高中数学 典型例题 直线与平面的垂直的判定和性质 新课标

高中数学 典型例题 直线与平面的垂直的判定和性质 新课标
高中数学 典型例题 直线与平面的垂直的判定和性质 新课标

典型例题一

例1下列图形中,满足唯一性的是( ).

A .过直线外一点作与该直线垂直的直线

B .过直线外一点与该直线平行的平面

C .过平面外一点与平面平行的直线

D .过一点作已知平面的垂线

分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.

解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.

B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.

C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.

D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.

故选D .

说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.

典型例题二

例2 已知下列命题:

(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;

(2)平面内与这个平面的一条斜线垂直的直线互相平行;

(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;

(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.

上述命题正确的是( ).

A .(1)、(2)

B .(2)、(3)

C .(3)、(4)

D .(2)、(4)

分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.

解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;

(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;

(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直

线垂直;

(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D .

说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.

典型例题三

例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .

分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂

直.

证明:连结D B 1、D A 1、BD ,在△BD B 1中,

∵O E 、分别是B B 1和DB 的中点,

∴D B EO 1//.

∵⊥11A B 面D D AA 11,

∴1DA 为1DB 在面D D AA 11内的射影.

又∵D A AD 11⊥,

∴11DB AD ⊥.

同理可证,C D D B 11⊥.

又∵111D CD AD =I ,1AD 、?C D 1面1ACD ,

∴⊥D B 1平面1ACD .

∵EO D B //1,

∴⊥EO 平面1ACD .

另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.

又∵OC AO =,

∴AC OE ⊥.

在正方体1DB 中易求出: a a a DO DD O D 26222

22211=???

? ??+=+=, a a a OB BE OE 232222222=???? ??+??? ??=+=, ()a a a E B B D E D 232222212111=??? ??+=

+=. ∵21221E D OE O D =+,

∴OE O D ⊥1.

∵O AC O D =I 1,O D 1、?AC 平面1ACD ,

∴⊥OE 平面1ACD .

说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.

典型例题四

例4 如图,在△ABC 中,ο

90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.

分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线

垂直.

证明:∵⊥SA 面ABC ,?BC 平面ABC ,

∴BC SA ⊥.

∵ο90=∠B ,即BC AB ⊥,A SA BA =I ,

∴⊥BC 平面SAB .

∵?AN 平面SAB .

∴AN BC ⊥.

又∵SB AN ⊥,B BC SB =I ,

∴⊥AN 平面SBC .

∵?SC 平面SBC ,

∴SC AN ⊥,

又∵SC AM ⊥,A AN AM =I ,

∴⊥SC 平面AMN .

∵?MN 平面AMN .

∴MN SC ⊥.

另证:由上面可证⊥AN 平面SBC .

∴MN 为AM 在平面SBC 内的射影.

∵SC AM ⊥,

∴SC MN ⊥.

说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙

O 上任意一点(C 与B A 、不重合)

.过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.

典型例题五

例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ?=.

分析:本题考查的是线面角的定义和计算.要证明三个

角余弦值之间关系,可考虑构造直角三角形,在直角三角形

中求出三个角的余弦值,再代入验证证明,其中构造直角三

角形则需要用三垂线定理或逆定理.

证明:过H 点作HD 垂直BC 于D 点,连AD .

∵α⊥AH ,

∴AD 在平面α内射影为HD .

∵HD BC ⊥,α?BC ,

∴AD BC ⊥.

在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BH

BD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ?=.

说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的

范围为??????2πθ,.

典型例题六

例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.

分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.

证明:连结AC BD 、,EF 和BD 分别交AC 于

O H 、,连GH ,作GH OK ⊥于K .

∵ABCD 为正方形,F E 、分别为AD AB 、的中

点,

∴BD EF //,H 为AO 中点.

∵EF BD //,?BD 平面GFE ,

∴//BD 平面GFE .

∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.

∵AC BD ⊥,∴AC EF ⊥.

∵⊥GC 面ABCD ,∴EF GC ⊥.

∵C AC GC =I ,

∴⊥EF 平面GCH .

∵?OK 平面GCH ,

∴OK EF ⊥.

又∵GH OK ⊥,H EF GH =I ,

∴⊥OK 平面GEF .

即OK 长就是点B 到平面GEF 的距离.

∵正方形边长为4,2=CG ,

∴24=AC ,2=HO ,23=HC .

在Rt △HCG 中,2222=+=

CG HC HG . 在Rt △GCH 中,11

112=?=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.

典型例题七

例7 如图所示,直角ABC ?所在平面外一点S ,且SC SB SA ==.

(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;

(2)若直角边BC BA =,求证:BD ⊥面SAC .

分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.

证明:(1)在等腰SAC ?中,D 为AC 中点,∴AC SD ⊥.

取AB 中点E ,连DE 、SE .

∵BC ED //,AB BC ⊥,∴AB DE ⊥.

又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.

∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).

(2)∵BC BA =,∴AC BD ⊥.

又∵SD ⊥面ABC ,∴BD SD ⊥.

∵D AC SD =I ,∴BD ⊥面SAC .

说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.

典型例题八

例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .

分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.

证明:如图所示,在平面α内作两条相交直线m 、n .

∵α⊥a ,∴m a ⊥,n a ⊥.

又∵a b //,从而有m b ⊥,n b ⊥.

由作图知m 、n 为α内两条相交直线.

∴α⊥b .

说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.

典型例题九

例9 如图所示,已知平面αI 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.

分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.

∴A 、B 、C 、D 四点共面.

∵α⊥AB ,β⊥AC ,EF =βαI ,∴EF AB ⊥,EF AC ⊥.

又A AC AB =I ,∴EF ⊥平面ABCD .

∴BD EF ⊥.

说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、

C 、

D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.

典型例题十

例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.

(1)求证:SB NH ⊥;

(2)这个图形中有多少个线面垂直关系?

(3)这个图形中有多少个直角三角形?

(4)这个图形中有多少对相互垂直的直线?

分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.

(1)证明:连AM 、BM .如上图所示,

∵AB 为已知圆的直径,∴BM AM ⊥.

∵SA ⊥平面α,α?BM ,∴MB SA ⊥.

∵A SA AM =I ,∴BM ⊥平面SAM .

∵AN ?平面SAM ,∴AN BM ⊥.

∵SM AN ⊥于N ,M SM BM =I ,∴AN ⊥平面SMB .

∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.

解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .

∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,

∴图中共有4个线面垂直关系.

(3)∵SA ⊥平面AMB ,∴SAB ?、SAM ?均为直角三角形.

∵BM ⊥平面SAM ,∴BAM ?、BMS ?均为直角三角形.

∵AN ⊥平面SMB ,∴ANS ?、ANM ?、ANH ?均为直角三角形.

∵SB ⊥平面ANH ,∴SHA ?、BHA ?、SHN ?、BHN ?均为直角三角形. 综上,图中共有11个直角三角形.

(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.

由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.

由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.

由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.

综上,图中共有11对互相垂直的直线.

说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.

典型例题十一

例11 如图所示,?=∠90BAC .在平面α内,PA 是α的斜线,?=∠=∠60PAC PAB .求PA 与平面α所成的角.

分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.

解:如图所示,过P 作α⊥PO 于O .连结AO ,

则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.

作AC OM ⊥,由三重线定理可得AC PM ⊥.

作AB ON ⊥,同理可得AB PN ⊥.

由PAC PAB ∠=∠,?=∠=∠90PNA PMA ,PA PA =,

可得PMA ?≌PNA ?,∴PN PM =.

∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.

所以点O 在BAC ∠的平分线上.

设a PA =,又?=∠60PAM ,∴a AM 2

1=,?=∠45OAM , ∴a AM AO 2

22==. 在POA ?中,22cos ==

∠PA AO PAO ,

∴?=∠45PAO ,即PA 与α所成角为?45.

说明:

(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ?=来计算PA 与平面α所成的角,此时?==∠60θPAC ,α=∠PAO ,?==∠45βCAO .

(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ?的内心.

典型例题十二

例12 如图所示,在平面β内有ABC ?,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.

分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又?=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.

解:作SD ⊥平面β,垂足为D ,连DA 、DB .

∵AC SA ⊥,BC DB ⊥,

∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,

又BC AC ⊥,∴ACBD 为矩形.

又∵SB SA =,∴DB DA =,∴ACBD 为正方形,

∴AB 、CD 互相垂直平分.

设O 为AB 、CD 的交点,连结SO ,

根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.

在SOD Rt ?中,cm SD 4=,cm AB DO 32

1==, ∴cm SO 5=.

因此,点S 到AB 的距离为cm 5.

说明:由本例可得到点到直线距离的作法:

(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.

(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.

(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.

典型例题十三

例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.

分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .

证明:∵SA ⊥平面ABCD ,?BC 平面ABCD ,

∴BC SA ⊥.

又∵ABCD 为正方形,

∴AB BC ⊥.

∴⊥BC 平面ASB .

∵?AE 平面ASB ,

∴AE BC ⊥.

又∵⊥SC 平面AEFG ,

∴AE SC ⊥.

∴⊥AE 平面SBC .

又∵?SB 平面SBC ,

∴SB AE ⊥,同理可证SD AG ⊥.

说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.

典型例题十四

例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.

已知:BAC ∠在平面α内,点α?P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.

证明:∵α⊥PO ,

∴OE 为PE 在α内的射影.

∵PE AB ⊥,α平面?AB ,

∴OE AB ⊥.

同理可证:OF AC ⊥.

又∵α⊥PO ,PF PE =,OF OE =,

∴CAO BAO ∠=∠.

说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知?=∠90ACB ,S 为平面ACB 外一点,?=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.

典型例题十五

例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.

(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )

(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )

(3)垂直于三角形两边的直线必垂直于第三边.( )

(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )

(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )

解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号

(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.

(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.

(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.

(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,

∵b a ⊥,c a ⊥,0=c b I ,且b ,c 确定一平面,设为α,则α⊥a ,

同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,

∴该命题应打“√”号.

说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.

典型例题十六

例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.

分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.

证明:取AB 中点F ,连CF 、DF ,

∵BC AC =,∴AB CF ⊥.

又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,

又CDF CD 平面?,∴AB CD ⊥

又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,

又BE AH ⊥,∴BCD AH 平面⊥.

典型例题十七

例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .

已知:直线α?a ,b a 直线⊥,α⊥b .求证:α//a .

分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'

//a a ,由线面平行判定定理得证.

证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβI .

αααβαα////,,'''''a a a a a a b a a b a

b a b ???

????????????⊥⊥?????⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'

a =αβI .

αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ????????????

?????⊥????⊥⊥???????⊥????⊥又又∵又∵. 典型例题十八

例18 如图,已知在ABC ?中,?=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.

求证:H 不可能是DBC ?的垂心.

分析:根据本题所证结论,可采用反证法予以证明.

证明:如图所示,假设H 是DBC ?的垂心,则DC BH ⊥.

∵DBC AH 平面⊥,∴AH DC ⊥,

∴ABH DC 平面⊥,∴DC AB ⊥.

又∵ABC DA 平面⊥,∴DA AB ⊥,

∴DAC AB 平面⊥,

∴AC AB ⊥,这与已知?=∠60BAC 矛盾,

∴假设不成立,故H 不可能是DBC ?的垂心.

说明:本题只要满足?≠∠90BAC ,此题的结论总成立.不妨给予证明.

典型例题十九

例19 在空间,下列哪些命题是正确的( ).

①平行于同一条直线的两条直线互相平行

②垂直于同一条直线的两条直线互相平行

③平行于同一个平面的两条直线互相平行

④垂直于不一个平面的两条直线互相平行

A .仅②不正确

B .仅①、④正确

C .仅①正确

D .四个命题都正确

分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α?b ,α?c ,且A c b =I ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.

③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A =I ,因此该命题是错误的.

④该命题是线面垂直的性质定理,因此是正确的.

综上可知①、④正确.

∴应选B .

典型例题二十

例20 设a ,b 为异面直线,AB 为它们的公垂线

(1)若a ,b 都平行于平面α,则α⊥AB ;

(2)若a ,b 分别垂直于平面α、β,且c =βαI ,则c AB //.

分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.

图1 图2

证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,

设直线b 与点P 确定的平面与平面α的交线为'b

∵α//a ,α//b ,∴'//a a ,'//b b

又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,

∴α⊥AB .

(2)如图2,过B 作α⊥'BB ,则a BB //'

则'BB AB ⊥

又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.

∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.

∴c 也垂直于由'BB 和b 确定的平面.

故AB c //.

说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.

典型例题二十一

例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .

分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.

证明:连结11C A ,由于11//C A AC ,AC EF ⊥,

∴11C A EF ⊥.

又D A EF 1⊥,1111A C A D A =I ,

∴D C A EF 11平面⊥. ①

∵11111D C B A BB 平面⊥,111111D C B A C A 平面?,

∴111C A BB ⊥.

∵四边形1111D C B A 为正方形,

∴1111D B C A ⊥,1111B BB D B =I ,

∴D D BB C A 1111平面⊥,

而D D BB BD 111平面?,∴111BD C A ⊥.

同理11BD DC ⊥,1111C C A DC =I ,

∴D C A BD 111平面⊥. ②

由①、②可知:1//BD EF .

典型例题二十二

例22 如图,已知P 为ABC ?外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.

分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,

∴AO PO ⊥,BO PO ⊥,CO PO ⊥

∵a PC PB PA ===,

∴PAO ?≌PBO ?≌PCO ?,

∴OC OB OA ==,

∴O 为ABC ?的外心.

∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ?为正三角形, ∴a AB AO 3

633==,∴a AO PA PO 3322=-=.

因此点P 到平面ABC 的距离a 3

3. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.

(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.

(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.

典型例题二十三

例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.

分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.

解:如图,∵BC C B //11,且1111BCD A C B 平面?,11BCD A BC 平面?,

∴1111//BCD A C B 平面.

从而点1B 到平面11BCD A 的距离即为所求.

过点1B 作B A E B 11⊥于E , ∵11ABB A BC 平面⊥,且B B AA E B 111平面?,

∴E B BC 1⊥.

又B B A BC =1I ,

∴111BCD A E B 平面⊥.

即线段E B 1的长即为所求,

在B B A Rt 11?中,136012

51252211111=+?=?=B A BB B A E B ,

∴直线11C B 到平面11BCD A 的距离为13

60. 说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.

典型例题二十四

例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为?30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.

分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.

解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E . ∵BC AE //,

∴DAE ∠就是AD 、BC 所成的角,

?=∠30DAE .

∵BC AB ⊥,

∴四边形ABCE 是矩形.连DE ,

∵CD BC ⊥,CE BC ⊥,且C CE CD =I ,

∴CDE BC 平面⊥.

∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面?,∴DE AE ⊥.

在AED Rt ?中,得34=AE ,∴)(34cm AE BC ==.

说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.

高一数学立体几何练习题及部分标准答案汇编

立体几何试题 一.选择题(每题4分,共40分) 1.已知AB//PQ,BC//QR,则∠PQP等于() A 030 B 030 C 0 150 D 以上结论都不对 2.在空间,下列命题正确的个数为() (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是() A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m//平面α,直线n在α内,则m与n的关系为() A 平行 B 相交 C 平行或异面 D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作() A 1个或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有()

8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块 14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题 15(10分)如图,已知E,F 分别是正方形ABCD A B C D -的棱AA 和棱CC 上的点,且

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

2.3直线、平面垂直的判定及其性质 教案设计1

直线和平面垂直的判定与性质(一) 一、素质教育目标 (一)知识教学点 1.直线和平面垂直的定义及相关概念. 2.直线和平面垂直的判定定理. 3.线线平行的性质定理(即例题1). (二)能力训练点 1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加. 2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面的两条相交直线,向学生渗透转化思想的应用. (三)德育渗透点 引导学生认识到,定理的证明过程实质是应用转化思想的过程:立体几何的问题转化为平面几何的问题来解决,线、面垂直问题转化为线、线垂直问题来解决.转化思想是重要的数学思想方法,在立体几何的证明和解题中,是一种常用的思想方法. 二、教学重点、难点、疑点及解决方法 1.教学重点 (1)掌握直线和平面垂直的定义:如果一条直线和一个平面的任何一条直线垂直,那么这条直线就和这个平面垂直. (2)掌握直线和平面垂直的判定定理: (3)掌握线线平行的性质定理: 若a∥b,a⊥α则b⊥α.

2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题. 3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可. 三、课时安排 本课题共安排2课时,本节课为第一课时. 四、学生活动设计(略) 五、教学步骤 (一)温故知新,引入课题 1.空间两条直线有哪几种位置关系? (三种:相交直线、平行直线、异面直线) 2.经过一点和一条直线垂直的直线有几条? (从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直) 3.空间一条直线与一个平面有哪几种位置关系? (直线在平面、直线和平面相交、直线和平面平行.) 4.怎样判定直线和平面平行? 师:我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手. (板书课题:§1.9直线和平面垂直) (二)猜想推测,激发兴趣 1.教师演示课本上的实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线垂直,书脊和桌面的位置关系给了我们以直线和平面垂直的形象.从而引入概念:一条直线和平面的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质 最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题 . 知 识 梳 理 1.直线与平面垂直 (1)直线和平面垂直的定义 如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理 (1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:??? ???0,π2. 3.二面角 (1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;

(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的定义 两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理 1.两个重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法). 2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )

平面与平面垂直的性质(教案)

平面与平面垂直的性质(教案) 教学目的 通过对面面垂直性质定理的探索、证明,培养学生的观察、分析、论证等思维能力 教学目标: 1 理解掌握面面垂直的性质定理 2 能初步运用性质定理解决问题 教学重点难点: 重点:理解掌握面面垂直的性质定理 难点:运用性质定理解决实际问题 教学过程: (一) 复习提问 师:请大家回顾一下,怎样判断线面垂直和面面垂直?(提问) 生:线面垂直判定定理: 如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面. 生:面面垂直判定定理: 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. (二)引入新课 师:今天我们要学习“两个平面垂直的性质”,先来看下面问题:如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。 1)平面ADD′A′⊥平面ABCD 2) DD′⊥面ABCD 3)AD′⊥面ABCD

师:我们发现:平面ADD′A′⊥平面ABCD,平面ADD′A′∩平面ABCD = AD,D′是平面ADD′A′内一点,过D′点可作无数条直线,这些直线中有与平面ABCD垂直的,也有不垂直的,那么,满足什么条件的直线能与平面ABCD垂直呢? (提出问题,引发思维,并引导学生积极寻找这些直线与交线AD的关系)生:(略) 师:平面ADD′A′⊥平面ABCD,平面ADD′A′内的任一点,平面内过该点且垂直于交线的直线垂直于平面ABCD。 (三)新课 已知:面α⊥面β,α∩β = a, AB α , AB⊥a于B, 求证:AB⊥β (让学生思考怎样证明) 师:(分析:要证明直线垂直于平面,须证明直线垂直于 平面内两条相交直线,而题中条件已有一条, 故可过该直线作辅助线) 证明:在平面β内过B作BE⊥a,又∵AB⊥a, ∴∠ABE为α﹣a﹣β的二面角,又∵α⊥β, ∴∠ABE = 90° , ∴AB⊥BE 又∵AB⊥a, BE∩a = B, ∴AB⊥β 1.面面垂直的性质定理: 两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (用符号语言表述)若α⊥β,α∩β = a, AB α , AB⊥a于B,则AB⊥β 师:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明。这种互相转换的证明方法是常用的数学思想方法。同学们在学习中要认真理解和体会。 2. 例题分析 例1.空间四边形ABCD中,ΔABD与ΔBCD都为 正三角形,面ABD⊥面BCD,试在平面BCD 内找一点,使AE⊥面BCD 解:在ΔABD中,∵AB=AD,取BD的中点E, 连结AE,则AE为BD的中线

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

直线、平面垂直的判定及其性质(二)(讲义)含答案

直线、平面垂直的判定及其性质(二)(讲义) ?知识点睛 一、直线与平面垂直(线面垂直) 性质定理:垂直于同一个平面的两条直线_____________. a b α ∵_________,b⊥α, ∴___________. 其他性质: 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面; 如果一条直线垂直于两个平行平面中的一个平面,那么这条直线也垂直于另一个平面. 二、平面与平面垂直(面面垂直) 性质定理:两个平面垂直,则一个平面内_____________的直线与另一个平面垂直. α a l β ∵α⊥β,α∩β=l,________,________, ∴a⊥β. 其他性质: 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面; 如果一平面垂直于两平行平面中的一个平面,那么它必垂直于另一个平面.

?精讲精练 1.已知直线l垂直于直线AB和AC,直线m垂直于直线BC和AC,则直线l, m的位置关系是() A.平行B.异面C.相交D.垂直 2.对于直线m,n和平面α,β,能得出α⊥β的一组条件是() A.m∥n,m∥α,n∥β B.m⊥n,α∩β=m,n?α C.m∥n,n⊥β,m?α D.m∥n,m⊥α,n⊥β 3.若m,n,l是互不重合的直线,α,β,γ是互不重合的平面,给 出下列命题: ①若α⊥β,α∩β=m,m⊥n,则n⊥α或n⊥β; ②若α∥β,α∩γ=m,β∩γ=n,则m∥n; ③若m不垂直于α,则m不可能垂直于α内的无数条直线; ④若α∩β=m,m∥n,且n?α,n?β,则n∥α且n∥β; ⑤若α∩β=m,β∩γ=n,α∩γ=l,且α⊥β,α⊥γ,β⊥γ,则m⊥n,m ⊥l,n⊥l.其中正确命题的序号是________________. 4.边长为a的正方形ABCD沿对角线BD折成直二面角,则AC 的长为() B C D A A B. 2 a C. 2 a D.a

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

高一数学集合练习题及答案经典

发散思维培训班测试题 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? ,{}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集

8、设集合A=}{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D } {2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题 17、已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2x ax b ++,A=}{}{ ()222x f x x ==,试求 f ()x 的解析式

《平面与平面垂直的性质》教学设计

《平面与平面垂直的性质》教学设计 一、教材分析: 直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。 二、学情分析: 1.学生思维活跃,参与意识和自主探究能力较强,故采用启发、探究式教学方法;通过一系列的问题及层层递进的的教学活动,引导学生进行主动的思考、探究。帮助学生实现从具体到抽象、从特殊到一般的过度,从而完成定义的建构和定理的发现。 2.学生抽象概括能力和空间想象能力有待提高,故采用多媒体辅助教学。让学生在认知过程中,着重掌握原认知过程,使学生把独立思考与多向交流相结合。 三、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定了以下教学目标: (1)知识与技能目标: ①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识; ②能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念. (2)过程与方法目标: ①了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用. ②通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力。 ③发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神. (3)情感、态度与价值观目标: 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣. 四、教学重点与难点: (1)教学重点:理解掌握面面垂直的性质定理和内容和推导。 (2)教学难点:运用性质定理解决实际问题。 五、教学设计思路: 1、复习导入: (1)线面垂直判定定理: 如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面. (2)面面垂直判定定理: 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. 2、探究发现: (1)创设情境:已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由! 设计说明: 感知在相邻的两个相互垂直的平面内,有哪些特殊的直线和平面关系,然后通过操作,确定两个平面垂直的性质定理的合理性,引导学生通过模型观察,讨论在两个平面相互垂直的情况下,能够推出一些什么样的结论。

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

相关文档
最新文档