中山大学2007数学分析考研试题

中山大学2007数学分析考研试题
中山大学2007数学分析考研试题

中山大学2007

一,(每小题6分,共36分)计算

(1)2

0sin sin cos x dx x x π

+? (2)arcsin x x e dx e

? (3

)x (4

)2x x →∞ (5)设(,)z z x y =由方程20xy z

e x e --+=确定,求22z x ?? (6)求曲面222236x y z ++=在(1,1,1)点处得切平面方程

二,(每小题6分,共24分)判别下列级数或广义积分的收敛性,条件收敛还是绝对收敛。

(1)3

1(ln )(1)(ln 3)n

n n n ∞=-∑ (2)1(sin )2n n x x n n ∞=+∑ (3)221x x e dx +∞

-? (4)1

20ln (1)x dx x -? 三,(14分)求平面曲线(cos sin )(sin cos )x a t t t y a t t t =+??=-?

上对应于0t t =点的法线方程,并讨论曲线在(0,)t π∈一段的凹凸性

四,(18分)讨论函数2

22,(,)(0,0)(,),(,)(0,0)xy x y f x y x y o x y ?≠?=+??=?

在0(0,0)p 点处

连续性

(1)可微性

(2)沿(cos ,sin )I αα= 的方向导数的存在性

五,(14分)计算曲线积分c xyzdy ? ,其中曲线2221:x y z c y z ?++=?=?

,其方向与z 轴构成右手系

六,(18分)对幂级数1

2121(1)n n n n x n

∞-=+-∑

(1)求收敛性

(2)求和函数

(3)讨论幂级数在收敛域上的一致收敛性 七,(每小题8分,共16分)在Oxy 平面上,光滑曲线L 过(1,0)点,并且曲线L 上任意一点(,)(0)P x y x ≠处得切线斜率与直线OP 的斜率之差等于ax (0a >为常数)

(1)求曲线L 的方程

(2)如果L 与直线y ax =所围成的平面图形的面积为8,确定a 的值 八(10分)设()f x 在[0,1]连续,令1

()(),[0,1],1,2,n n t f t f x dx t n =∈=? 证明函数列{()}n f t 在[0,1]一致连续收敛于函数()(0)g t tf =

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

07数学分析(一)试题A及答案

2007 ~2008 学年第一学期 《数学分析(一)》课程考试试卷(A 卷) (闭卷) 院(系) _经济学院___专业班级__________学号_________ 姓名__________ 考试日期: 2008-1-17 考试时间: 19:00—21:30 一. 填空题(每小题3分,共30分) 1. =?dx x x 2sin C x x x ++-|sin |ln cot . 2. 曲线233x x y +-=的拐点是 (1,2). 3. ) 11(tan )cos 1(lim 4 2 2 20 -+-→x x x e x x =___2__. 4. 设x x y 44cos sin +=,则)(n y )(+∈N n =)2 4cos(4 1 πn x n + -. 5. 设1)(2++=x x x f ,在[0,2]上用Lagrange 中值定理,则中值ξ=_1__. 6. Riemann 函数在每个有理点都间断,在每个无理点都连续. 7. 设,021k b b b <<<< 则n n k n n n b b b +++∞ → 21lim =k b . 8. 设2 211x x x y -+=, 则=dy dx x x x y )121( 4 -+. 9. 函数x x x u sin 1tan 1)(--+=当0→x 时的无穷小主部是x .

10. 设)(x f 在+ R 内可微且4)]()(2[lim ='++∞ →x f x f x ,则=+∞ →)(lim x f x 2 二. 举例说明下列命题是错误的(每小题3分,共15分. 需要简单说明) 1.非常值周期函数必有最小正周期. Direchlet 函数. 因为任意正有理数都是它的周期. 2.设函数)(x f 在区间I 上有间断点,则)(x f 在I 上不存在原函数. ????? =≠-=0,00 ,1cos 21sin 2)(22x x x x x x x f ,在x=0处间断,但在任何区间)0(I I ∈上有原函数?? ???=≠=0,00,1sin )(22 x x x x x F . 3. 设函数)(x f 在),0[+∞上有定义,且在),0(+∞内有0)(>'x f ,则对一切的0>x ,有)0()(f x f >. 只要在x=0处不右连续的函数即可说明. 4. 若()f x 在(,)a b 内可导,且()()f a f b =,则必存在(,)a b ξ∈,使得 ()0f ξ'=. 函数)10(,)(<≤=x x x f ,0)1(=f . 5. 若数列}{n x 满足:,,0N ?>?ε 当N n >时有ε<-+||1n n x x ,则} {n x 为基本数列. 发散数列n x n 1 21 1+ ++= ,},1][,1max{,01-=>?-εεN 取 :N n >?则 ε<+= -+1 1 ||1n x x n n .

2013年中山大学数学分析考研真题

2013年中山大学数学分析考研真题 科目代码:662 时间:2013年 一、(24分)计算下列极限: )(i 设,)(1)2(1)1(1222n n n n n n x ??????+??????+????? ?+= 求.lim n n x ∞→ )(ii ),(lim 1 11 2 +∞ →-n n n x x n 其中.0>x )(iii ,1lim 1 d d m d i d m m d m i +- ∑+=∞ →其中.0>d 二、(20分))(i 叙述数列{}n a 收敛的柯西收敛准则并证明之. )(ii 用柯西收敛准则证明:数列.ln 13 ln 312 ln 21n n a n + ++ = 趋于无穷大. 三、(20分)证明) (i x x f sin )(=在),0[∞上一致连续.) (ii 2 sin )(x x g =在 ),0[∞上不一致连续. 四、(16分)设),,2,1(2 1,12 11 =+-=-=+n x x x n n 证明n n x ∞ →lim 存在. 五、(10分)设,,2,1,0 =>n a n 证明.1)11( lim 1 ≥-++∞ →n n n a a n

六、(10分)设,10<

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

中山大学2008数学分析解答

一 ()0ln lim 1ln 1 lim lim ln 0 1lim lim 1x x x x x x x x x x x x x x e e e e + →→+∞ →+∞+ + --→→===== ( )( )22222222sin 2cos 2cos 4cos 2cos 4sin 2cos 4sin sin 2cos 4sin cos 12t tdt t d t t t t tdt t t td t t t t t tdt t t t t t c x c ==-=-+=-+=-+-=-+++=-????? ()( )12 2100322ln 1e dx dx x x x ==== +++??()() () 2 2 1 220 01141111ln ln 2 1x x x x x x x x x xe xe dx dx xd e e e dx de dx x e e e x x x -+∞ +∞ +∞ -+∞ +∞+∞+∞?? ==- ?+?? +++??====-= ?+++?? ? ??? ?? ()5由分析则有 1121x x x f yf z f yf z z ??+'=++?= '-,()2211y y y xf z xf z z ???' +'=++?=' - 从而1211f yf xf dz dx dy ???' ++= +'' -- ()6由分析则有 4 1 00 256 226415 S dx ==== ?? ? ()7根据对称性则有 令2222D x y I dxdy a b ??=+ ?????,则2222D y x I dxdy a b ?? =+ ?? ???从而 ()22222222111111224D I x y dxdy I a b a b a b ππ?? ????=++=+?=+ ? ? ????????? ()8()()()() 2! 1 1002!1212n nn n u n n n n n n ≤ = <>+-

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

2014中山大学数学分析考研真题与答案

《2014中山大学数学分析考研复习精编》 编写说明 《复习精编》是博学中大精品考研专业课系列辅导材料中的核心产品。本书严格依据学校官方最新指定参考书目,并结合考研的精华笔记、题库和内部考研资讯进行编写,是博学中大老师的倾力之作。通过本书,考生可以更好地把握复习的深度广度,核心考点的联系区分,知识体系的重点难点,解题技巧的要点运用,从而高效复习、夺取高分。 主要内容 考试分析——解析考题难度、考试题型、章节考点分布以及最新试题,做出考试展望等;复习之初即可对专业课有深度把握和宏观了解。 复习提示——揭示各章节复习要点、总结各章节常见考查题型、提示各章节复习重难点与方法。 知识框架图——构建章节主要考点框架、梳理全章主体内容与结构,可达到高屋建瓴和提纲挈领的作用。 核心考点解析——去繁取精、高度浓缩初试参考书目各章节核心考点要点并进行详细展开解析、以星级多寡标注知识点重次要程度便于高效复习。 历年真题与答案解析——反复研究近年真题,洞悉考试出题难度和题型;了解常考章节与重次要章节,有效指明复习方向。 主要特色 《复习精编》具有以下特点: (1)立足教材,夯实基础。以指定教材为依据,全面梳理知识,注意知识结构的重组与概括。让考生对基本概念、基本定理等学科基础知识有全面、扎实、系统的理解、把握。 (2)注重联系,强化记忆。复习指南分析各章节在考试中的地位和作用,并将各章节的知识体系框架化、网络化,帮助考生构建学科知识网络,串联零散的知识点,更好地实现对知识的存储,提取和应用。 (3)深入研究,洞悉规律。深入考研专业课考试命题思路,破解考研密码,为考生点拨答题技巧。

使用说明 1、全面了解,宏观把握。 备考初期,考生需要对《复习精编》中的考前必知列出的院校介绍、师资力量、就业情况、历年报录情况等考研信息进行全面了解,合理估量自身水平,结合自身研究兴趣,科学选择适合自己的研究方向,为考研增加胜算。 2、稳扎稳打,夯实基础。 基础阶段,考生应借助《复习精编》中的考试分析初步了解考试难度、考试题型、考点分布,并通过最新年份的试题分析以及考试展望初步明确考研命题变化的趋势;通过认真研读复习指南、核心考点解析等初步形成基础知识体系,并通过做习题来进一步熟悉和巩固知识点,达到夯实基础的目的。做好充分的知识准备,过好基础关。 3、强化复习,抓住重点。 强化阶段,考生应重点利用《复习精编》中的复习指南(复习提示和知识框架图)来梳理章节框架体系,强化背诵记忆;研读各章节的核心考点解析,既要纵向把握知识点,更应横向对比知识点,做到灵活运用、高效准确。 4、查缺补漏,以防万一。 冲刺阶段,考生要通过巩固《复习精编》中的核心考点解析,并参阅备考方略,有效把握专业课历年出题方向、常考章节和重点章节,做到主次分明、有所侧重地复习,并加强应试技巧。 5、临考前夕,加深记忆。 临考前夕,应重点记忆核心考点解析中的五星级考点、浏览知识框架图,避免考试时因紧张等心理问题而出现遗忘的现象,做到胸有成竹走向考场。 考生体悟 考生A:博学版复习精编对知识点的归纳讲解得很不错,其中复习指南在复习期间给我指明了方向,让我不再盲目。另外书中还将核心考点解析做了整理,使我可以更有侧重点地复习,效率提高的同时,自信心也增强了。相信我一定可以给自己一个满意的结果。 考生B:考研是一场持久战,在这长时间的复习过程中选择一本好的复习资料相当于缩短了复习时间。博学版复习精编有对真题的详细解析,以及对出题规律的把握,通过该精编我能更高效地进行备考,更坚定考研的道路。 考生C:622数学分析公式又多又杂,博学版复习精编将这些公式整理得挺清楚的,对知识点的归纳讲解也还不错,配合着教材复习,省了很多事。

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

华中科技大学2004年《数学分析》试题

华中科技大学2004年《数学分析》试题 (试题由博士论坛之硕博之路版主hfg1964录入) 以下每题15分 1.设00x =,1 n n k k x a == ∑(1n ≥),n x b →(n →∞).求级数11 ()n n n n a x x ∞ -=+∑之和. 2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1 22 1112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt = -++? . 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >, 0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥), 2 2 lim (,)0x y f x y +→∞ =,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值. 5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点. 6.求22 49L xdy ydx I x y -= +? ,L 是取反时针方向的单位圆周. 7.设()f 是连续正值函数, 2 2 2 2 2 2 2 222 2222 ()()()()x y z t x y t f x y z dxdydz F t x y f x y dxdy ++≤+≤++= ++??? ?? . 证明()F t (0t >)是严格单调减函数. 8.设级数0 1 n n a n ∞ =+∑ 收敛,证明 1 1n n n n n a a x dx n ∞∞ === +∑ ∑?. 9.设()f x 在[0,)∞上连续,其零点为01:0n n x x x x =<<<< ,()n x n →∞→∞.证明:积分0 ()f x dx ∞ ? 收敛?级数10 ()n n x x n f x dx +∞ =∑ ? 收敛. 10.设a b <,()n f x 在[,]a b 上连续,()0b n a f x dx ≥?(1,2,n = ),当n →∞时,()n f x 在[,] a b 上一致收敛于()f x .证明:至少存在一点0[,]x a b ∈,使得0()0f x ≥.

相关文档
最新文档