水中离子测定方法

水中离子测定方法
水中离子测定方法

液体中铁离子的测定方法

吉林高琦聚酰亚胺材料有限公司 企业标准 JILIN HIPOLYKING-ZL-09-2010 液体中铁离子含量的测定 本标准适用于液体中的微量总铁离子含量的测定。 本标准由吉林高琦聚酰亚胺材料有限公司质量部张鑫编制起草; 审核人:批准人: 编制日期:2010-9-23

液体中铁离子含量的测定方法 1 范围 本标准规定了邻菲啰啉比色法测定水中二价铁离子和三价铁离子的含量。本标准适用于蒸汽凝水中二价铁离子和三价铁离子含量的测定。 2 原理 在酸性条件下,三价铁离子经盐酸羟胺还原成二价铁离子。在一定pH值范围内。二价铁离子与邻菲啰啉生成稳定的橘红色络合物。通过比色测定,求得二价铁离子和三价铁离子的含量。 3 试剂与材料 3.1 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.2 盐酸溶液:用浓盐酸配制成(1+9)溶液。 3.3 盐酸羟胺溶液:称取5g盐酸羟胺溶于少量水中,稀释至100ml,摇匀。 3.4 邻菲啰啉溶液:称取0.24邻菲啰啉于约 50ml水中,加热溶解,冷却至室温后稀释至100ml,摇匀。 3.5 氨水溶液:用氨水配制成(1+6)溶液。 3.6 乙酸——乙酸钠缓冲溶液(pH= 4.6):称取68.0g无水乙酸钠,溶于约500ml水中,加人 28.8ml相对密度1.05的冰乙酸,用水稀释至1L,摇匀。 3.7 硫酸亚铁铵标准贮备溶液(含二价铁离子量1.0mg/ml):准确称取7.0211g±0.0002g 硫酸亚铁铵[FeSO4(NH4)2 SO4·6H20],溶于约300ml水中,加入5m l相对密度1.84的硫酸,转人1L容量瓶中,用水稀释至刻度,摇匀。 3.8 硫酸亚铁铵标准溶液(含二价铁离子量10μg/ml):准确吸取硫酸亚铁铵标准贮备液(3.7)10.0ml于1L容量瓶中,用水稀释至刻度,摇匀。 3.9 刚果红试纸。 4 仪器 4.1 分析天平: 感量0.1mg 4.2 分光光度计: 波长准确度士3nm 5 测定步骤 5.1 工作曲线的绘制 5.1.1 二价铁离子标准工作溶液 分别准确吸取硫酸亚铁铵标准溶液(3.8) 0ml ,2.0ml ,4.0m l ,10.0ml,16.0ml,20.0ml,30.0m1,40.0ml于100ml容量瓶中。 5.1.2 依次加入2.0ml盐酸溶液(3.2),5.0ml邻菲啰啉溶液(3.4),再放入一小块刚果红试纸(3.9)于溶液(5.1.1)中,用氨水溶液(3.5)调至试纸刚变成红色,加入 5.0ml缓冲溶液(3.6),用水稀释至刻度,摇匀。放置30min后,在分光光度计上,用1cm比色皿,以试剂空白作参比,于波长510nm处测定其吸光度。 5.1.3 以二价铁离子的质量为横坐标,吸光度为纵坐标,绘制工作曲线。 5.2 试验水样的测定 做两份试验水样的重复测定。 5.2.1 准确吸取50ml试验水样于100ml容量瓶中,按5.1.2 测定吸光度。根据吸光度由工作曲线查得二价铁离子的质量,记为m1。 5.2.2 准确吸取50ml试验水样于100ml容量瓶中,加入2ml盐酸羟胺溶液(3.3),按5.1.2条测定吸光度。根据吸光度由工作曲线查得二价铁离子的质量,记为m2。

氟化物测定方法

氟化物 氟化物(F﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L(F﹣)。当长期饮用含氟量高于1-1.5mg/L的水时,则易患斑齿病,如水中含氟量高于4mg/L时,则可导致氟骨病。 氟化物广泛存在于自然水体中。有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水及含氟旷物的废水中常常都存在氟化物。 1.方法的选择 水中氟化物的测定方法主要有:氟离子选择电极法,氟试剂比色法,茜素磺酸锆比色法和硝酸钍滴定法。电极法选择性好,适用范围宽,水样浑浊,有颜色均可测定,测量范围为0.05-1900mg/L。比色法适用于含氟较低的样品,氟试剂法可以测定0.05-1.8mg/L(F﹣);茜素磺酸锆目视比色法可以测定0.1—2.5mg/L(F﹣),由于是目视比色,误差比较大。氟化物含量大于5mg/L时可以用硝酸钍滴定法。对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 2.水样的采集和保存 应使用聚乙烯瓶采集和贮存水样。如果水样中氟化物含量不高、pH值在7以上,也可以用硬质玻璃瓶贮存。 预蒸馏

通常采用预蒸馏的方法,主要有水蒸气蒸馏和直接蒸馏两种。直接蒸馏法的蒸馏效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。 1.水蒸气蒸馏法 水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。 仪器 蒸馏装置 试剂 高氯酸:70—72%。 步骤 (1)取50ml水样(氟浓度高于2.5mg/L时,可分取少量样品,用水稀释至50ml)于蒸馏瓶中,加10ml高氯酸,摇匀。连接好 装置加热,待蒸馏瓶内溶液温度升到约130℃时,开始通入蒸 汽,并维持温度在130—140℃,蒸馏速度约为5—6ml/min。 待接收瓶中馏出液体积约为200ml时,停止蒸馏,并水稀释 至200ml,供测定用。 (2)当样品中有机物含量高时,为避免与高氯酸作用而发生爆炸,可用硫酸代替高氯酸(酸与样品的体积为1+1)进行蒸馏。控 制温度在145 5℃。 2.直接蒸馏法

水中氯离子测定方法

测定氯离子的方法 硝酸银滴定法 一、原理 在中性介质中,硝酸银与氯化物生成白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀,反应如下:NaCl + AgNO3 →AgCl ↓+ NaNO3 2 AgNO 3 + K2CrO 4 →Ag2CrO4↓+ KNO3 二、试剂 1、0.05%酚酞乙醇溶液:称取0.05g的酚酞指示剂,用无水乙醇溶解,称重至100g。 2、0.1410 mol/L氯化钠标准溶液:称取4.121g于500~600℃灼烧至恒重之优级纯氯化钠,溶于水,移至500ml容量瓶中,用水稀释至刻度。此溶液每毫升含 5mg氯离子。 3、0.01410 mol/L氯化钠标准溶液:吸取上述0.1410mol/L标准溶液50ml,移入500ml容量瓶中,用水稀释至刻度。此溶液每毫升含0.5mg氯离子。 4、硝酸银标准溶液:称取2.3950g硝酸银,溶于1000ml水中,溶液保存于棕色瓶中。 5、硝酸银标准溶液的标定:吸取0.01410mol/L(即1毫升含0.5mg氯离子)的氯化钠标准溶液10毫升,体积为V1,于磁蒸发皿中,加90ml蒸馏水,加三滴酚酞指示剂,用氢氧化钠调至红色消失,加约1ml10%铬酸钾指示剂,此时溶液呈纯黄色。用待标定的硝酸银溶液滴定至砖红色不再消失,且能辨认的红色(黄中带红)为止,记录消耗体积为V。以相同条件做100ml蒸馏水空白试验,消耗待标定的硝酸银的体积为V0。 浓度计算如下: C= V1×M×1000 V -V0

式中:C-硝酸银标准溶液的浓度,摩尔/升; V1-氯化钠标准溶液的吸取量,毫升; M-氯化钠基准溶液的浓度,摩尔/升; V-滴基准物硝酸银溶液消耗的体积,毫升; V0-空白试验,硝酸银溶液消耗的体积,毫升。 调整硝酸银浓度使其摩尔浓度正好为0.0141mol/L。此溶液滴定度为1ml硝酸银溶液相当于0.5mg氯离子。 三、仪器 白磁蒸发皿:150ml 棕色滴定管 四、分析步骤 取50~100ml水样于蒸发皿中,加三滴酚酞指示剂,用0.02mol/L氢氧化钠溶液调成微红色,再加0.05mol/L硝酸调整至红色消失,再加入1滴管(约0.5~1ml)10%铬酸钾指示剂,此时溶液呈黄色,用硝酸银标准溶液滴定至所出现的铬酸银红色沉淀不再消失(即溶液呈黄中带红)为终点,以同样方法做空白试验,终点红色要一致。 五、分析结果的计算 水样中氯离子含量为X(毫克/升),按下式计算: X = (V2-V0)×M×35.45×1000 V W 式中:V2—滴定水样时硝酸银标准溶液的消耗量,毫升; V0—空白试验时硝酸银标准溶液的消耗量,毫升; M—硝酸银标准溶液浓度,摩尔/升; V w水样体积,毫升; 35.45—为氯离子摩尔质量,克/摩尔。 六、注意事项: 1、本方法适用于不含季胺盐的循环冷却水和天然水中氯离子的测定,其范围小于100mg/L。

水中离子测定方法

水中离子测定方法-CAL-FENGHAI.-(YICAI)-Company One1

6 金属无机物的测定 在工业废水排放标准中规定第一类污染物有:Cr 、Pb 、Hg 、Cd 、As ,其中前四种为金属污染物,它们是积蓄性的难降解的毒物,需严格控制其排放浓度。它们的测定作为本节重点研究内容。此外,第二类污染物中Zn 、Cu 的测定,也是监测的重点。 一、容量法 水的硬度测定 水的硬度与Ca 、Mg 、Fe 、Al 、Mn 、Sr 、Zn 等金属离子有关,所以总硬度应是测定这些离子致硬效应的总和。但是,一般清洁水中Ca 、Mg 离子含量高于其它几种离子,因此,通常总硬度只是以Ca 、Mg 含量计算。 EDTA 络合滴定法是测定硬度的常用方法。 在O H NH Cl NH 234 —缓冲液(pH=中, Ca2+、Mg2+与指示剂络黑T 反应生成红色络合物,使溶液成酒红色,当加入EDTA 标液时,Ca2+、Mg2+与EDTA 生成1:1络合物,指示剂被置换出来,当达到等当点时,溶液呈现指示剂本身的蓝色。反应过程如下:

红色)、、、()10(22222-++++??→?=- MgIn Ca Mg pH Ca Mg HIn (红色)、、---??→?-MgIn CaY MgY Y H 2222 (蓝色)、、等当点----++????→?-222222HIn MgY CaY MgY Y H 硬度有三种表示方法: ①V C A A L mmol 1000 )'(/??-= A ——滴定水样消耗EDTA 的体积,mL ; A ’——滴定空白溶液消耗EDTA 的体积,mL ; C ——EDTA 的浓度,mol/L ; V ——水样体积,mL 。 ② 04.281000)'(/???-=V C A A L CaOmg ,新标准为L mg CaCO /3 ③804.21000)'(???-=V C A A 德国度 每升水中含有10mgCaO 为一度,8度以下为软水,8度以上为硬水。过硬的水不适宜工业用和饮用。所以硬度是重要的水质指标。 工业废水中锰的测定 锰常以MnSO4、胶态有机锰等形式存在于冶金、染料、化工、人造橡胶、制革、电池制造等工业废水中。当废水中锰含量较高时,可用EDTA 络合滴定法测定。 取适量水样+去离子水至100mL →+20mLNH4Cl —NH3·H2O 缓冲液(pH=),+5mL10%盐酸羟胺(抑制氧化性物质)+5mL30%三乙胺(抑制金属离子的干扰)→铬黑T 为指示剂,EDTA 滴定→终点:红→蓝。

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

ASTM水中氯离子含量测定标准方法D 512-04

Designation: D 512-04 Standard Test Methods for Chloride Ion In Water 水中氯离子含量测定标准方法 1.范围 1.1 该测试方法适用普通水、废水(仅测试方法C)和盐水中氯离子的确定。包括以下三种测试方法: 1.2 测试方法A,B,和C在操作方法D 2777-77下有效,仅测试方法B 还需满足操作规程D 2777-86。更多信息参考14,21和29节。 1.3 该标准试验方法没有包含所有的安全问题,即便要,也应联系实际需要。在试验前确定合适的安全、健康守则和决定其规章制度适用的局限性是试验者的责任。对于特需危险说明,见26.1.1。 1.4 先前的比色试验方法已经终止。参考附录X1获取历史信息。 2. 参考文件

3. 术语 3.1 定义-用于这些试验方法的术语定义,参考术语D 1129和D 4127。 4. 意义和作用 4.1 水中氯离子处在管理中,因此必须精确地测量。氯离子对于高压锅炉系统和不锈钢是非常有害的,因此为防止破坏,监测是很重要的。氯离子分析作为一种工具广泛用于估计集中循环,例如应用在冷却塔中。处理水和食品加工工业中的分选液同样需要可靠的氯离子分析方法。 5. 试剂的纯度 5.1 试剂的化学等级在所有试验中适用。除非有其它说明,所有试剂应遵从美国化学界分析性试剂的规范委员会要求,有关规范都可从委员会取得。可能使用其它等级,倘若首先确定试剂纯度高得足以允许使用而不用降低确定的精度。 5.2 水的纯度-除非另有说明,参照水应理解为符合规范D 1193的Ⅰ型试剂水。其它类型的试剂水可能使用,倘若首先能确定水纯度高得足以允许使用而不影响试验方法的精度和偏差。Ⅱ型水在该试验方法中的循环测试时使用。 6. 取样 6.1 按照操作规程D 1066和D 3370的要求采集试样。 TEST METHOD A-MERCURIMETRIC TITRATION 测试方法A-汞液滴定法 7. 范围 7.1 该测试方法能用于确定水中离子,假设干扰可忽略(见小节9)。 7.2 尽管在研究报告中没有明确说明,精度表述是假设使用Ⅱ试剂水。在未经试验的地方确定该测试方法的有效性是分析者的责任。 7.3 该测试方法对于氯离子浓度在8.0-250mg/L的范围有效。 8. 测试方法概要 8.1 将稀释汞滴定液加入一份酸性试样中,该试样为混合二苯偶氮碳酰肼(diphenylcarbazone)-溴苯酚的蓝色指示剂。滴定的最后为蓝-紫罗兰颜色的二苯偶氮碳酰肼(diphenylcarbazone)化合物。 9. 干扰 9.1 通常在水中发现的阴离子和阳离子不会干扰测试。锌、铅、镍、亚铁的

水中二价铁 三价铁及总铁离子的测定

水中二价铁、三价铁及总铁离子的测定 (邻菲罗啉分光光度法) 本方法适用于循环冷却水和天然水中总铁离子的测定,其中含量小于1mg/L。 1、原理 亚铁离子在pH值3-9的条件下,与邻菲罗琳反应,生成桔红色络合离子,此络合离子在pH值时最为稳定。水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。 2、试剂 、HAc-NaAc缓冲溶液(pH≈):称取136g醋酸钠,加水使之溶解,在其中加入120 mL冰醋酸,加水稀释至500mL。 、HCl溶液(1+1)。 、盐酸羟胺溶液(10%):新鲜配制。 、邻二氮菲溶液(%):新鲜配制 、铁标准溶液的配制 铁标准储备液:准确称取硫酸亚铁铵(NH4)2Fe(SO4)],溶于1+1硫酸50mL中,转移至1000mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁. 吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含铁标准溶液。 3、仪器 、分光光度计 4、分析步骤 标准曲线的绘制 分别取1mL含铁标准溶液0、2、4、6、8、10mL于6只50mL比色管中,加水至约25mL分别依次加入1mL 10%盐酸羟胺溶液,稍摇动;加入%邻二氮菲溶液及5mL HAc-NaAc缓冲溶液,加水稀释至刻度,充分摇匀。放置10min 后于510nm处,用比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。 水样的测定 取水样50mL于150mL锥形瓶中,用盐酸调节使水呈酸性,p H<3,刚果红试纸显蓝色。加热煮沸10分钟,冷却后移入50mL比色管中,加10%盐酸羟胺溶液1mL(测二价铁时不加),摇匀,1分钟后再加%邻菲罗琳溶液2mL,及5mL HAc-NaAc缓冲溶液后用水稀释至刻度。10分钟后于510nm处,以试剂空白作参比,测其吸光度。 5、分析结果的计算 水样中总铁离子含量X(mg/L),按下式计算:

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

水中氯化物含量的测定.doc

成绩 评语 Scor e 教师签字日期 Comment 学时 Signature of Tutor________________ Date:_______ 2 Time 班 组别姓名学号级 Grou Name Student No. Cla p ss 项目编号项目名称 实验三:水中氯化物的测定(沉淀滴定法)Item No. Item 课程名称教材 Course Textbook 一、实验时间、地点 二、实验目的 1.学会用硝酸银标准溶液来滴定水中的氯化物; 2.掌握用莫尔法测定水中氯化物的原理和方法。 三、实验原理 在中性或弱减性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于 铬酸银的溶解度,Cl -首先被完全沉淀后,铬酸银才以铬酸银形式沉淀出来,产生砖红色,指示Cl - 滴定的终点。 +- 2- →Ag CrO↓ 沉淀滴定反应如下:Ag +Cl ? AgCl↓ 2Ag++CrO 4 24 铬酸根离子的浓度,与沉淀形成的迟早有关,必须加入足量的指示剂。 且由于有稍过量的硝酸银与铬酸钾形成铬酸银沉淀的终点较难判断,所以需要以蒸馏水作空白滴定, 以作对照判断( 使终点色调一致) 。 四、实验内容

用移液管移取L 氯化钠标准溶液,加蒸馏水,加一毫升K2CrO4,指示剂。在玻璃棒的不断搅动下,用硝酸银标准溶液滴定至淡橘红色,即为终点。同时做空白试验。根据氯化钠标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。 五、实验器材 1.棕色酸式滴定管一支, 25ml; 2.瓷坩埚一个, 250ml; 3.移液管一支, 50ml; 4.烧杯一支, 250ml; 5.玻璃棒 1 支; 6.滴定台、滴定夹。 六、实验步骤 步骤 1: 取水样 25ml 到 250ml 瓷坩埚中,在用量筒量入25ml 的自来水稀释,滴加1ml K CrO 用玻璃棒搅匀; 24, 步骤 2:在滴定管装满水后,扭开活塞,检查滴定管的严密性。检查完毕后,将L 的硝酸银溶液倒入滴定管中; 步骤 3:用烧杯将瓷坩埚固定住,在玻璃棒的搅拌下,用硝酸银溶液滴定至淡橘红色,即为终点。根据氯化钠 标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。

水中离子测定方法 (2)

6 金属无机物的测定 在工业废水排放标准中规定第一类污染物有:Cr 、Pb 、Hg 、Cd 、As,其中前四种为金属污染物,它们就是积蓄性的难降解的毒物,需严格控制其排放浓度。它们的测定作为本节重点研究内容。此外,第二类污染物中Zn 、Cu 的测定,也就是监测的重点。 一、容量法 水的硬度测定 水的硬度与Ca 、Mg 、Fe 、Al 、Mn 、Sr 、Zn 等金属离子有关,所以总硬度应就是测定这些离子致硬效应的总与。但就是,一般清洁水中Ca 、Mg 离子含量高于其它几种离子,因此,通常总硬度只就是以Ca 、Mg 含量计算。 EDTA 络合滴定法就是测定硬度的常用方法。 在O H NH Cl NH 234 —缓冲液(pH=10、0)中, Ca2+、Mg2+与指示剂络黑T 反应生成红色络合物,使溶液成酒红色,当加入EDTA 标液时,Ca2+、Mg2+与EDTA 生成1:1络合物,指示剂被置换出来,当达到等当点时,

溶液呈现指示剂本身的蓝色。反应过程如下: 红色) 、、、()10(22222-++++??→?=-MgIn Ca Mg pH Ca Mg HIn (红色)、、---??→?-MgIn CaY MgY Y H 2222 (蓝色)、、等当点----++????→?-222222HIn MgY CaY MgY Y H 硬度有三种表示方法: ①V C A A L mmol 1000 )'(/??-= A ——滴定水样消耗EDTA 的体积,mL; A ’——滴定空白溶液消耗EDTA 的体积,mL; C ——EDTA 的浓度,mol/L; V ——水样体积,mL 。 ② 04.281000)'(/???-=V C A A L CaOmg ,新标准为L mg CaCO /3 ③804.21000)'(???-=V C A A 德国度 每升水中含有10mgCaO 为一度,8度以下为软水,8度以上为硬水。过硬的水不适宜工业用与饮用。所以硬度就是重要的水质指标。 工业废水中锰的测定 锰常以MnSO4、胶态有机锰等形式存在于冶金、染料、化工、人造橡胶、制革、电池制造等工业废水中。当废水中锰含量较高时,可用EDTA 络合滴定法测定。 取适量水样+去离子水至100mL →+20mLNH4Cl —NH3·H2O 缓冲液(pH=10、0),+5mL10%盐酸羟胺(抑制氧化性物质)+5mL30%三乙胺(抑制金属离子的干扰)→铬黑T 为指示剂,EDTA 滴定→终点:红→蓝。

水中铁离子测定方法 二氮杂菲分光光度法

水中铁离子含量测定方法-- 二氮杂菲分光光度法 铁在深层地下水中呈低价态,当接触空气并在pH大于5时, 便被氧化成高铁并形成氧化铁水合物(Fe2O3?3H2O)的黄棕色沉淀,暴露于空气的水中, 铁往往也以不溶性氧化铁水合物的形式存在。当pH值小于5时,高铁化合物可被溶解。因而铁可能以溶解态、胶体态、悬浮颗粒等形式存在于水体中, 水样中高铁和低铁有时同时并存。 二氮杂菲分光光度法可以分别测定低铁和高铁,适用于较清洁的水样;原子吸收分光光度法快速且受干扰物质影响较小。水样中铁一般都用总铁量表示。 1 、二氮杂菲分光光度法 应用范围 本法适用于测定生活饮用水及其水源水中总铁的含量。 钴、铜超过5mg/L,镍超过2mg/L,锌超过铁的10倍对此法均有干扰,饿、镉、汞、钼、银可与二氮杂菲试剂产生浑浊现象。 本法最低检则量为μg, 若取50ml 水样测定, 则最低检测浓度为L。原理 在pH3~9的条件下,低铁离子能与二氮杂菲生成稳定的橙红色络合物,在波长510nm处有最大光吸收。二氮杂菲过量时,控制溶液pH为~,可使显色加快。 水样先经加酸煮沸溶解铁的难溶化合物,同时消除氰化物、亚硝酸盐、多磷酸盐的干扰。加入盐酸羟胺将高铁还原为低铁,还可消除氧化剂的干扰。水样不加盐酸煮沸,也不加盐酸羟胺,则测定结果为低铁的含量。仪器 100ml三角瓶。 50ml具塞比色管。分光光度计。试剂铁标准贮备溶液:称取硫酸亚铁铵[Fe(NH4)2(SO4)2?6H2O],溶于70ml 20+50硫酸溶液中,滴加L 的高锰酸钾溶液至出现微红色不变,用纯水定容至1000ml。此贮备溶液含铁。铁标准溶液(使用时现配):吸取铁标准贮备溶液移入容量瓶中,用纯水定容至100ml。此铁标准溶液含μg铁。%二氮杂菲溶液:称取氮杂菲(C12H8N2?H2O) 溶解于加有2滴浓盐酸的纯水中,并稀释至100ml。此溶液1ml可测定100μg以下的低铁。注:二氮杂菲又名邻二氮菲、邻菲绕啉,有水合物(C12H8N2?H2O)及盐酸盐 (C12H8N2?HCl)两种,都可用。 10%盐酸羟胺溶液:称取10g盐酸羟胺 (NH2OH?HCl),溶于纯水中,并稀释至100ml。乙酸铵缓冲溶液: 称取250g乙

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

实验 4 水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为 1.0mg·L-1 。测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。 一.实验目的和要求 1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。 二.仪器 1.氟离子选择电极(使用前在去离子水中充分浸泡)。 2.饱和甘汞电极。 3.精密pH计或离子活度计、晶体管毫伏计,精确到 0.1mV。 4.磁力搅拌器和塑料包裹的搅拌子。 5.100mL、50mL容量瓶。 6.10.00mL、 5.00mL移液管或吸液管。 7.100mL聚乙烯杯。

三.试剂 所用水为去离子水或无氟蒸馏水。 1.氟化物标准贮备液: 称取 0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2.乙酸钠溶液: 称取15g乙酸钠(CH 3COONa)溶于水,并稀释至100mL。 3.盐酸溶液:2mol·L-1。 4.总离子强度调节缓冲溶液(TISAB): 称取 58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。 5.水样①,②。 四.测定步骤 1.仪器准备和操作: 按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 2.氟化物标准溶液制备:

水中氯离子的测定(莫尔法)知识讲解

水中氯离子的测定(莫 尔法)

实验12 水中氯离子的测定(莫尔法) 一.实验目的 1. 掌握用莫尔法进行沉淀滴定的原理和方法; 2. 学习滴定管等实验仪器的使用。 二.背景知识及实验原理 1. 背景知识 氯离子几乎存在于所有的水中,其含量各处不同。海水、苦咸水、生活污水和工业废水中,往往都有大量氯离子,甚至天然淡水源中也含有一定的数量。天然水中氯离子的来源有如下几方面: (1)水源流经含有氯化物的地层; (2)水源受生活污水或工业废水的污染; (3)近海地区的水源受海水的影响。地面水会因潮汐影响或枯水季节使海水倒灌;海风也会挟带氯离子;地下水有时会由海水渗入补给,这些都会使氯离子的含量增高。 山水、溪水的氯离子含量较低,只有几至几十毫克每升。海水和地下水中常会有几十至几百毫克每升。苦咸水中氯离子含量高达2000~5000mg/L。海水的氯离子含量很高,有15000~20000mg/L。一般来说,氯离子的含量随水中矿物质的增加而增多。 人体摄入氯离子过多所引起的机体危害作用并不多见。仅见于严重失水、持续摄入高氯化钠或过多氯化铵的情况。 一般来说,锅炉的省煤器、水冷壁、对流管束以及锅铜等零部件都会由于氯离子含量高而出现被腐蚀的现象,这样往往会造成这些金属部件变得越来越

薄,甚至还会出现穿孔等问题。更为严重的就是腐蚀也可能会造成金属内部结构上的破坏。被长期腐蚀的金属,它的强度会有显著下降。这样,不但会严重影响到锅炉的安全运行,还会缩短锅炉可以使用的期限,造成经济上的损失。 2. 实验原理 沉淀反应很多,但是能用于沉淀滴定法中的沉淀反应却很少,相当多的沉淀反应都不能完全符合滴定对化学反应的基本要求,而无法滴定。最有实际意义的是生成微溶银盐的反应,以生成银盐沉淀的反应为基础的滴定方法,即所谓银量法。根据滴定时所用指示剂不同,银量法分为莫尔法、佛尔哈德法和法扬司法。主要用于水中Cl-、Br-、SCN-和Ag+离子等的测定。莫尔法是以铬酸钾(K2CrO4)为指示剂的银量法。只适用于AgNO3直接滴定Cl-、 Br-、而不适用于滴定I-和SCN-,因为AgI和AgSCN沉淀更强烈地吸附I-和SCN-,使终点变色不明显,误差较大。 在中性或弱碱性溶液中(pH6.5~10.5),以铬酸钾(K2CrO4)为指示剂,用AgNO3标准溶液直接滴定水中Cl- 时,由于AgCl(K spΘ=1.8×10-10)的溶解度小于Ag2CrO4(K spΘ=1.1×10-12)的溶解度,根据分步沉淀的原理,在滴定过程中,首先析出AgCl沉淀,到达计量点后,稍过量的Ag+与CrO42-生成砖红色AgCrO4沉淀,指示滴定终点到达。反应式如下: Ag+(aq)aq) + Cl-(aq)= AgCl (白↓) 2Ag+(aq)aq) + CrO42-(aq)= Ag2CrO4(砖红色↓) 由于滴定终点时,AgNO3的实际用量比理论用量稍多点,因此需要以蒸馏水做空白试验扣除。根据AgNO3标准溶液的的量浓度和用量计算水样中Cl-的含量。

水中铁离子测定方法二氮杂菲分光光度法

水中铁离子测定方法二氮 杂菲分光光度法 Last revision date: 13 December 2020.

水中铁离子含量测定方法-- 二氮杂菲分光光度法 铁在深层地下水中呈低价态,当接触空气并在pH大于5时, 便被氧化成高铁并形成氧化铁水合物(Fe2O3?3H2O)的黄棕色沉淀,暴露于空气的水中, 铁往往也以不溶性氧化铁水合物的形式存在。当pH值小于5时,高铁化合物可被溶解。因而铁可能以溶解态、胶体态、悬浮颗粒等形式存在于水体中, 水样中高铁和低铁有时同时并存。 二氮杂菲分光光度法可以分别测定低铁和高铁,适用于较清洁的水样;原子吸收分光光度法快速且受干扰物质影响较小。水样中铁一般都用总铁量表示。 1 、二氮杂菲分光光度法 应用范围 本法适用于测定生活饮用水及其水源水中总铁的含量。 钴、铜超过5mg/L,镍超过2mg/L,锌超过铁的10倍对此法均有干扰,饿、镉、汞、钼、银可与二氮杂菲试剂产生浑浊现象。 本法最低检则量为μg, 若取50ml 水样测定, 则最低检测浓度为L。 原理 在pH3~9的条件下,低铁离子能与二氮杂菲生成稳定的橙红色络合物,在波长510nm处有最大光吸收。二氮杂菲过量时,控制溶液pH为~,可使显色加快。 水样先经加酸煮沸溶解铁的难溶化合物,同时消除氰化物、亚硝酸盐、多磷酸盐的干扰。加入盐酸羟胺将高铁还原为低铁,还可消除氧化剂的干扰。水样不加盐酸煮沸,也不加盐酸羟胺,则测定结果为低铁的含量。 仪器 100ml三角瓶。 50ml具塞比色管。 分光光度计。 试剂 铁标准贮备溶液:称取硫酸亚铁铵[Fe(NH4)2(SO4)2?6H2O],溶于70ml 20+50硫酸溶液中,滴加L 的高锰酸钾溶液至出现微红色不变,用纯水定容至1000ml。此贮备溶液含铁。

氯离子的测定方法(精)

氯离子的测定方法 氯离子的测定是在 PH5~9条件下测定的。 试剂与材料 : 酚酞指示剂:1%乙醇溶液 铬酸钾指示剂:50g /L水溶液 硝酸:1+300的硝酸溶液 硝酸银标准溶液:C (AgNO 3 =0.0141 mol/L,称取预先干燥并已恒重过的硝酸银 2.3996g 溶于水中,转移至 1L 棕色容量瓶中定容。摇匀,置于暗处(不用标定。 测定步骤:移取 25ml 水样于 250ml 锥形瓶中, 加入 2~3滴酚酞指示剂, 用硝酸调至无色。加入 1ml 铬酸钾指示剂,用硝酸银滴定至橙红,同时做空白试验。 计算公式 : X(mg/L=(V-V O ×C×0.03545÷V 样 ×106 式中:V —滴定时消耗硝酸银标准溶液的体积, ml V —空白试验时消耗硝酸银标准溶液的体积, ml V 样

—水样的体积, ml c —硝酸银标准溶液的浓度, mol/L 0.03545——与 1mlAgNO 3 标准溶液 c (AgNO 3 =1 .000mol/L相当的以克表 示的氯的质量。 钙镁离子的测定方法 1.方法提要 钙离子测定是在 PH12~13时,以钙 -羧酸为指示剂,用 EDTA 与标准滴定溶液测定水样中钙离子含量。滴定 EDTA 与溶液中游离的钙离子反应形成络合物, 溶液颜色变化由紫色变为亮蓝色时即为终点。 镁离子测定是在 PH 为 10时,以铬黑 T 为指示剂用 EDTA 标准滴定溶液测定钙、镁离子合量, 溶液颜色由紫色变为纯蓝色时即为终点, 由钙镁合量中减去钙离子含量即为镁离子含量。 2.试剂与材料 2.1 硫酸:1+1溶液 2.2 过硫酸钾:40g/L溶液,贮存于棕色瓶中(有效期 1个月。 2.3 三乙醇胺:1+2水溶液 2.4 氢氧化钾:200g/L。

水中铁离子(二价)测定

水中铁离子(二价)的测定—邻菲啰啉分光光度法 1范围 本标准规定了溶液中二价铁离子的测定方法。 10-)。 本标准适用于测定原水、精制水中二价铁离子的含量,其含量为0~1(6 2规范性引用文件 下列文件的条款通过本标准的引用而成为本标准的条款。 中国石油化工总公司冷却水分析和试验方法。 3方法提要 在PH=4~5的条件下,二价铁离子与邻菲啰啉反应生成稳定的桔红色络合离子,用分光光度法测定铁离子含量。 4试剂和材料 本标准中所用试剂和水,在没注明其他要求时,均使用分析纯试剂和蒸馏水或同等纯度的水。 本标准中所用标准溶液、制剂和制品,在没注明其他要求时,均按GB/T601、GB/T603制备。 4.1盐酸羟胺:100g/L;称取10g盐酸羟胺溶于100ml水中,保存在棕色瓶中,此试剂只能稳定数日。 4.2邻菲啰啉溶液:1.2g/L;称取1.2g邻菲啰啉溶于1000ml水中,保存在棕色瓶中,备用。 4.3醋酸-醋酸铵缓冲溶液:PH=4.5;称取250g醋酸铵溶解于150ml水中,加入700ml醋酸,配成1000ml溶液。 4.4盐酸溶液:1+1; 4.5浓硫酸; 4.6铁离子标准溶液(1ml=0.01mg2e F+):精确称取0.7020g硫酸亚铁铵,准确至0.0001g,溶解在50ml水中,加0.5ml浓硫酸,全部溶解后,转移到1000ml容量瓶中,用水稀释至刻度,1ml此溶液含0.1mg2e F+。移取10ml上述溶液于100ml容量瓶中,用水稀释至刻度,1ml此溶液含0.01mg2e F+。 5仪器、设备

5.1分光光度计; 5.2比色管:100ml一组; 5.3烧杯:500ml; 5.4棕色瓶:500ml、1000ml。 6分析步骤 6.1标准曲线的绘制 6.1.1取一组100ml比色管,依次加入0、0.5、1.0、1.5、2.0、2.5ml2e F+标准溶液,加水约 50ml。 6.1.2分别加(4.4)盐酸溶液4ml和(4.1)盐酸羟胺溶液1ml,加(4.3)醋酸-醋酸铵缓冲溶液20ml,摇匀,再加(4.2)邻菲啰啉溶液5ml,用水稀释至刻度,充分混匀,显色10~15分钟。 6.1.3在波长510nm,用3cm比色皿,以试剂空白溶液为对照测各个溶液的吸光度。 6.1.4以2e F+含量为横坐标(mg),相应地吸光度值为纵坐标(E),绘制标准曲线。 6.2水样分析 6.2.1移取20ml水样于100ml比色管中。(4.4)盐酸溶液4ml和(4.1)盐酸羟胺溶液1ml,加(4.3)醋酸-醋酸铵缓冲溶液20ml,摇匀,再加(4.2)邻菲啰啉溶液5ml,用水稀释至刻度,充分混匀,显色10~15分钟。 6.2.2在波长510nm,用3cm比色皿,以试剂空白溶液为对照测各个溶液的吸光度。 7结果计算 水样中二价铁离子含量以质量分数x计,数值以()6 10-表示,按式(1)计算: x= /1000 m Vρ ? 6 10 ?= 1000m V ? (1) 式中: x—水样中铁离子含量的数值,以()610-计; m—从标准曲线上查得水样中铁离子含量的数值,单位为毫克(mg); V—水样体积的数值,单位为毫升(ml); ρ—水样密度的数值,单位为克每立方厘米(一般取ρ=1.0g/3 cm)。 取两次平行测定结果的算数平均值作为测定结果。水样中铁含量小于1()610-。

氟化物测定方法

精心整理 氟 化 物 氟化物(F ﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L (F ﹣)。当长期饮用含氟量高于1-1.5mg/L 的水时,则易患斑齿病,如水中含氟量高于4mg/L 时,则可导致氟骨病。 12以上,预 蒸 馏 通常采用预蒸馏的方法,主要有水蒸气蒸馏和直接蒸馏两种。直接蒸馏法的蒸馏效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。 1.水蒸气蒸馏法

水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。 仪器 蒸馏装置 试剂 50ml) 蒸馏装置 试剂 (1)硫酸:ρ=1.84g/ml. (2)硫酸银。 步骤

(1)取400 ml蒸馏水于蒸馏瓶中,在不断摇动下缓慢加入200 ml浓硫酸,混匀。 放入5—10粒玻璃球,连接装置。开始缓慢升温,然后逐渐加快升温速度,至温度达180℃时停止加热,弃去接收瓶中馏出液,此时蒸馏瓶中酸与水的比例为2+1,此操作的目的是除去蒸馏装置和酸液中氟化物的污染。待蒸馏瓶中的溶液冷至120℃以下,加入250ml样品混匀,按上述加热方式加热至180℃时止(不得超过180℃,以防带出硫酸盐)。此时接收瓶中馏出液的体积约为250 ˉ)。 干扰:Clˉ30; SO42ˉ 5.0; NO3ˉ 3.0; B4O72ˉ 2.0; Mg2+ 2.0; NH4+1.0; Ca2+0.5。下述离子含量(μg)亦不干扰测定: PO43ˉ200; SiO32ˉ100; Cr6+40; Cu2+10; Pb2+10; Mn2+10; Hg2+5; Ag+5; Zn2+5; Fe3+2.5; Al3+2.5; Co2+2.5; Ni2+2.5; Mo6+2.5。 当干扰离子超过上述含量时,可通过直接蒸馏或水蒸气蒸馏而消除。 3.方法的适用范围

相关文档
最新文档