量子阱原理及应用

量子阱原理及应用
量子阱原理及应用

光子学原理课程期末论文——量子阱原理及其应用

信息科学与技术学院

08电子信息工程

杨晗

23120082203807

题目:量子阱原理及其应用

作者:杨晗23120082203807

摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主要

介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。

关键词:量子阱量子约束激光器

量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。

一量子阱最基本特征

由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态

和其他元激发过程以及它们之间

的相互作用,与三维体状材料中的

情况有很大差别。在具有二维自由

度的量子阱中,电子和空穴的态密

度与能量的关系为台阶形状。而不

是象三维体材料那样的抛物线形

状[1]。

图1半导体超晶格的层状结构,白圈和灰圈代

表两种材料的原子

.

量子阱的制备通常是通过将一种材料夹在

两种材料(通常是宽禁带材料)之间而形成的。

比如两层砷化铝之间夹着砷化镓。一般这种材

料可以通过MBE (分子束外延)或者CVD (化学

气相沉积)的方法来制备。就像三明治一样的

结构,中间是很薄的一层半导体膜,外侧是两

个隔离层。用激光朝量子阱闪一下,可以使中

间的半导体层里产生电子和带正电的空穴。通

常情况下,电子会与空穴结合,放出光子。科

学家将量子阱的上层制造得特别薄,厚度不足

30埃,这样就可迫使中间层产生的电子与空穴

结合时,以变化的电场而不是光子的形式释放

能量。电场的作用使邻近的量子点中产生新的

电子和空穴,从而令它们结合并放出光子.

对多量子阱,若势垒壁厚LB 仍为无限大(实际上只需大于20nm ),势垒足够高(△Ec>0.5Ev ),

其电子的状态有如单量子阱中的电子,相邻量子阱中的电子的波函数不会发生重叠。但若势垒壁逐渐变薄,则相邻量子阱中电子的波函数就会因隧穿效应而逐渐有所交叠,并使简并能级分裂成带[2],如图所示:

图 3势垒高度有限的多量子阱和超晶格中电子的波函数

二 量子阱效应与超晶格效应

对具有势阱结构或者超晶格结构的人工合成材料,当其中窄禁带材料的厚度小于载流子的平均自由程时,其电子特性会发生某些变化,甚至会出现一些非此结构不会出现的特殊物理现象。这些跟势阱的形成以及尺寸有关的效应即被称为量子阱效应或超晶格效应。主要的量子阱效应和超晶格效应是量子约束效应,如前所述,对于由两层宽禁带材料和夹在其间的窄禁带材料薄层构成的量子阱,当窄禁带薄层的厚度小于电子平均自由程时,电子在薄层法线方向上的运动将受到限制,只能在薄层平面内自由运动。与体材料中的电子相比,这种运动史一种二维运动,至少是准二维运动。受约束的电子运动状态的这一重大变化的突出表现是其能量的量子化,即原本在三维材料某一范围内(例如导带)连续发布的能量状态,在二维薄层内变为一系列分立能级,这就是量子约束效应。而且只有足够窄的量子阱中才会出现量子约束效应,因此,量子约束效应又称为量子尺寸效应。

图 2量子阱中电子和空穴的态密度

与能量的关系示意图

三量子阱激光器

利用量子约束效应在半导体激光器的有源深层中形成量子能级,用这些量子能级间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。人们在量子约束效应发现后不久就观察到量子阱中的光学泵浦作用,并于20世纪70年代末开发出量子阱激光器。所以,半导体激光器是量子阱和超晶格技术的最早受益者之一。异质结的采用使半导体激光器的性能获得了一次飞跃性的改善,但一般的双异质结(DH)激光器的有源层还比较厚,大都在100nm以上,不足以在其中形成量子能级。因此,最基本的量子阱激光器就是把一般DH激光器的有源层厚度减薄到足以形成量子能级的数十纳米左右,使有源层成为一个单量子阱,如图所示,但是,有源层减薄往往引起激光器性能在阈值电流方面的劣化。

图4能带结构示意图

在半导体激光器阈值增益中计入光学限制因子,其表达式变为

式中,a为损耗系数,R为反射率,l为共振腔的长度。在这些参数中,会随着

激光器有源层的减薄而明显下降,从而使激光器的阈值增益升高,阈值电流密度增大。为了克服有源层减薄带来的这种负面影响,可进一步将有源层做成多量子阱结构,如图4(b)。多量子阱结构保持了量子约束效应而等效的展宽了有源

层,从而使增大了。但是,为了从量子阱中引出较高的光学增益,如果不降低

有源层中多量子阱的势垒高度,就需要增大电流的注入。这样,就必然有部分载流子分布在量子阱的高次量子能级上,进而引起增益谱的展宽和阈值电流的增大。适当降低有源层中多量子阱的势垒高度,可以提高电流的注入效率,从而将注入电流控制在适当的大小[3]。

量子阱和超晶格技术的应用使半导体激光器的性能获得很大改善。

量子约束效应最实际的应用是量子阱(MQW)及用量子阱所得到的各种半导体器件,量子阱是窄带隙超薄层被夹在两个宽带隙势垒薄层之间。同常规的激光器相比,量子阱激光器具有以下特点:

在量子阱中,态密度呈阶梯状分布,量子阱中首先是E1c和E1v之间电子和空穴参与的复合,所产生的光子能量hv=E1c-E1v>Eg,即光子能量大于材料的禁带宽度。相应地,其发射波长凡小于几所对应的波长九,即出现了波长蓝移。

在量子阱激光器中,辐射复合主要发生在E1c和E1v之间。这是两个能级之间的电子和空穴参与的复合,不同于导带底附近的电子和价带顶附近的空穴参与的辐射复合,因而量子阱激光器光谱的线宽明显地变窄了。

在量子阱激光器中,由于势阱宽度Lx通常小于电子和空穴的扩散长度Le 和Ln,电子和空穴还未来得及扩散就被势垒限制在势阱之中,产生很高的注入效率,易于实现粒子数反转,其增益大大提高,甚至可高达两个数量级。

量子阱使激光器的温度稳定条件大为改善,AlGaInAs量子阱激光器的特征温度马可达150K,甚至更高。因而,这在光纤通信等应用中至关重要[4]。

四InGaAs量子阱激光器的介绍及应用

衬底出光的InGaAs/ GaAs量子阱垂直腔面发射半导体激光器的有源层由三个InGaAs/ GaAs应变量子阱组成, InGaAs 量子阱宽为8nm , GaAs 势垒宽为10 nm1 三个量子阱被上、下AlG aAs限制层包围构成为一个波长的谐振腔。上下两个分布布喇格反射镜为四分之一波长的GaAs和AlGaAs周期结构组成。其中p 型反射镜为38. 5周期(掺杂C ,浓度为3×1018) ,n 型反射镜为28. 5周期(掺杂Si ,浓度为 3 ×1018cm- 3) 1N 型反射镜的对数比p型反射镜对数少,以使器件的光从n型反射镜一侧由衬底出射形成衬底出光型器件。在p 型分布布喇格反射镜与有源区之间加入一层高Al组分的Al0198G a0102 As层,厚度为30 nm ,此层在器件的工艺过程中将被氧化为AlxOy 绝缘层,起到电流限制作用,形成电流注入窗口。器件结构中各外延层由金属有机化合物气相沉积(MOCVD)技术在n -G aAs衬底(掺杂Si ,浓度为3×1018cm- 3)上外延生长获得。

工艺过程中,采用化学湿法腐蚀法,腐蚀出直径为350μm的圆形台, 腐蚀深度

以露出Al

98

.0Ga

02

.0

As层为宜,之后把器件置于高温(420℃)湿氮环境下对Al

98

.0

Ga

02

.0

As 层进行氧化处理,转化为Al xOy 绝缘层,形成300μm直径的电流注入窗口,对注入器件的电流起到限制作用。之后对器件的衬底进行减薄和化学辅助抛光处理,减薄到大约150μm左右,以减少衬底对器件的串联电阻的贡献1P 型分布布拉格反射镜侧做大面积的Ti-Pt-Au 金属接触。在n型G aAs衬底上蒸发制作Si/ SiO2增透膜膜系,以提高输出光功率,并由自对准光刻技术保留出光窗口之后作衬底侧的n型金属接触层。最后由快速热退火炉进行合金退火处理。整个器件结构由In焊料( In焊料为软焊料,可以减少封装过程中引入到外延片的应力) 把器件焊接到铜热沉上,之后进行电极过渡,超声金丝球焊引线,对器件进行简单的封装。并对器件特性进行测试[5]

五量子阱材料的其他应用

量子阱LED

在LED中引入量子阱或超晶格,可以明显提高发光效率,或使之具有常规LED没有的特性,例如发光波长的可调制性。

在LED的发光区做成量子阱结构,改变偏压即会观察到发光特性的变化。若量子阱材料的导带底和价带顶能级分别为Ec和Ev,具有这种改良结构的LED在偏压较低时将发出能量为Hv=Ec-Ev的光;如果加大偏压,发光波长就会因为量子阱能带倾斜程度的增大而变短。同时,量子阱的导带底电子和价带顶空穴也会因电场作用而改变位置,被赶到相反方向的势垒壁附近,从而使发光强度增高。

利用这种现象可以做出发光波长连续可调的高速点调制LED器件或超短光

脉冲发生器。用GaAs/GaAs多量子阱结构做成的电场调制波长LED的时间常数可达到130ps一下。

结论:

通过本文可以了解到量子阱的构造,量子阱激光器的特点,两者结合的产物——量子阱半导体激光器的原理尤其是InGaAs量子阱半导体激光器的构造与设计。典型半导体激光器通常为窄带设备,只能以特有波长发出单色光。由于量子阱垂直腔面激光器的输出光不再在沿着腔面方向,从而更有利于对输出光的接收。但也存在一些缺点,如输出光为椭圆偏振光,因此不适合在保偏系统中应用。

量子阱具有特殊的结构,具有二维自由度,电子和空穴的态密度与能量的关系为台阶形状。而不是象三维体材料那样的抛物线形状。正是因为这种结构,量子阱材料才具有量子约束效应,利用这种效应在半导体激光器的有源深层中形成量子能级,用这些量子能级间的电子跃迁支配激光器的受激辐射,由此形成的量子阱激光器的温度稳定条件大为改善这在光纤通信等应用中至关重要,对量子阱的研究必将为半导体光电学带来许多更新、更好的特性,也为光电子集成开拓更美好的前景。

参考文献:

1.毛陆虹,郭维廉,陈弘达,吴荣汉.量子阱半导体激光器调制特性和噪声的电

路模拟[J].通信学报,2001,22(1):38~42

2.王绍民,赵道木,吕章德,周国泉,黄富泉,徐锦心.量子阱半导体激光

器的光束质量[J].光子学报,2001,30(4):483~486

3.徐锦心, 赵道木, 周国泉, 王绍民,半导体激光器的光束质量因子可以

小于1,光子学报, 2000, 30 (3) : 381~ 384

4.江剑平,半导体激光器,北京: 电子工业出版社, 2000: 194

5.晏长岭,宁永强,秦莉,张淑敏,赵路民.高功率InGaAs量子阱垂直腔面发射激

光器的研制[J].2004,33(9):1029~1031

量子纠缠及其在量子通信中的应用

量子纠缠及其在量子通信中的应用 吴家燕物理学专业15346036 摘要 量子理论为我们描绘了一幅与我们容易感知的由经典力学统治的现实世界有大不同的量子世界图象,而量子纠缠是量子世界特有的现象,在经典世界中没有对应。纠缠态的制备和各种测量仍然是现在前沿研究的一个热点话题。这小小的量子纠缠正在当今世界中,从量子密码到完全保密的量子通信,从量子计算机到未来的量子互联网,给人类带来新的希望。 关键词 量子纠缠量子比特量子隐形量子密钥量子通信 正文 量子纠缠现象 史上最怪、最不合理、最疯狂、最荒谬的量子力学预测便是“量子纠缠”。量子纠缠是一种理论性的预测,它是从量子力学的方程式中得来的。如果两个粒子的距离够近,它们可以变成纠缠状态而使某些性质连接。出乎意料的是,量子力学表明,即便你将这两个粒子分开,让它们以反方向运动,它们依旧无法摆脱纠缠态。 以电子的“自旋”作例子,电子的自旋直到你观测它的那一刻才能决定,当你观测它时,就会发现它不是顺时针转就是逆时针转。假设有两个互相纠缠的电子对,当其中一个顺时针转时,另一个就逆时针转,反之亦然。不过奇怪之处是它们并没有真正连接在一起。对量子理论坚信不疑的波尔和他的同事们相信,量子纠缠可以预测相隔甚远的电子对的状态,即便它们一个在地球,一个在月球,没有传输线相连,如果你在某个时刻观测到其中一个电子在顺时针旋转,那么另一个在同一时刻必定是在逆时针旋转。换句话说,如果你对其中一个粒子进行观测,那么你不止是影响了它,你的观测也同时影响了它所纠缠的伙伴,而且这与两个粒子间的距离无关。两个粒子的这种怪异的远距离连接,爱因斯坦称之为“鬼魅般的超距作用”。 波尔所拥护的量子力学方程式表明,相互纠缠的粒子即使相距很远,也可以互相连接。而克劳泽与阿斯佩的实验证明了量子力学的方程是正确的,纠缠是真实的,粒子可以跨越空间连接——对其一进行测量,确实可以瞬间影响到它远方的同伴,仿佛跨越了空间限制。 量子纠缠态特性 经典信息的基本单元是比特(bit),它是一个两态系统,可制备为两个可识别状态中的一个,例如:0或1。量子信息的基本单元称为量子比特(qubit),它也是一个两态系统,且是两个线性独立的态。量子比特的两个可能状态可表示为:|0>和|1>。量子比特和比特之间的最大区别在于量子比特还可以处在|0>和|1>之间的叠加态(superposition)上,因此量子比特的状态可看成是二维复向量空间中的单位向量。比特可以看成是量子比特的特例。 信息用量子态来表示便实现了信息的“量子化”,这是量子信息学的出发点。信息一旦量子化,量子力学特性便成为信息处理过程的物理基础:信息的演化遵从薛定谔方程,信息的传输就是量子态在量子通道中的传送,信息处理和计算是对量子态的幺正变换,信息提取则是对量子系统实行量子测量。

量子力学泛函计算简介

量子力学泛函计算 纪岚森 (青岛大学物理科学学院材料物理一班) 摘要:文章叙述了密度泛函理论的发展,密度泛函理论以“寻找合适的交换相关为主线,从 最初的局域密度近似,,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相 互作用修正,多种泛函形式的出现,是的密度泛函在大分子领域的计算越来越精确。近年来 密度泛函理论在含时理论与相对论方面发展也很迅速。计算体系日臻成熟,而我所参加的创 新实验小组就是以密度泛函研究大分子体系。在量子力学泛函计算的产生,发展,理论,分 支,前景等方面予以介绍,本着科学普及的态度希望大家能够更加进一步的理解泛函计算。 关键字:量子力学泛函计算,发展,理论分支,前景,科普 1引言:随着量子理论的建立和计算机技术的发展,人们希望能够借助计算机对微观体系的量子力学方程进行数值求解【3】,然而量子力学的基本方程———Schirdinger 方程的求解是极其复杂的。克服这种复杂性的一个理论飞跃是电子密度泛函理论(DFT)的确立电子密度泛函理论是上个世纪60 年代在Thomas-Fermi 理论的基础上发展起来的量子理论。与传统的量子理论向悖,密度泛函理论通过离子密度衡量体系的状态,由于离子密度只是空间的函数,这样是就使得解决三维波函数方程转化为解决三维密度问题,使得在数学计算上简单了很多,对于定态Schirdinger 方程,我们只能解决三维氢原子,对于更加复杂的问题,我们便无法进行更为精确的计算,而且近似方法也无法是我们得到更为精确的结果。但是密度泛函却在这方面比较先进,是的大分子计算成为可能。【2】 2.过程:第一性原理,密度泛函是一宗量子力学重头计算的计算方法,热播呢V啊基于密度泛函的理论计算成为第一性原理——first-principles。经过几十年的发展密度泛函理论被广泛的应用于材料,物理,化学和生物等科学中,Kohn也由于其对密度泛函理论的不可磨灭的先驱性贡献获得了诺贝尔化学奖。密度泛函理论体系包括交换相关能量近似,含时密度泛函。 3.密度泛函理论的发展: 1交换相关能,在密度泛函理论中我们把所有近似都归结到交换相关能量一项上,所以密度泛函的精确度也就是由交换相关能一项上。寻求更好的更加合适的相关近似,即用相同密度的均匀电子气交换相关泛函作为非均匀系统的近似值,或许这也出乎人们的意料,这样一个简单的近似却得到了一个极好的结论。直接导致了后来的泛函理论的广泛应用。由此获

经典和量子统计物理学的初步认识(高工大作业,第三部分)

西安交通大学 高等工程热力学 报告 学号:XXXXXXXXXX 姓名:XXXXX 专业:工程热物理 班级:XXXXXX 能源与动力工程学院 2015/12/26

经典和量子统计物理学的初步认识 经典统计物理学是建立在经典力学基础上的学科,而量子统计物理学是建立在量子力学基础上的学科,从经典统计到量子统计,它们之间存在着一定的区别和联系,并在一定的条件下可以相互转换。利用经典统计方法推证热力学中的能量均分定理,并结合热容量的定义求解某些系统内能及热容量时,发现其理论值与实际值存在差异,这是经典统计物理难以解决的问题,本文采用量子统计理论做出了合理的解释,从而使理论值和实际值吻合的很好。因此,可以看出经典统计的局限性是量子统计理论建立的基础,量子统计理论很好的补充了经典统计理论的不足。 1. 理想气体物态方程的经典统计推导 在普通物理的热学中,从气体的实验定律(如:玻意耳—马略特定律、查理定律及盖吕萨克定律)出发推导理想气体物态方程,而在理论物理中热力学统计利用经典统计方法仍能给出相应的理论,它是经典统计物理应用的一个典型的实例。对自由粒子而言,其自由度r=3,其坐标表示为(x ,y ,z),与之相对应的动量为(p x ,p y ,p z ),那么它的能量为: 2222x y z p 1==(p +p +p )2m 2m ε()1 将(1)式代入玻耳兹曼系统下的配分函数: 1222x y z l (p +p +p )2m l l z e e β βεωω--==∑∑()2 由于玻耳兹曼系统的特点是每个粒子可以分辨,可看成经典系统,则系统看成连续分布的,即配分函数中的求和变为积分,则有: 131...222(p +p +p )x y z 2m x y z z e dxdydzdp dp dp h β -=??()3 求解积分可得: 3 2122()z V h β =πm ()4 其中V dxdydz =???是气体的体积,根据玻耳兹曼系统广义力的统计表达式类比压强的统计表达式为: 1lnz N P V β?=?()5 将(4)式带入(5)式,求导可得理想气体的压强: NkT P V = ()6

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

激光二极管原理及应用

激光二极管参数与原理及应用 2011-06-19 17:10:29 来源:互联网 一、激光的产生机理 在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程, 一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射; 二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射; 三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。 自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。 产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件: P1P2exp(2G - 2A) ≥1 (P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp 为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则 Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ, 上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。 二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里—

LED原理及应用概述

LED原理及应用概述 纵观人类照明史,先后经历了火光照明、白炽灯照明、荧光灯照明,LED(发光二极管)作为加入照明家族的新成员,目前正处于蓬勃发展阶段。从1962年第一支红色二极管问世,黄色、绿色、橙色、蓝光LED被陆续开发出来。1998年,基于蓝光的LED芯片的成功开发,孕育了新一代的照明革命。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。 1、 LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出

能量。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 因此,只要有理想的半导体材料就可以制成各种光色的LED。 LED结构图如下图所示。发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。

浅谈量子通信技术

题目浅谈量子通信技术课程现代通信技术基础班级 学号 姓名 指导老师 2011 年12月10日

浅谈量子通信技术 摘要:量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。 关键词语: 量子通信量子力学 1、引言 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。 2、量子通信的的提出 自1 9世纪进入通信时代以来,人们就梦想着像光速一样(甚至比光速更快)的通信方式.在这种通信方式下,信息的传递不再通过信息载体(如电磁波)的直接传输,也不再受通信双方之间空间距离的限制,而且不存在任何传输延时,它是一种真正的实时通信.科学家们试图利用量子非效应或量子效应来实现这种通信方式,这种通信方式被称为量子通信.与成熟的通信技术相比,量子通信具有巨大的优越性,已成为国内外研究的热点.近年来在理论和实践上均已取得了重要的突破,引起各国政府、科技界和信息产业界的高度重视.从人类信息交流

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学思考题及解答

量子力学思考题 1、以下说法就是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学就是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而就是量子力学实际上已经 过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义就是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其她力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论与经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ与2ψ就是分别打开左边与右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ与2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不就是概率相加,而就是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ 中出现有1ψ与2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 与2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ与2ψ就是体系的可能态,则它们的线性叠加 2211ψψψc c +=也就是体系的一个可能态”。 (1)就是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 就是任意与r ? 无关的复数,但可能就是时间t 的函数。这种理解正确不? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子阱中的激子效应及其应用

量子阱中的激子效应及其应用 摘要 人们对半导体中的电子空穴对在库仑作用下形成的激子态及其有关的物理性质进行了深入研究。在量子化的低维电子结构中,激子束缚能要大得多,激子效应增强,也更稳定。这对制作利用激子效应的光电子器件非常有利。近年来量子阱、量子点等低维结构研究获得飞速的进展,已大大促进了激子效应在新型半 导体光源和半导体非线性光电子器件领域的应用。 关键词半导体,激子,量子阱,自电光效应 ABSTRACT The excitons in semiconductors formed by electron-hole pairs bound by Coulombic interaction have beenwell investigated. In quantized electronic low-dmi ensional structures the excitons have much larger binding energies than in bulkmaterials, showing strongerexcitonic effects and beingmore stable athigh temper-atures or under high electric field conditions. The progress obtained recently in investigations on quantum wells,quantumdotsand other low-dmi ensionalstructureshave greatlypromoted the ionsofexciton ic effects in many new sem iconductor light sources and non-linear opto-electronic devices. Key words Semiconductor;Exciton;Quantum well;SEED 1.引言 目前,世界各主要发达国家都已纷纷致力于信息高速公路的建设。如今依然在大规模使用的传统的电子器件已经不能很好的满足信息高速传输的要求。 人们迫切需要研制出新的器件,打造未来信息高速公路。本文着重介绍了半导体中的一种特殊的束缚态——激子的形成及其特性,并对利用激子效应制作的各种量子器件在未来光通信中的应用进行了探讨。 2.激子形成及其特性 激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子—空穴对。半导体吸收一个光子后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系再一起,从而形成了一种束缚态——激子。 激子在研究绝缘体和半导体的物理问题和光电性质时具有重要的意义。早在20世纪30年代,科学家就对激子开始了研究。在固体物理的研究发展史中,布洛赫首先用单电作为独立运动的量子来描述解释固体的导电性。1931年,前

2021公需课量子通信技术与应用

2021公需课量子信息技术及应用 单选题: 1.关于量子计算带来的全新挑战,下列表述错误的是()。(3.0分) A.1994年由P.Shor证明量子计算机高效解决大数分解和离散对数问题 B.1984年BB84协议的发表,量子密码学终于正式诞生了 C.后量子公钥密码学目前正处于发展中,尚未破解 D.量子中继已经发展成熟,不需要依赖可信中继组网 我的答案:D √答对 2.墨子号量子科学实验卫星(简称“墨子号”),于(),在酒泉卫星发射中心用长征二号丁运载火箭成功发射升空。( 3.0分) A.2013年6月16日 B.2016年6月16日 C.2013年8月16日 D.2016年8月16日 我的答案:D √答对 3.我国成功构建的世界上最长的QKD骨干网络是()。(3.0分) A.北京至上海 B.上海至合肥 C.合肥至济南 D.济南至北京 我的答案:A √答对 4.关于量子计算技术在我国的应用,下列表述错误的是()。(3.0分) A.2014年,完成第一个超导量子比特 B.2015年,提高量子比特相干寿命,达到国际水平 C.2016年,四超导量子比特芯片,演示求解线性方程组 D.2017年,十超导量子比特芯片,是已公开资料中超导量子比特纠缠数目最多的 我的答案:D √答对 5.后量子公钥密码(PQC)是由:NIST于()正式启动PQC项目,面向全球征集PQC算法,推动标准化。(3.0分) A.2013年12月 B.2016年12月 C.2013年8月 D.2016年8月 我的答案:B √答对 6.关于量子计算对密码学的影响,下列表述错误的是()。(3.0分) A.RSA、D—H、DSA等非对称密码体系会被Shor算法完全破坏 B.对于对称密码体系,量子计算机带来的影响稍小 C.目前已知的Grover量子搜索算法使得加密密钥的有效长度减半 D.RSA、ECC、DSA等公钥密码体制都是绝对安全的 我的答案:D √答对 7.关于量子的原理特性,下列表述错误的是()。(3.0分) A.量子态的不可分割 B.量子态的叠加、不可复制 C.量子态的纠缠

量子通信技术发展现状及面临的问题研究_徐兵杰

doi:10.3969/j.issn.1002-0802.2014.05.001 量子通信技术发展现状及面临的问题研究 徐兵杰1,刘文林2,毛钧庆3,杨燕3 (1.保密通信实验室,四川成都610041;2.解放军95830部队,北京100093;3.解放军91746部队,北京102206) 摘要:量子通信具有更高的传输速率和更可靠的保密性,是世界各国正在研究和发展的通信技术热点之一。首先介绍量子通信技术的基本概念、发展历程、系统架构、特点优势,然后重点阐述国内外量子密钥分配、量子隐形传态、量子安全直接通信、量子机密共享等技术的研究进展情况,最后分析量子通信技术研究和发展过程中面临的困难及局限。 关键词:量子通信密钥分配隐形传态机密共享 中图分类号:TN91文献标志码:A文章编号:1002-0802(2014)05-0463-06 Research on Development Status and Existing Problems of Quantum Communication Technology XU Bing-jie1,LIU Wen-lin2,MAO Jun-qing3,YANG yan3 (1.Science and Technology on Communication Security Laboratory,Chengdu Sichuan610041,China; 2.Unit95830of PLA,Beijing100093,China;3.Unit91746of PLA,Beijing102206,China)Abstract:Quantum communication is a new communication technology under research and development,which possesses higher transmission rate and reliable secure communication advantages.This paper intro-duces the concepts,development,system architecture,features and advantages of quantum communication technologies firstly.Then it focuses on demonstrating the technology research progress of quantum commu-nication,such as quantum key distribution,teleportation,secure direct communication and secret sharing.Finally,the research and development difficulties of quantum communication technology and limitations are analyzed in this paper. Key words:quantum communication;key distribution;teleportation;secret sharing 0引言 量子通信基于量子力学原理,将微观世界的物质特性运用到通信技术上,在高速传输和高可靠保密通信方面具有优势,成为当今通信技术领域的研究热点之一。世界各国纷纷投入大量的人力和物力进行研究和开发,在理论研究和实验技术上均取得了重大突破。 1量子通信技术 1.1基本概念 量子通信是利用量子相干叠加、量子纠缠效应进行信息传递的一种新型通信技术,由量子论和信息论相结合而产生[1]。从物理学角度看,量子通信是在物理极限下利用量子效应现象完成的高性能通信,从物理原理上确保通信的绝对安全,解决了通信技术无法解决的问题,是一种全新的通信方式[2]。从信息学角度看,量子通信是利用量子不可克隆或者量子隐形传输等量子特性,借助量子测量的方法实现两地之间的信息数据传输。量子通信中传输的不是经典信息,而是量子态携带的量子信息,是未来通信技术的重要发展方向。 1.2发展历程 量子通信的研究发展起步于20世纪80年代[3]。1969年,美国哥伦比亚大学Wiesner提出采用量子力学理论保护信息安全的设想。1979年,美国IBM公司的Bennett和加拿大蒙特利尔大学的Brassard提出了将Wiesner的设想用于通信传输的 第47卷第5期2014年5月 通信技术 Communications Technology Vol.47No.5 May.2014

第三章量子统计理论 从经典统计到量子统计 量子力学对经典力学的改正

第三章 量子统计理论 第一节 从经典统计到量子统计 量子力学对经典力学的改正 波函数代表状态 (来自实验观测) 能量和其他物理量的不连续性 (来自Schroedinger 方程的特征) 测不准关系 (来自物理量的算符表示和对易关系) 全同粒子不可区分 (来自状态的波函数描述) 泡利不相容原理 (来自对易关系) 正则系综 ρ不是系统处在某个()q p ,的概率,而是处于某个量子 态的概率,例如能量的本征态。 配分函数 1E n n Z e k T ββ-== ∑ n E 为第n 个量子态的能量,对所有量子态求和 (不是对能级求和)。 平均值 1 E n n e Z β-O = O ∑ O 量子力学的平均值

第二节 密度矩阵 量子力学 波函数 ∑ψΦ=ψn n n C , 归一化 平均值 ∑ΦO Φ=ψO ψ=O *m n m n m n C C ,?? 统计物理 系综理论:存在多个遵从正则分布的体系 ∴ ∑ΦO Φ= O *m n m n m n C C ,? 假设系综的各个体系独立,m n C C m n ≠=* ,0 理解:m n C C * 是对所有状态平均,假设每个状态出现的概率为 ...)(...m C ρ,对固定m ,-m C 和m C 以相同概率出现,所以 ∑ΦO Φ=O *n n n n n C C ? 如果选取能量表象,假设n n C C *按正则分布,重新记n n C C * 为n n C C * 1E n n n C C e Z β-*= 这里 n n n E H Φ=Φ? 引入密度矩阵算符ρ ? [ ]n n n C H Φ=Φ=2 ?0?,?ρ ρ 显然 ∑ΦΦ=n n n n C 2 ?ρ , ??,0H ρ??=??

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.360docs.net/doc/cc13035046.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用 无研01 王增美(025310) 摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。 引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 量子阱和应变量子阱半导体激光器的基本原理 1、半导体超晶格 半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构,薄层的厚度与半导体中电子的德布罗意波长(约为10nm )或电子平均自由程(约为50nm )有相同量级。这种思想是在1968年Bell 实验室的江崎(Esaki )和朱肇祥首先提出的,并于1970年首次在GaAs 半导体上制成了超晶格结构。江崎等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2: 2、 量子阱及量子阱材料的能带结构 图1

相关文档
最新文档