固体流态化实验

固体流态化实验
固体流态化实验

固体流态化实验

TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

4 固体流态化实验

实验目的

(1) 掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法;

(2) 测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 实验原理

4.2.1 固定床 1) 基本概念

当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下:

1. 静床堆积密度:ρb =M/V, 它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。

2. 静床空隙率ε : ε=1–(ρb /ρs ), 它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。

2) 固定床阶段压降Δp m 与空速u 的关系

当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式:

m

m m d u

K d K uL p ψ-+ψ-=?ρεεμεε32

2321)1()()1( (1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直

线,从直线的斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。 4.2.2 流化床 1) 基本概念

当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。

流化床现象在一定的流体空速内出现,在此流速范围内,随着流速的加大,流化床高度不断增加,床层空隙率相应增大。流化床根据流体有性质不同,可分为以下两种类型。

1. 散式流化——若流化床中固体颗粒均匀地分散于流体中,床层中各处空隙率大致相等,床层有稳定的上界面,这种流化型式称为散式流化。当流体与固体的密度相差较小时会发生散式流化,如液-固体系。

2. 聚式流化——对气固体系,因流化床中气体与固体的密度相差较大,气体对固体的浮力很小,气体对颗粒的支撑主要靠曳力,此时气体通过床层主要以大

气泡的形式出现,气泡上升到一定高度处会自动破裂,造成床层上界面有较大的波动,这种气固体系的流态化称为聚式流化。 2) 流化床阶段压降Δp m 与空速u 的关系 1. 流化床层的压降Δp m

对散式流化,流化阶段床层修正压强降Δp m 等于单位截面积床层固体颗粒的净重,即

Δp m = m( ρs –ρ)g/(A ρs )=L(1–ε)( ρs –ρ)g (2)

(2)表明,散式流化过程床层压降不随流体空速的变化而变化。对于聚式流化,由于气泡的形成与破裂,流化床层的压降会有波动,流化床层的压降曲线形状与散式流化压降曲线形状有一定的差异。 2. 起始流化速度u mf

起始流化速度u mf 可由固定床与流化床两阶段的“压降~空速”曲线的交点求出。另外,若起始流化时的雷诺数R mf <, 则可用白井–李伐公式计算起始流化速度:

82

.188

.094

.03

)]([10

024.8m

S mf d u ρμ

ρρρ-?=- (3)

若R mf >10, 则由式(3)计算得到的u mf 还须乘以校正系数。 实验装置流程

固体流态化装置流程图

对空气~石英砂体系,流动的空气由鼓风机○

4提供,依次经过气体流量调节阀○

3、气体转子流量计○2、温度计○1及气体分布板后,穿过石英砂组成的床层,最后床层顶部○

10排出。空气的流量由气体流量计读出,空气通过床层的压降由U 形压差计读出,床层高度的变化由标尺杆测出。

对水~石英砂体系,其实验装置流程与空气~石英砂体系大体相似。 操作步骤

(1)用木棒轻轻敲打床层,使床层高度均匀一致,并测量出首次静床高度; (2)打开电源,启动风机;

(3)调节气体流量从最小刻度开始,然后气体流量每次增加h ,同时记录下相应的空气流量、空气温度、床层压降等上行原始数据。最大气体流量以不把石英砂带出床层为准。

(4)调节气体量从上行的最大流量开始,每次减少h ,直至最小流量,记录相应的下行原始实验数据。

(5)测量结束后,关闭电源,再次测量经过流化后的静床高度。比较两次静床高度的变化。

(6)在临界流化点之前必须保证有六点以上数据,且在临界流化点附近应多测几个点。 实验报告

1).在直角坐标纸上作出p ~ u 曲线。

2).利用固定床阶段实验数据,求取欧根系数,并进行讨论分析。

3).求取实测的临界变化速度,并与理论值进行比较。

4).对实验中观察到的现象,运用气(液)体与颗粒运动的规律加以解释。

思考题

1).从观察到的现象,判断属于何种流化?

2).实际流化时,p为什么会波动?

3).由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?

4).流体分布板的作用是什么?

实验数据记录及数据处理结果示例

实验装置:1#;实验温度: 27 ;静床高度:143mm; 起始流化高度:146.5m m

33

实验结果:K1=, K2=, =0.263m/s

第五节 固体流态化

第五节固体流态化 §3.5.1、概述 将大量固体颗粒悬浮于运动的流体中,使颗粒具有类似于流体的某些特性,这种流固接触状态称为固体流态化。 化工中使用固体流态化技术的例子很多,如催化流化床反应器、流化床干燥器、沸腾床焙烧炉及颗粒的输送。催化流化床反应器所用的催化剂颗粒要比固定床的小得多,颗粒的比表面积大,这样流体与固体之间的传热,传质速率就比固定床的高;对于流化床干燥器沸腾床焙烧炉也有类似的特点。 §3.5.2、流化床的基本概念 现在让我们一起来观察流体通过均匀颗粒时所出现的床层现象。 一、固定床阶段 当空床速度(表观速度)较低,此时

即颗粒间空隙中流体的实际流速 小于颗粒的沉降速度 ,床层现象为颗 粒基本静止不动,颗粒层为固定床。颗粒床层高度为 ,此时流体通过颗粒床 层的压降为: ,可以用康采尼方程来估算; 在较大的 范围内,可以用欧根方程来估算,一般误差不超过 25%。 保持固定床的最大表观速度 二、流化床阶段 流化床阶段为表观速度增大至一定程度, 时,此时 , 颗粒开始松动,颗粒位置可以在一定的区间内进行调整,床层略有膨胀,当 颗粒仍不能自由运动,这时床层处于初始或临界化状态,床层高度增至 ,如 左图所示,而当继续增加,即

此时床内全部颗粒将“浮起”,颗粒层将更膨胀,床层高度增大至L,床层内颗粒可以在流体中作随机运动,并同时发生固体颗粒沿不同的回路作上下运动,固体颗粒的这种运动就好象液体沸腾,故流化床也称为沸腾床。流化床内颗 粒与流体之间的摩擦力恰好与颗粒的净重力 相平衡,且 ,但 基本不变。 三、颗粒输送阶段 若继续增大,且 ,则颗粒将获得向 上上升的速度,其大小为 , 此时,颗粒将带出容器外,这一阶段称为颗粒输送阶段。§3.5.3、两种不同流化形式

中南大学基础力学实验答案

中南大学基础力学实验答案 基础力学实验绪论 1.基础力学实验一般分为材料的力学性质测定,实验静态应力测试实验,振动和动应力测试实验,综合性测试实验。 2.在力学实验测量中,对于载荷不对称或试件几何性质不对称时,为提高测量精度,常采用对称测量法。 3.若载荷与其对应的响应值是线性关系,则载荷增量与其对应的响应值增量也是线性关系。(正确) 4.对于任何测量实验,加载方案均可采用增量法。(错误) 5.载荷与变形的关系为ΔL=FL/EA 简支梁各阶固有频率的测量实验 1.简支梁横向振动固有频率若为f1=20HZ ,则f3=180HZ 。(f1:f3=1:9) 2.共振相位判别法判断共振时,激振信号与振动体振动位移信号的李萨如图是正椭圆。 3.共振相位判别法判断共振时,激振信号与振动体速度信号的李萨如图是斜线。 4.共振相位判别法判断共振时,激振信号与振动体加速度信号的李萨如图是正椭圆。 5.物体的固有频率只有一个。(错误) 6.物体的共振频率就是物体的固有频率。(错误) 压杆稳定测试实验 1.关于长度因数μ,正确说法是:其它条件相同时约束越强,μ越小 2.关于柔度λ,正确的说法是:其它条件相同时压杆越长,λ越大 3.关于压杆稳定性,正确的说法是:要让欧拉理论可用,应使压杆的柔度进尽可能大 4.在以下所列的仪器设备中,压杆稳定实验所需要的是:压杆稳定试验台 数字测力仪 计算机 5.两端球形铰支的压杆,其横截面如下图所示,该压杆失稳时,横截面对中性轴的惯性半径i=0.577mm (i=h/sqrt(12)=2/sqrt(12)=0.577mm) 6.已知某理想中心压杆的长度为l ,横截面的惯性矩为l ,长度因数为μ,材料的弹性模量为 为E ,则其欧拉临界力Fcr=22) (l EI μπ 7.已知某理想中心压杆的长度为l ,横截面的惯性半径为i ,长度因数为μ,则该压杆的柔度λ=μl/i 8.两端铰支的细长压杆,若在其中点加一个铰支座,以约束该截面的水平位移,则增加该约束后压杆的欧拉临界力是原来的4倍。 弯扭组合变形实验 1.在弯扭组合实验中,圆轴下表面测点处包含横截面 和径向截面的应力状态为

固体力学以及各分支

固体力学 solid mechanics 固体力学是研究可变形固体在外界因素作用下所产生的应力、应变、位移和破坏等的力学分支。固体力学在力学中形成较早,应用也较广。水利工程中的各种结构都可以看作是可变形固体构成的,它们的设计和计算都要应用固体力学的基本原理和计算方法。 起源 固体力学的历史可以追溯到1638年,意大利科学家伽利略在实验的基础上首次提出梁的强度计算公式。一般认为这是材料力学发展的开端。当时,还采用刚体力学的方法进行计算,以致所得结论不完全正确。后来,英国科学家R.胡克在1678年发表了"力与变形成正比"这一重要物理定律(即胡克定律),建立了弹性变形的概念。从17世纪末到18世纪中,一些学者先后研究了弹性杆的挠度曲线、侧向振动和受压稳定性,发展了弹性杆的力学理论。 发展

19世纪初,由于工业的发展,开始设计大规模的工程结构,结构力学随之成为一门独立的学科。19世纪30年代起,出现了金属桁架结构。以后数十年间,创立了求解静定桁架的图解法和解析法,奠定了桁架理论的基础。19世纪60~70年代,先后提出了计算超静定结构的力法、计算结构的变形能法和超静定结构的计算理论。20世纪初,结构力学中的刚架计算理论、复杂超静定杆系结构的简易计算方法、动力分析和稳定分析等方面都得到了发展。 成就 1821年法国的 C.-L.-M.-H.纳维发表了弹性力学的基本方程。1822年法国的 A.-L.柯西给出应力和应变的严格定义并于次年导出矩形六面体微元的平衡微分方程。后者对数学弹性力学乃至整个固体力学的发展产生深远的影响。法国的 A.J.C.B. de 圣维南于1855年用半逆解法解出了柱体的扭转和弯曲问题,并提出了著名的圣维南原理。随后,德国的F.E.诺伊曼建立了三维弹性理论。弹性薄板的弯曲问题最早于1820年开始研究,以后再经过一些学者的工作而奠定了理论基础。弹性薄壳的研究是在20世纪发展起来的。在固体力学中对弹性规律的研究,发展得比较完备。 分支 固体力学的另一个分支塑性力学,在发展中先后出现过塑性增量理论、滑移线理论、塑性全量理论、塑性位势理论及塑性极限分析理论等多种理论。随着生产的发展,固体力学的研究范围、计算技术和实验技术都有很大的发展,形成了计算结构力学、复合材料力学、断裂力学、损伤力学和实验固体力学等新分支学科。 萌芽时期 远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建筑物、简单的车船和狩猎工具等。中国在隋开皇中期(公元591~599年)建造的赵州石拱桥,已蕴含了近代杆、板、壳体设计的一些基本思想。 随着实践经验的积累和工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。尽管如此,这些成就还是为较早发展起来的固体力学理论,特别是为后来划归材料力学和结构力学那些理论奠定了基础。 发展时期 实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的推动力。 这期间,固体力学理论的发展也经历了四个阶段:基本概念形成的阶段;解决特殊问题的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复杂问题的阶段。在这一时期,固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的

单片机实验指导书

《单片机原理与应用》 实验指导书 注意: 1、做实验前必须预习 2、带教材和实验指导书 理工大学 自动化学院自动化系

实验仪的使用 本实例是仿真INTEL的8031单片机,来循环点亮P1口的发光二极管(低电平有效)。程序是用汇编语言来编写。下面介绍相应的操作步骤: 1、运行桌面“星研集成软件”,画面如下: 2、建立源文件 执行 [主菜单?文件?新建],(或者点击图标)打开窗口。 选择存放源文件的目录,输入文件名,注意:一定要输入文件名后缀。对源文件编译、连接、生成代码文件时,系统会根据不同的扩展名启动相应的编译软件。比如:.ASM文件,使用A51来对它编译。本实 例文件名为xunhuan.asm 。窗口如下: 按“确定”即可。然后即出现文件编辑窗口: 输入源程序,参照实验一源程序。 .专业DOC.

这样一个源文件就建立好了。 3.编译、连接文件 首先选择一个源文件,然后可以编译、连接文件了。对文件编译,如果没有错误,再与库文件连接,生成代码文件(DOB、HEX文件)。编译、连接文件的方法有如下二种:(1)使用[ 主菜单?项目?编译、连接 ]或[主菜单?项目?重新编译、连接]”。(2)点击图标或来“编译、连接”或“重新编译连接”。编译、连接过程中产生的信息显示在信息窗的“建立”视中。编译没有错误的信息如下: 若有错误则出现如下信息框: 有错误、警告信息,用鼠标左键双击错误、警告信息或将光标移到错误、警告信息上,回车,系统自动打开对应的出错文件,并定位于出错行上。 这时用户可以作相应的修改,直到编译、连接文件通过。 4.调试 编译、连接正确后,可以开始调试程序。进入调试状态方法有: a)执行[ 主菜单?运行?进入调试状态] b)点击工具条的进入后的窗口如下:

固体流态化实验

一:实验目的: 1). 观察聚式和散式流化现象; 2). 掌握流体通过颗粒床层流动特性的测量方法; 3). 测定床层的堆积密度和空隙率; 4). 测定流化曲线(p~u曲线)和临界流化速度。 二:基本原理: 1)固体流态化过程的基本概念 将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有类似于流体的某些表观性质,这种流固接触状态称为固体流态化。而当流体通过颗粒床层时,随着流体速度的增加,床层中颗粒由静止不动趋向于松动。床层体积膨胀,流速继续增大至某一数值后,床层内固体颗粒上下翻滚,此状态的床层称为“流化床”。 床层高度L、床层压强降Δp对流化床表现流速u的变化关系如图(a)、(b)所示。图中b点是固定床与流化床的分界点,也称临界点,这时的表观流速称为临界流速或称最小流化速度 以u mf表示。 流化床的L、△P对流化床表观速度u的变化关系 图1—9 流化床的L、△P对流化床表观速度u的变化关系 对于气固系统,气体和粒子密度相差大或粒子大时气体流动速度必然比较高,在这种情况下流态化是不平稳的,流体通过床层时主要是呈大气泡形态,由于这些气泡上升和破裂,床层界面波动不定,更看不到清晰的上界面,这种气固系统的流态化称为“聚式流态化”。 对于液固系统,液体和粒子密度相差不大或粒子小、液体流动速度低的情况下,各粒子的运动以相对比较一致的路程通过床层而形成比较平稳的流动,且有相当稳定的上界面,由于固体颗粒均匀地分散在液体中,通常称这种流化状态为“散式流态化”。 2)床层的静态特性 床层的静态特性是研究动态特征和规律的基础,其主要特征(如密度和床层空隙率)的定义和测法如下: (1) 堆积密度和静床密度ρb=M/V(气固体系)可由床层中的颗粒质量和体积算出,它与 床层的堆积松紧程度有关,要求测算出最松和最紧两种极限状况下的数值。 (2)静床空隙率ε=1-(ρb/ρs)

单片机实验指导书

实验一KEIL 51软件实验 实验目的: 1、掌握KEIL集成开发环境的使用 2、掌握算术运算程序 实验设备:计算机、KEIL51软件 实验内容: 编程实现把片人RAM30H单元和40H单元两个16字节数相加,结果放于30H单元开始的位置处。在KEIL51编译、连接、仿真调试。 实验步骤: 一、运行KEIL51软件,出现图1所示KEIL 51主界面。 图1 KEIL 51主界面 首先用Project菜单下的New Project命令建立项目文件,过程如下。 (1) 选择Project菜单下的New Project命令,弹出如图2所示的Create new Project对话框。 图2 Create New Project对话框 (2) 在Create New Project对话框中选择新建项目文件的位置(最好一个项目建立一个文件夹如E:\project), 输入新建项目文件的名称,例如,项目文件名为example,单击【保存】按钮将弹出如图3所示的Select Device for Target ‘Target 1’对话框,用户可以根据使用情况选择单片机型号。Keil uVision2 IDE几乎支

持所有的51核心的单片机,并以列表的形式给出。选中芯片后,在右边的描述框中将同时显示选中的芯片的相关信息以供用户参考。 图3 Select Device for Target ‘Target 1’对话框 (3) 这里选择atmel公司的AT89c51。单击【确定】按钮,这时弹出如图4所示的Copy Standard 8051 Startup Code to Project Folder and Add File to Project确认框,C语言开发选择【是】,汇编语言开发选择【否】。 单击后,项目文件就创建好了。项目文件创建后,在主界面的左侧的项目窗口可以看到项目文件的内容。 这时只有一个框架,紧接着需向项目文件中添加程序文件内容。 图4 Copy Standard 8051 Startup Code to Project Folder and Add File to Project确认框 二、给项目添加程序文件 当项目文件建立好后,就可以给项目文件加入程序文件了,Keil uVision2支持C语言程序,也支持汇编语言程序。这些程序文件可以是已经建立好了的程序文件,也可以是新建的程序文件,这里我们新建的汇编程序文件后再添加。 (1) 选择文件菜单上的new命令,出现新建文本窗口,如图5所示。

实验六固体流态化的流动特性实验(精)

实验六 固体流态化的流动特性实验 一、 实验目的 在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。近年来,流化床设备得到愈来愈广泛的应用。 固体流态化过程又按其特性分为密相流化和稀相流化。密相流化床又分为散式流化床和聚式流化床。一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。 本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和临界流化速度,并实验验证固定床压降和流化床临界流化速度的计算公式。通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。 二、 实验原理 当流态流经固定床内固体颗粒之间的空隙时,随着流速的增大,流态与固体颗粒之间所产生阻力也随之增大,床层的压强降则不断升高。为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。现将一种较为常用的公式介绍如下: 流体流经固定床的压降,可以仿照流体流经空管时的压降公式(Moody 公式)列出。即 2 20u d H p p m m ρλ??=? (1) 式中,H m 为固定床层的高度,m 、d p 为固体颗粒的直径,m 、u 0为流体的空管速度,m ·s -1;ρ为流体的密度,Kg ·m -3;λm 为固定床的摩擦系数。 固定床的摩擦系数λm 可以直接由实验测定,根据实验结果,厄贡(Ergun)提出如下经验公式: ???? ??+???? ??-=75.1Re 150123m m m m εελ (2) 式中,εm 为固定床的空隙率;Re m 为修正雷诺数。Re m 可由颗粒直径d p ,床层空隙率εm ,流体密度ρ,流体粘度μ和空管速度u 0,按下式计算: m p m u d εμρ-?=11Re 0 (3) 由固定床向流化床转变式的临界速度u mf ,也可由实验直径测定。实验测定不同流速下的床层压降,再降实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图1所示。 ΔP mf u 0 图1流体流经固定床和流化床时的压力降 为计算临界流化速度,研究者们也曾提出过各种计算公式,下面介绍的为一种半理论半

单片机实验指导书

单片机实验指导书 适用专业:计算机控制、网络、物联网等 学时:12 编写人:孔庆臣 2016-5-12

实验一 IO口输入输出实验 1. 实验内容 (1) P2口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。 (2) P1口做输入口,接八个扭子开关,P2口接八只发光二极管,编写程序读取开关状态,将此状态在发光二极管上显示出来。 2. 实验目的 学习keil仿真软件的使用方法 学习IO口的使用方法。 学习延时子程序的编写和使用。 stc-isp软件的使用 3.有关说明 P1口为准双向口,P1的每一位都能独立地定义为输入或输出线,作为输入的口线,必须向锁存器相应位写入“1”,该位才能作为输入。单片机IO口在复位时均置为“1”,如果后来在口锁存器写入过“0”,在需要时应写入一个“1”使它再成为一个输入。 可以用第二个实验做一下实验。先按要求做好程序并调试成功后,可将P1口锁存器中置“0”,此时将P1作输入口,会有什么结果。 再来看一下延时程序的实现。通常用的有两种方法,一是用定时器中断来实现,一是用指令循环来实现。在系统时间允许的情况下可以采用后一种方法。 本实验系统晶振为11.0592MHZ,则一个时钟周期为0.0904us。现要写一个延时0.1s的程序,可大致写出如下: void Delay100ms() //@11.0592MHz { unsigned char i, j, k; i = 5; j = 52; k = 195; do { do { while (--k); } while (--j); } while (--i); } 5.实验电路设计 (1)分析附录1 单片机实验系统部分原理图,选择合适的电路模块,并根据实验要求的功能进行合理的电路模块间的电路连接。 (2)画出本次实验独立的原理图 5、实验要求 (1)完成实验电路设计 (2)完成实验程序设计 (3)实现要求的实验结果

化工原理固体流态化作业

1、固体流态化方法以提高氨合成塔的工作强度 在合成氦厂中,氨含量在混合气中的增加量总共只有10~玲%。由于触媒层中部的过热,就不可能应用蛟活渡的触媒,并提高尾气中的氨含量。 采用固体流态化层来合成氨,就能防止触媒层中的过热现象。在适宜的温度条件下,用蚊活俄触媒操作,并采用蚊小颗粒的触媒提高其内表面的利用率, 使操作过程得以实行。如动力学方面的研究所指出,合成氨触 媒内表面的利用率构为50%。牌粒子尺寸精小到1.5毫米,郎 可保愈翠位容积触媒的生产率提高一倍。 使用固体流态化层的氮合成塔如图所示。原始混合气樱换 热器,加热到330oC,进入第一层触媒(在现有固定层塔的耗稀 中温度等于450oC)。降低入口温度可大大精小换热器的尺寸, 并增大塔中触媒所占有的容积分率。触媚层中的温度对应于 每一层中最后棘化牵的适宜温度。樱合成塔后,氨在混合气中 的滇度可提高到22%。由于能够装埙蛟大数量的活澳触媒,更 好地利用了它的内表面,井实施了适宜的温度条件,整个塔的 生产率就可以提高一倍。 应用固体流态化方法以提高氨合成塔的工作强度,r.K.波列斯 抖夫,M.r.斯林尼柯著平成舫摘祥 2、 采用流态化气力输送技术设计一套应用于施工现场的水泥输送系统。流态化实际上是一种状态,是固体物料颗粒在流体介质作用下的流化状态,是一种介于固定床与输送床之间的相对稳定状态。 流态化气力输送系统,该系统在高于大气压力的状态下工作流态化气力输送系统是一种更加高效、可靠的气力输送系统,适用于流动性较好的物料。流态化气力输送具有输送压力低、气流速度小、管路磨损小等优点,而且可以有较高的混合比,一般在30左右,气流速度低于20in/s,最长输送距离可达1500m。流态化力气输送采用气固两相流理论,利用压缩空气的动压和静压来输送物料,其关键技术是使物料在输送器内充分流化,在输送管内边流化边输送。如图5-1所示:空气压缩机提供压缩气体,设置储气罐和汽水分离器来收集由于压力脉动和冷凝水的产生。空气与发送罐装入的物料形成气固混合物,通过输料管送到卸料点,在卸料处气固分离器将物料卸出,空气经风管和除尘器排入大气中。电子皮带秤和料位计为辅助设备,主要是为了实现自动计量和料位测量的功能。流态化气力输送水泥系统的研究,毛北平,2012年6月

高考力学实验运动学试验

力学实验专题复习 实验1、研究匀变速直线运动 1、在做“研究匀变速直线运动”的实验时,某同学得到一条用打点计时器打下的纸带,如图所示,并在其上取了A 、B 、C 、D 、E 、F 、G 等7个计数点,每相邻两个计数点间还有4个点图中没有画出.打点计时器接频率为f=50Hz 的交流电源. (1)每两个相邻的计数点的时间间隔为 s ,打点计时器使用的是 (选填“交流”或“直流”)电源. (2)打下E 点时纸带的速度v E = (用题中给定字母表示); (3)若测得d 6=65.00cm ,d 3=19.00cm ,物体的加速度a= m/s 2; (4)如果当时电网中交变电流的频率f >50Hz ,但当时做实验的同学并不知道,那么测得的加速度值比真实值 (选填“偏大”或“偏小”). 【参考答案】(1)0.1,交流; (2) 53 10 d d - f ; (3)3.0; (4)偏小. 【名师解析】(1)使用打点计时器来分析物体运动情况的实验中,打点计时器使用的是交流电源,若电源频率为50HZ ,则打点计时器打相邻两点的时间间隔是 0.02s . 每相邻两个计数点间还有4个点,图中没有画出,所以相邻的计数点之间的时间间隔为T=5×1/f=0.1s . (2)利用匀变速直线运动的推论得:v E = 532d d T -=53 10 d d -f 。 (3)根据匀变速直线运动的推论公式△x=aT 2可得a=63329d d d T --=2 0.650.190.1990.1 --? m/s 2=3.0m/s 2 ; (4)如果在某次实验中,交流电的频率f >50Hz ,那么实际打点周期变小, 根据运动学公式△x=at 2 得:真实的加速度值就会偏大,所以测量的加速度值与真实的加速度值相比是偏小. 2、如图是某同学在做匀变速直线运动实验中获得的一条纸带 (1)已知打点计时器电源频率为50 Hz ,则纸带上打相邻两点的时间间隔为________; (2)选取ABCD 纸带上四个点,从图中读出A 、B 两点间距s =________ cm ;C 点对应的速度是________ m/s ,匀变速直线运动的加速度为________ m/s 2 (计算结果保留两位有效数字)

固体力学实验课程学习报告

固体力学实验课程学习报告

固体力学实验II 课程学习报告 院(系)名称:航空科学与工程学院专业名称:航空工程 学号: 学生姓名:

固体力学实验课程学习报告 一、云纹法 1 云纹法定义 Moiré源自法语, 意思是从中国传入的丝绸的“耀眼的光泽”或“波形图案”。在实验力学中, 它指的是两个空间频率相差不大的振幅型光栅叠加在一起时所产生的明按交错的条纹图案。 通过分析云纹图案和条纹间距,可以测量物体的面内变形和应变以及三维形貌,这种方法称为云纹法。 如图所示,云纹实际上是两个光栅间的互相遮挡与透过现象,云纹中的亮条纹是由两个光栅的白线相交形成的(源于互不遮挡),云纹中的暗条纹是由两个光栅的白线与黑线相交形成的(源于互相遮挡)。由于人眼的分辩率或低通滤波性,白条纹中的黑线干扰被忽略了。 2 云纹法注意要点 (1)直线栅云纹法测试的是由于试件变形和转动引起的面内位移,不包括刚体位移 (2)直线栅云纹法中试件的刚体位移不影响云纹的形状和密度,但垂直于栅线方向的刚体位移会造成云纹的移动。用二维光栅可以同时测试X,Y两个方向的位移场(U场和V场) (3)为了提高云纹的对比度,一般将试件栅和标准栅尽量靠近,而且光栅黑白线的宽度应尽量相等。

(4)形成云纹的两个光栅的空间频率相差不能很大(一般相差不到一倍)3 处理方法 传统上利用光学像机记录云纹图像,人工处理。现在,可以利用数字相机,将云纹图像记录的同时进行数字化处理,并利用计算机和数字图像处理技术对云纹图像进行滤波、增强、提取中心线、拟合、求解位相、解包裹等一系列处理,大大降低了处理难度,加快了处理速度。 最终得到离散的位移场U(m,n)、V(m,n),m,n为像素位置 4 其他云纹法 (1)数字云纹法(虚拟云纹法) 采用虚拟的(数字化的)标准栅,根据云纹形成原理,与数字化的试件栅进行逻辑(乘)运算得到云纹。从试件栅变形前后的两幅云纹图中,得到试件的变形情况。 (2)影像云纹法(Shadow moire) 利用栅线与其在某物体表面的投影相重叠所得到的云纹条纹称为影像云纹。影像云纹法是一种能够测量被测表面的离面位移或三维形貌的方法。试件栅是标准栅在物体表面的投影,其变形是由于物体表面起伏的轮廓。 影像云纹所代表的物理意义是等高线,高度的参考面是标准栅所在的平面,所以影像云纹可以测物体的三维形貌 物体加载前后的三维形貌差,即是物体由于载荷而产生的离面位移。 (3)投影条纹法(Fringe Projection) 投影条纹法利用平行条纹投影在平面与物体曲表面的两副图像,可以对物体的三维形貌进行测量。条纹线相当于等高线。

单片机实验指导书

实验一8051简单编程与调试实验目的 通过简单小程序的输入和调试,熟悉并掌握Keil 的使用。学会Proteus与Keil的整合调试。 实验基本要求 建立三个项目,分别输入存储块清零、二进制BCD码及二进制ASCII码转换的汇编源程序,并进行仿真调试。画出实验程序的流程框图。 实验步骤 采用Keil Cx51 开发8051单片机应用程序一般需要经过下面几个步骤: 1、在 Vision2集成开发环境中创建一个新项目(Project),并为该项目选定合适的单片机CPU器件。 在菜单栏中选择“Project”→“New Project”,弹出“Create New Project”对话框,选择目标路径,在“文件名”栏中输入项目名后,单击“保存(S)”按钮,弹出“Selecte Device for Target”对话窗口。在此对话窗口的“Data base”栏中,单击“Atmel”前面的“+”号,或者直接双击“Atmel”,在其子类中选择“AT89C51”,确定CPU类型。如图所示。 点击“确定”按钮后,弹出如下的对话框

如果是进行汇编语言编程选择“否”。 2、利用μVision2的文件编辑器编写C语言(或汇编语言)源程序文件,并将文件添加到项目中去。一个项目可以包含多个文件,除源程序文件外还可以有库文件或文本说明文件。 在μVision2的菜单栏中选择“File”→“New”命令,新建文档,然后在菜单栏中选择“File”→“Save”命令,保存此文档,这时会弹出“Save As”对话窗口,在“文件名(N)”一栏中,为此文本命名,注意要填写扩展名“.asm”。单击“保存(S)”按钮,这样在编写汇编代码时,Keil会自动识别汇编语言的关键字,并以不同的颜色显示,以减少输入代码时出现的语法错误。程序编写完后,再次保存。 在Keil中“Project Workspace”子窗口中,单击“Target 1”前面的“+”号,展开此目录。在“Source Group 1”文件夹上单击鼠标右键,在右键菜单中选择“Add File to ‘Group Source 1’”,弹出“Add File to Group”对话窗口,在此对话窗口的“文件类型”栏中,选择“Asm Source File”,并找到刚才编写的.asm文件,双击此文件,将其添加到Source Group 中,此时“Project Workspace”子窗口如图所示。

固体流态化实验

4 固体流态化实验 实验目的 (1) 掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法; (2) 测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 实验原理 4.2.1 固定床 1) 基本概念 当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下: 1. 静床堆积密度:ρb =M/V, 它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。 2. 静床空隙率ε : ε=1–(ρb /ρs ), 它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。 2) 固定床阶段压降Δp m 与空速u 的关系 当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式: m m m d u K d K uL p ψ-+ψ-=?ρεεμεε322 321)1() ()1( (1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直线,从直线的 斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。 4.2.2 流化床 1) 基本概念 当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。 流化床现象在一定的流体空速内出现,在此流速范围内,随着流速的加大,流化床高度不断增加,床层空隙率相应增大。流化床根据流体有性质不同,可分为以下两种类型。 1. 散式流化——若流化床中固体颗粒均匀地分散于流体中,床层中各处空隙率大致相等, 床层有稳定的上界面,这种流化型式称为散式流化。当流体与固体的密度相差较小时会发生散式流化,如液-固体系。 2. 聚式流化——对气固体系,因流化床中气体与固体的密度相差较大,气体对固体的浮力很小,气体对颗粒的支撑主要靠曳力,此时气体通过床层主要以大气泡的形式出现,气泡上升到一定高度处会自动破裂,造成床层上界面有较大的波动,这种气固体系的流态化称为聚式流化。 2) 流化床阶段压降Δp m 与空速u 的关系 1. 流化床层的压降Δp m 对散式流化,流化阶段床层修正压强降Δp m 等于单位截面积床层固体颗粒的净重,即 Δp m = m( ρs –ρ)g/(A ρs )=L(1–ε)( ρs –ρ)g (2)

单片机实验指导书

单片机实验 实 验 指 导 书 2017年2月

单片机实验报告 (自动化XX级) 实验名称 学生 联系方式 学号 院系工学院电气与信息工程系专业自动化 指导教师 填写日期

实验一数据传送 一、实验目的 1.进一步熟悉仿真器的使用方法。 2.练习设计简单的程序。 3.掌握8051片RAM和片外RAM的数据传送方法,从而了解这两部分存贮器的特点。 二、实验容 将8051部RAM 40H~4FH置初值00H~0FH,然后将40H~4FH容传送到外部RAM的4800H~480FH,再将4800H~480FH传回部RAM的50H~5FH。设置断点B1、B2、B3每运行到断点时检查相应的CPU现场和存贮单元的容。 三、实验准备 1、认真阅读本实验指导。 2、读懂下面的程序: #include #include char data *p40 ,*p50 ; char xdata *p4800; char i, j, k; void main( ) { p40=0x40; p50=0x50; p4800=0x4800; for(i=0;i<16;i++) { *p40=i; p40=p40+1; } //B1 p40=0x40; for(j=0;j<16;j++) { *p4800=*p40; p40=p40+1; p4800=p4800+1; } // B2 p4800=0x4800; for(k=0;k<16;k++) { *p50=*p4800; p50=p50+1;

p4800=p4800+1; } } //B3 3、画出如下要测的数据表格: 四、实验步骤 1、向机器输入程序。 2、运行程序至第一个断点B1,检查40H~0FH单元容及指针p40的容。 3、运行程序至第二个断点B2,检查4800H~480FH单元容及指针p40,p4800的容。 4、运行程序至第三个断点B3,检查50H~5FH单元容及累加器及指针p50的容。 五、实验报告要求 1、写出C语言源程序和对应的汇编语言指令及注解的程序清单。 2、将测得的数据填入表格,并和理论分析的结果相比较。 3、说明8031CPU对部存贮器和外部扩展RAM存贮器各有哪些寻址方式? 4、如果要读外部程序存储器0x4800中的容,该如何访问? 5.实验心得。(必须)

第十四章 固体流态化现象

第十四章固体流态化现象 使颗粒状物料与流动的气体或液体相接触,并在后者作用下呈现某种类似于流体的状态,这就是固体流态化。借助这种流化状态以完成某种处理过程的技术,称为流态化技术。 流态化技术用于工业操作有以下优点: (1)颗粒流动平稳,类似液体流动,操作易于实现连续化和自动化。 (2)由于固体颗粒的激烈运动和迅速混合,使床层温度均匀,便于凋节和维持所需的韫度。 (3)由于流化床所用固体颗粒尺寸小,比表面大,因此,气体与固体颗粒之间的传热、传质速率高。又因为流化床颗粒的运动使得流化床与传热壁面之间有较高的传热速率。 由于上述优点,近几十年来,流态化技术广泛用在化学工业中的物理操作和化学操作中。 但是,流态化技术在应用中还存在以下一些问题: (1)由于气体返混和气泡的存在,使气固接触效率降低。 (2)由于固体颗粒在床层内迅速混合,在连续进料的情况下,将导致颗粒在床层内停留时间不均,使得产品质量不均匀。 (3)由于固体颗粒的磨蚀作用,管子和容器的壁面磨损严重。脆性固体颗粒易被磨成粉末被气流带走,需要考虑由此引起的各种问题。 对上述的存在问题应有充分认识,以便在应用时扬长避短,获得更好的技术经济效果。另外,由于流态化现象比较复杂,人们对它的规律性了解还很不够,无论在设计方面或操作方面,都还存在许多有待进一步研究的内容。而且,鉴于目前绝大多数工业应用都是气一固流化系统,因此,本章主要讨论气一固流化系统。 一.固体流态化过程的几个阶段 在玻璃圆筒底部装一块多孔板,板上堆放一层砂粒,从多孔板下方通入空气。当气速小时,砂粒静止不动,空气仅仅是从砂粒间缝隙穿过,这就是固定床。如图14-1(a)。 气流速度加大,则固体颗粒开始松动,有些颗粒虽然轻微地抖动,但不能脱离其原来的位置,各颗粒仍然保持接触,床层高度无明显增加。此称为膨胀床。 流速再增到某一数值,各颗粒刚好被上升气流推起,彼此脱离接触,床层高度也有明显增加。达到这一状态时,称为起始流态化。如图14-1(b)所示。 流速超过起始流态化速度以后,颗粒便在床内翻滚,作不规则运动,总体上是在中央上升而沿器壁落下。气流速度愈大,运动愈剧烈,此即为流化床,如图14-1的(c1)与(c2)(代表两种不同形式的流态化,见后)所示。此阶段中颗粒虽然剧烈运动,但基本上并不脱离床层,被吹起之后仍要落回,因此床层仍维持一个明显的上界面,与沸腾水的表面相似。 如果继续提高气流速度,到了一定数值,则颗粒便为气流所夹带而从圆筒顶部被吹走,原来的床层不复存在,自然就无所谓上界面。这种状况,称为气力输送,如图14-1(d)所示。 二.流化床类似于液体的特性 从流化床所显示出的流化现象来看,很象沸腾中的液层,因此流化床又称沸腾床。实质上,处于流化状态下的颗粒群的确具有许多与液体相似的特性。例如,流化床不仅具有基本上呈水平的上界面,而且若将较轻的物体按进床层内部,则放开以后,轻物便冒出浮在界面上,如图14-2(a)、(b)所示;在床层的侧壁上开孔,固体颗粒可以像液体一样流出,如图14-2(c)所示;若将不等高的两流化床连通,两床的床面可以彼此拉平,如图14 -2(d) 所示;床层内部任何两点间的静压差,

材料力学实验报告答案

材料力学实验报告答案 Prepared on 22 November 2020

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分)

1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫

单片机实训指导书

实训项目一让单片机动起来1、实训目的及要求: 1)掌握单片机开发板的使用方法(驱动识别,程序下载) 2)掌握单片机程序开发软件KEIL的使用 3)掌握单片机程序烧录软件STC-ISP下载软件的使用 2、实训内容 1)根据实训报告内容编写单片机程序 2)调试程序并使用ISP下载软件将程序烧录到单片机芯片中 3)观察实验现象并记录 4)完成实训报告内容 3、实训准备 硬件:单片机开发板、电脑、杜邦线 软件:keil uvision4 、STC-ISP 4、实训过程 1)流程图

2)实训程序一: #include "reg52.h" sbit LED=P1^0; void main() { LED=0; while(1); } 实训程序二: #include "reg52.h" #define LED P1; void main() { LED=0xaa; while(1); } 3)实训步骤 ①打开KEIL软件编写LED控制程序。 ②程序调试无误后,使用KEIL生产HEX文件。 ③将生产的HEX文件烧录到单片机芯片中,并观察实验现象。

3)实验现象记录 实训程序一:。实训程序二:。 4)实训报告要求 ①将实训程序中的注释补充完整,了解每条语句作用。 ②完成如下评分表

实训项目二LED的闪烁1、实训目的及要求: 1)掌握单片机控制LED点亮和熄灭的方法。 2)了解单片机延时程序的原理及设计。 3)了解单片机中常用的变量类型及其定义方法。 2、实训内容 1)根据实训报告内容编写单片机程序 2)调试程序并使用ISP下载软件将程序烧录到单片机芯片中3)观察实验现象并记录 4)完成实训报告内容 3、实训准备 硬件:单片机开发板、电脑、杜邦线 软件:keil uvision4 、STC-ISP 4、实训过程 1)流程图

单片机实验指导书——带答案

《单片机原理及应用》 实验指导书 姓名: 学号: 专业班级: 所在学院:成人教育学院 2012年5月日

单片机实验指导书 目录 实验一系统认识实验 (3) 实验二程序调试 (6) 实验三外部中断实验 (6) 实验四串口实验 (8)

实验一系统认识实验 一、实验目的 1.掌握SICElab-G2200实验/仿真系统的结构与使用方法; 2.熟悉单片机系统开发软件WA VE6000。 二、实验设备 1.G2200/2100 实验平台 1 台 2.仿真器/ 仿真板 1 台 3.连线若干根 4.计算机 1 台 三、实验内容 P1端口接发光二极管,加1点亮。 四、连线方案: 五、实验步骤 1.连接Lab51CPU板。(已由实验师连好) 2.仿真器与实验平台的连接 将Lab51板的DC34芯插座与G6W仿真器上的DC34插座用扁平电缆连接起来。(已由实验师连好) 3.仿真器与计算机的连接 用随机配带的串口通讯电缆,将仿真器与计算机连接起来,串口1、串口2均可。 特别注意:在仿真器与计算机连接串口电缆时,两台机器必须都断电,否则易损坏计算机和仿真器。 4.实验连线 按连线方案,用随机配带的实验连线插入孔后,轻轻转动一下锁紧插头,保证良好接触。拆线时,应先回转一下,不要硬拨,以免损坏线路板。不管是拆线还是插线,都应 在断电的情况下进行。实验中“连线方案”的粗线即为需用户动手接连的线。

5.检查接线是否有误,确信没有接错后,接上电源,打开电源开关。 6.在计算机上打开“WA VE6000集成调试环境”,界面如下图所示: 7.建立新程序(如果程序已编好,直接跳到第9步) 选择菜单[文件 | 新建文件]功能。 出现一个文件名为NONAME1的源程序窗口,在此窗口中输入以下程序 ORG 0 MOV P1,#0 ;熄灭发光二极管 LOOP: INC P1 CALL Delay SJMP LOOP Delay: MOV R2,#3 ;延时程序 MOV R1,#0 MOV R0,#0 DLP: DJNZ R0,DLP DJNZ R1,DLP DJNZ R2,DLP RET END 8.保存程序 选择菜单[文件 | 保存文件]或[文件 | 另存为 ]功能。 9.建立新的项目 选择菜单[文件 | 新建项目]功能。 新建项目会自动分三步走。 (1)加入模块文件。在加入模块文件的对话框中选择刚才保存的文件MY1.ASM,按打开键。如果你是多模块项目,可以同时选择多个文件再打开。 (2)加入包含文件。在加入包含文件对话框中,选择所要加入的包含文件(可多选)。如果没有包含文件,按取消键。 (3)保存项目。在保存项目对话框中输入项目名称。MY1无须加后缀。软件会自动将后缀设成“.PRJ”。按保存键将项目存在与你的源程序相同的文件夹下。 10.设置项目 11.编译程序 选择菜单[项目 | 编译]功能或按编译快捷图标或按F9键,编译项目。 在编译过程中,如果有错可以在信息窗口中显示出来。双击错误信息,可以在源程序中定位所在行。纠正错误后,再次编译直到没有错误。在编译之前,软件会自动将项目和程序存盘。在编译没有错误后,就可以执行、调试程序了。 12.执行、调试程序 有四种方法执行程序:全速执行、程序单步跟踪、执行到光标处和设置断点。 (1)全速执行 (2)程序单步跟踪 选择[执行 | 跟踪]功能或按跟踪快捷图标或按F7键进行单步跟踪调试程序。 (3)执行到光标处 (4)设置断点 (5)观察各变量值的方法

相关文档
最新文档