、22189937 总学时:28、72 学分:2、4 课程性质:专业必修课 课程内容:本课程由力学和热学两大部分组成。力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。力学的主要内容包括三方面:在牛顿力学方面, 主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在 刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学 习简谐振动和平面简谐波。热学的主要内容包括分子物理学和热力学,主要学习 温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本 方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均 分定理。 先修课程:高等数学A(1) 参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年

数学物理方法试题汇总

12届真题 1. 求下列各小题(2*5=10分): (1)用几何图形表示0arg(1)4z π<-< ; (2)给出序列(1/)sin 6 n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解; (4)给出二阶偏微分方程的基本类型; (5)给出解析函数所满足的柯西-黎曼方程。 2.按给定路径计算下列积分(5*2=10分): (1)320Re i zdz +?,积分路径为线段[0,3]和[3,3+2i]组成的折线; (2 )11,==?积分路径由z=1出发的。 3.利用留数定理计算下列积分(5*2=10分): (1)2 41x dx x +∞ -∞+?; (2)3||1z z e dz z =?。 4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。 5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y ??-=-??(15分)。 6.利用分离变量法求解:(20分) 2222000 (),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====???-=-?????==????==??? 7.用拉普拉斯变换方法求解半无解问题(20分)

220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0. x u u x t t x u t u x t t u x x κ→∞???-=>>?????=>??=>??? 有界,

2005级 一、填空(请写在答题纸上,每题6分,共计48分) 1. 三维泊松方程是______________________________ 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。 3. 极坐标下的二维拉普拉斯方程为__________________________。 4. 定解问题20 02||0tt xx t t t u u x u x u ===-∞<<+∞???==??, ,的解__________________________。 5. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 6. 写出4阶贝塞尔方程的标准形式_____________________________。 7. 设2()J x 为2阶贝塞尔函数,则22()d x J kx dx ????=__________________。 8. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的边界条件为: 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>?==≥??=≤≤? , ,,,,, , ,0,

吉林大学 数学物理方法近三年期末考试题

写出如下方程特解的名称及其表示形式 01d d 1d d 2 x y l l x x y x x 011d d 1d d 22 2 x m l l x x x 0d d d d 2 222 2 y m x x y x x y x 0d d d d 2 2222 y m x x y x x y x 222 d d 10d d R r k r l l R r r r ''2'0y xy ny ''1'0xy x y ny ''1'0xy x y ny 二、设杆一端 0x 刚性固定,而另一端 x l 自由,其初始条件为 ,0,,00t u x kx u x ,求杆的纵振动。 三、一个半径为a 的球壳,上半部分充电至电势为1V ,下半部分充电至电势为2V ,计算求球内部电势分布。 四、将函数 2221y z yz xz r 按球谐函数展开

0,01,0i 21,12,0 i 22i 2,12,2Y ,,Y ,Y ,e ,Y ,3cos 1Y ,cos e ,Y ,e 五、一个半径为a ,高度为l 的圆柱体,其下底传入的热流强度 为0q ,导热系数为k ,侧面a 和上底z l 保持温度为零,计算圆柱体内部稳定的温度分布。 六、利用Green 函数法推导定解问题 2 u f u r r r r 积分解 的表达式。 七、已知泛函 1 2 '2d y y y x J ,边界条件 010y y 。 1、计算泛函的极值和极值函数 y x ; 2、利用瑞里-里兹法计算泛函极值的近似值。(试探基函数 选择, 1,1,2,k k x x x k ,利用一阶近似解计 算即可。)

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

相关文档
最新文档